Impact of In Vitro Gastrointestinal Digestion on the Bioaccessibility of Phytochemical Compounds from Eight Fruit Juices
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physicochemical Characteristics, Individual and Total Sugar Content of Fruit Juices Prior to In Vitro Digestion
2.2. Phytochemical Profile of Fruit Juices Prior to In Vitro Digestion
2.3. Bioaccessibility of Phytochemicals after In Vitro Digestion
2.4. Antioxidant Capacity before and after In Vitro Gastrointestinal Digestion of Fruit Juices
2.5. Principal Component Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Fruit Juices Samples
3.3. In Vitro Gastro-Intestinal (GI) Digestion
3.3.1. Gastric Phase
3.3.2. Intestinal Phase
3.4. Moisture Content
3.5. Total Polyphenol Content Analysis (TPC)
3.6. Total Flavonoid Content (TFC)
3.7. Total Monomeric Anthocyanin Content
3.8. Determination of Antioxidant Activity
3.8.1. DPPH• Scavenging Activity
3.8.2. ABTS•+ Scavenging Activity
3.8.3. Ferric-Reducing Antioxidant Power
3.8.4. Cupric Ion Reducing Antioxidant Capacity (CUPRAC) Assay
3.9. Quantification of Phenolic Acids by HPLC-DAD
3.10. Total Carbohydrate Contents
3.11. Quantification of Sugars and Polyols by HPLC-RID Method
3.12. Bioaccessibility Measurement
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Krinsky, N.I. Mechanism of action of biological antioxidants. Proc. Soc. Exp. Biol. Med. 1992, 200, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Amine, E.K.; Baba, N.H.; Belhadj, M.; Deurenberg-Yap, M.; Djazayery, A.; Forrestre, T.; Galuska, D.A.; Herman, S.; James, W.P.T.; M’Buyamba Kabangu, J.R.; et al. Diet, Nutrition and the Prevention of Chronic Diseases; World Health Organization Technical Report Series 916; WHO: Geneva, Switzerland, 2003. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K. An Overview of Antimicrobial Properties of Different Classes of Phytochemicals. Diet. Phytochem. Microbes 2012, 1–32. [Google Scholar] [CrossRef]
- Schreiner, M.; Huyskens-Keil, S. Phytochemicals in Fruit and Vegetables: Health Promotion and Postharvest Elicitors. CRC. Crit. Rev. Plant. Sci. 2006, 25, 267–278. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Bohn, T.; Carriere, F.; Day, L.; Deglaire, A.; Egger, L.; Freitas, D.; Golding, M.; Le Feunteun, S.; Macierzanka, A.; Menard, O.; et al. Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Crit. Rev. Food Sci. Nutr. 2018, 58, 2239–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, A.; Pintado, M. Stability of polyphenols and carotenoids in strawberry and peach yoghurt throughout in vitro gastrointestinal digestion. Food Funct. 2015, 6, 1611–1619. [Google Scholar] [CrossRef]
- Mosele, J.I.; Macià, A.; Romero, M.-P.; Motilva, M.-J. Stability and metabolism of Arbutus unedo bioactive compounds (phenolics and antioxidants) under in vitro digestion and colonic fermentation. Food Chem. 2016, 201, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein–phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- Desseva, I.; Mihaylova, D. Influence of in vitro gastrointestinal digestion on phytochemicals in pomegranate juice. Food Sci. Technol. 2020, 40, 211–216. [Google Scholar] [CrossRef] [Green Version]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Bao, T.; Wang, Y.; Li, Y.-T.; Gowd, V.; Niu, X.-H.; Yang, H.-Y.; Chen, L.-S.; Chen, W.; Sun, C. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion. J. Zhejiang Univ. Sci. B 2016, 17, 941–951. [Google Scholar] [CrossRef]
- Desseva, I.; Stoyanova, M.; Petkova, N.; Mihaylova, D. Red beetroot juice phytochemicals bioaccessibility: An in vitro approach. Polish J. Food Nutr. Sci. 2020, 70, 45–53. [Google Scholar] [CrossRef]
- Grgić, J.; Šelo, G.; Planinić, M.; Tišma, M.; Bucić-Kojić, A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants. 2020, 9, 923. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cheng, Z.; Wang, Y.; Fu, L. Dietary protein-phenolic interactions: Characterization, biochemical-physiological consequences, and potential food applications. Crit. Rev. Food Sci. Nutr. 2020, 1–27. [Google Scholar] [CrossRef]
- Shahidi, F.; Peng, H. Bioaccessibility and bioavailability of phenolic compounds. J. Food Bioact. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the total antioxidant capacity and total polyphenol content of 23 commercially available vegetable juices before and after in vitro digestion measured by FRAP, DPPH, ABTS and Folin-Ciocalteu methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Hallmann, E.; Orpel, E.; Rembiałkowska, E. The content of biologically active compounds in some fruits from natural state. Veg. Crop. Res. Bull. 2011, 75, 81–90. [Google Scholar] [CrossRef]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.; Piórecki, N. Characteristics of Biologically Active Compounds in Cornelian Cherry Meads. Molecules 2018, 23, 2024. [Google Scholar] [CrossRef] [Green Version]
- Lachowicz, S.; Oszmiański, J. The influence of addition of cranberrybush juice to pear juice on chemical composition and antioxidant properties. J. Food Sci. Technol. 2018, 55, 3399–3407. [Google Scholar] [CrossRef] [Green Version]
- Attri, S.; Singh, N.; Singh, T.R.; Goel, G. Effect of in vitro gastric and pancreatic digestion on antioxidant potential of fruit juices. Food Biosci. 2017, 17, 1–6. [Google Scholar] [CrossRef]
- Tesoriere, L.; Allegra, M.; Butera, D.; Livrea, M.A. Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: Potential health effects of betalains in humans. Am. J. Clin. Nutr. 2004, 80, 941–945. [Google Scholar] [CrossRef] [Green Version]
- Frank, T.; Stintzing, F.C.; Carle, R.; Bitsch, I.; Quaas, D.; Straß, G.; Bitsch, R.; Netzel, M. Urinary pharmacokinetics of betalains following consumption of red beet juice in healthy humans. Pharmacol. Res. 2005, 52, 290–297. [Google Scholar] [CrossRef]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81, 230S–242S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kay, C.D. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutr. Res. Rev. 2006, 19, 137–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.R. Probiotic fruit and vegetable juices- recent advances and future perspective. Int. Food Res. J. 2017, 24, 1850–1857. [Google Scholar]
- Choi, M.-H.; Kim, G.-H.; Park, K.-H.; Kim, Y.-S.; Shim, S.-M. Bioaccessibility of Total Sugars in Carbonated Beverages and Fermented Milks. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 778–782. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S. Effect of the Production of Dried Fruits and Juice from Chokeberry (Aronia melanocarpa L.) on the Content and Antioxidative Activity of Bioactive Compounds. Molecules 2016, 21, 1098. [Google Scholar] [CrossRef]
- Fejzić, A.; Ćavar, S. Phenolic Compounds and Antioxidant Activity of Some Citruses. Bull. Chem. Technol. Bosnia Herzegovina 2014, 42, 1–4. [Google Scholar]
- Denev, P.N.; Kratchanov, C.G.; Ciz, M.; Lojek, A.; Kratchanova, M.G. Bioavailability and Antioxidant Activity of Black Chokeberry (Aronia melanocarpa) Polyphenols: In vitro and in vivo Evidence and Possible Mechanisms of Action: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 471–489. [Google Scholar] [CrossRef]
- Denev, P.; Kratchanova, M.; Petrova, I.; Klisurova, D.; Georgiev, Y.; Ognyanov, M.; Yanakieva, I. Black Chokeberry (Aronia melanocarpa (Michx.) Elliot) Fruits and Functional Drinks Differ Significantly in Their Chemical Composition and Antioxidant Activity. J. Chem. 2018, 2018, 9574587. [Google Scholar] [CrossRef] [Green Version]
- Wern, K.H.; Haron, H.; Keng, C.B. Comparison of total phenolic contents (TPC) and Antioxidant Activities of fresh fruit juices, commercial 100% fruit juices and fruit drinks (Perbandingan jumlah kandungan fenolik (TPC) dan aktiviti antioksidan jus Buah-buahan segar, 100% Jus Buah-buahan k. Sains Malays. 2016, 45, 1319–1327. [Google Scholar]
- Campos-Vega, R.; Vázquez-Sánchez, K.; López-Barrera, D.; Loarca-Piña, G.; Mendoza-Díaz, S.; Oomah, B.D. Simulated gastrointestinal digestion and in vitro colonic fermentation of spent coffee (Coffea arabica L.): Bioaccessibility and intestinal permeability. Food Res. Int. 2015, 77, 156–161. [Google Scholar] [CrossRef]
- Rodríguez-Roque, M.J.; Rojas-Graü, M.A.; Elez-Martínez, P.; Martín-Belloso, O. Changes in vitamin C, phenolic, and carotenoid profiles throughout in vitro gastrointestinal digestion of a blended fruit juice. J. Agric. Food Chem. 2013, 61, 1859–1867. [Google Scholar] [CrossRef]
- Tenore, G.C.; Campiglia, P.; Ritieni, A.; Novellino, E. In vitro bioaccessibility, bioavailability and plasma protein interaction of polyphenols from Annurca apple (M. pumila Miller cv Annurca). Food Chem. 2013, 141, 3519–3524. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef] [PubMed]
- Coe, S.; Fraser, A.; Ryan, L. Polyphenol Bioaccessibility and Sugar Reducing Capacity of Black, Green, and White Teas. Int. J. Food Sci. 2013, 2013, 238216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermudez-Soto, M.J.; Tomás-Barberán, F.A.; García-Conesa, M.T. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem. 2007, 102, 865–874. [Google Scholar] [CrossRef]
- Bouayed, J.; Deußer, H.; Hoffmann, L.; Bohn, T. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chem. 2012, 131, 1466–1472. [Google Scholar] [CrossRef]
- Ovando-Martínez, M.; Gámez-Meza, N.; Molina-Domínguez, C.C.; Hayano-Kanashiro, C.; Medina-Juárez, L.A. Simulated Gastrointestinal Digestion, Bioaccessibility and Antioxidant Capacity of Polyphenols from Red Chiltepin (Capsicum annuum L. Var. glabriusculum) Grown in Northwest Mexico. Plant. Foods Hum. Nutr. 2018, 73, 116–121. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Valese, A.C.; Daguer, H.; Bergamo, G.; Azevedo, M.S.; Nehring, P.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Effect of in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds, minerals, and antioxidant capacity of Mimosa scabrella Bentham honeydew honeys. Food Res. Int. 2017, 99, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Alminger, M.; Aura, A.-M.; Bohn, T.; Dufour, C.; El, S.N.; Gomes, A.; Karakaya, S.; Martínez-Cuesta, M.C.; McDougall, G.J.; Requena, T.; et al. In vitro Models for Studying Secondary Plant Metabolite Digestion and Bioaccessibility. Compr. Rev. Food Sci. Food Saf. 2014, 13, 413–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.-L.; Chen, S.-G.; Chen, F.; Xie, Y.-Q.; Han, M.-D.; Luo, C.-X.; Zhao, Y.-Y.; Gao, Y.-Q. Nutraceutical potential and antioxidant benefits of selected fruit seeds subjected to an in vitro digestion. J. Funct. Foods 2016, 20, 317–331. [Google Scholar] [CrossRef]
- Haida, Z.; Hakiman, M. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Sci. Nutr. 2019, 7, 1555–1563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, L.; Prescott, S.L. Stability of the antioxidant capacity of twenty-five commercially available fruit juices subjected to an in vitro digestion. Int. J. Food Sci. Technol. 2010, 45, 1191–1197. [Google Scholar] [CrossRef]
- McDougall, G.J.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J. Agric. Food Chem. 2005, 53, 5896–5904. [Google Scholar] [CrossRef] [PubMed]
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and betacyanins in red beetroot (Beta vulgaris) root: Distribution and effect of cold storage on the content of total phenolics and three individual compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef] [PubMed]
- Kivrak, İ.; Duru, M.E.; Öztürk, M.; Mercan, N.; Harmandar, M.; Topçu, G. Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem. 2009, 116, 470–479. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.; Wrolstad, R. AOAC 2005.02: Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines- pH Differential Method. In Official Methods of Analysis of AOAC International; AOAC: Washington, DC, USA, 2005; pp. 37–39. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. [2] Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [PubMed]
- Apak, R.; Özyürek, M.; KarademirÇelik, S.; Güçlü, K. CUPRAC method 2004, JAFC 2013.
- Mihaylova, D.; Vrancheva, R.; Desseva, I.; Ivanov, I.; Dincheva, I.; Popova, M.; Popova, A. Analysis of the GC-MS of volatile compounds and the phytochemical profile and antioxidant activities of some Bulgarian medicinal plants. Z. Naturforsch. C 2018, 74, 45–54. [Google Scholar] [CrossRef] [PubMed]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Petkova, N.; Vrancheva, R.; Denev, P.; Ivanov, I.; Pavlov, A. HPLC-RID method for determination of inulin and fructooligosaccharides. Acta Sci. Nat. 2014, 1, 107. [Google Scholar]
- Hadjikinova, R.; Petkova, N.; Hadjikinov, D.; Denev, P.; Hrusavov, D. Development and validation of HPLC-RID method for determination of sugars and polyols. J. Pharm. Sci. Res. 2017, 9, 1263–1269. [Google Scholar]
- Leufroy, A.; Noël, L.; Beauchemin, D.; Guérin, T. Use of a continuous leaching method to assess the oral bioaccessibility of trace elements in seafood. Food Chem. 2012, 135, 623–633. [Google Scholar] [CrossRef] [PubMed]
Sample/ Assay | pH | Dry Content, % | Sucrose, g/100 g | Glucose, g/100 g | Fructose, g/100 g | Sorbitol, g/100 g | Total Sugars, g/100 g |
---|---|---|---|---|---|---|---|
A | 3.80 | 10.15 | 0.01 ± 0.01 e | 2.81 ± 0.04 c | 3.84 ± 0.01 b | - | 6.64 ± 0.06 d |
B | 3.35 | 9.76 | 1.54 ± 0.01 b | 1.84 ± 0.01 f | 1.88 ± 0.02 e | - | 5.17 ± 0.02 e |
C | 3.08 | 16.67 | 3.25 ± 0.04 a | 3.03 ± 0.05 b | 3.10 ± 0.03 c | - | 10.51 ± 0.09 a |
D | 3.25 | 11.43 | 0.20 ± 0.02 d | 2.60 ± 0.04 d | 3.81 ± 0.03 b | 0.49 ± 0.01 c | 7.11 ± 0.03 *,c |
E | 3.45 | 10.89 | 0.02 ± 0.00 e | 2.89 ± 0.03 c | 1.78 ± 0.02 f | 0.58 ± 0.01 b | 4.69 ± 0.03 *,f |
F | 3.40 | 13.33 | 0.42 ± 0.02 c | 4.00 ± 0.02 a | 4.85 ± 0.01 a | 9.85 ± 0.02 b | |
G | 3.20 | 8.44 | 0.03 ± 0.00 e | 2.27 ± 0.02 e | 2.48 ± 0.01 d | - | 4.79 ± 0.02 f |
H | 3.48 | 5.12 | 0.04 ± 0.01 e | 0.80 ± 0.01 g | 0.92 ± 0.01 g | 0.90 ± 0.02 a | 2.69 ± 0.01 *,g |
Samples | Total Phenolic Contents (TPC), | Total Flavonoid Contents (TFC), | Total Monomeric Anthocyanins, |
---|---|---|---|
mgGAE/mL | μgQE/mL | mg/L | |
A | 15.56 ± 0.06 a | 910.4 ± 7.2 b | 26.67 ± 0.55 b |
B | 3.45 ± 0.10 e | 815.62 ± 6.25 c | 0 f |
C | 3.14 ± 0.03 e | 1667.71 ± 23.66 a | 0 f |
D | 4.13 ± 0.06 d | 627.60 ± 3.61 e | 3.28 ± 0.05 d |
E | 5.71 ± 0.08 c | 548.44 ± 34.80 f | 3.35 ± 0.11 d |
F | 1.14 ± 0.02 f | 459.90 ± 11.84 g | 1.81 ± 0.03 e |
G | 0.81 ± 0.01 f | 79.43 ± 3.39 h | 19.56 ± 0.53 c |
H | 7.45 ± 0.33 b | 713.03 ± 9.15 d | 42.44 ± 0.98 a |
Samples | Gallic Acid | Protocatechuic Acid | Chlorogenic Acid | Caffeic Acid | Ferulic Acid | p-Coumaric Acid | Sinapic Acid |
---|---|---|---|---|---|---|---|
A | 0 | 0 | 1.25 ± 0.07 d | 1.54 ± 0.05 d | ˂LOQ | 0 h | 2.31 ± 0.08 c |
B | 0 | ˂LOQ | 1.63 ± 0.03 c | 1.99 ± 0.02 c | ˂LOQ | 3.92 ± 0.08 e | 2.22 ± 0.06 c |
C | 0 | 0 | 6.78 ± 0.09 a | 0.75 ± 0.01 e | 0 | 12.23 ± 0.11 a | 8.45 ± 0.11 a |
D | ˂LOQ | 0 | 0 g | 3.25 ± 0.01 a | ˂LOQ | 11.46 ± 0.11 b | 3.76 ± 0.04 b |
E | ˂LOQ | ˂LOQ | 0 g | 1.61 ± 0.08 d | ˂LOQ | 4.24 ± 0.05 d | 0.83 ± 0.01 e |
F | 0 | ˂LOQ | 0.73 ± 0.01 e | 1.27 ± 0.06 e | ˂LOQ | 5.21 ± 0.11 c | 0.78 ± 0.01 f |
G | 0 | 0 | 3.53 ± 0.109 b | 0.92 ± 0.02 g | ˂LOQ | 3.15 ± 0.05 f | 0.70 ± 0.01 g |
H | 0 | ˂LOQ | 0 g | 2.70 ± 0.09 b | ˂LOQ | 2.12 ± 0.02 g | 0.89 ± 0.02 d |
Scheme | TPC | TFC | Total Monomeric Anthocyanins | |||
---|---|---|---|---|---|---|
mgGAE/mL | BA | μgQE/mL | BA | mg/L | BA | |
A | 15.56 ± 0.06 a | 19.74 | 910.40 ± 7.2 b | 31.16 | 26.67 ± 0.55 b | 58.12 |
B | 3.45 ± 0.10 e | 16.62 | 815.62 ± 6.25 c | 34.64 | 0 f | 0 |
C | 3.14 ± 0.03 e | 16.29 | 1667.71 ± 23.66 a | 31.56 | 0 f | 0 |
D | 4.13 ± 0.06 d | 26.20 | 627.60 ± 3.61 e | 24.25 | 3.28 ± 0.05 d | 0.93 |
E | 5.71 ± 0.08 c | 13.52 | 548.44 ± 34.80 f | 26.98 | 3.35 ± 0.11 d | 0.89 |
F | 1.14 ± 0.02 f | 26.49 | 459.90 ± 11.84 g | 67.00 | 1.81 ± 0.03 e | 1.11 |
G | 0.81 ± 0.01 f | 13.83 | 79.43 ± 3.39 h | 35.53 | 19.56 ± 0.53 c | 50.36 |
H | 7.45 ± 0.33 b | 17.34 | 713.03 ± 9.15 d | 24.54 | 0 f | 0 |
Samples | Gallic Acid | Protocatechuic Acid | Chlorogenic Acid | Caffeic Acid | Ferulic Acid | p-Coumaric Acid | Sinapic Acid | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
µg/100 g | Bio-Accessibility (BA) | µg/100 g | BA | µg/100 g | BA | µg/100 g | BA | µg/100 g | BA | µg/100 g | BA | µg/100 g | BA | |
A | 0 b | - | 0 b | - | 0.62 ± 0.03 e | 49.52 | 0.20 ± 0.01 c | 13.02 | 0 | - | 2.60 ± 0.08 c | >100 | 0 f | - |
B | 0 b | - | 0 b | - | 0.15 ± 0.01 f | 9.20 | 0 e | - | 0 | - | 1.56 ± 0.08 f | 39.80 | 0.67 ± 0.01 c | 30.18 |
C | 0 b | - | 0 b | - | 1.36 ± 0.02 d | 20.06 | 0 e | - | ˂LOQ | NB | 2.54 ± 0.02 d | 20.77 | 2.67 ± 0.02 a | 31.60 |
D | 26.96 ± 0.23 a | >100 | 0 b | - | 11.98 ± 0.55 b | >100 | 0.23 ± 0.01 c | 6.99 | 0 | - | 4.07 ± 0.03 b | 35.54 | 1.42 ± 0.02 d | 37.69 |
E | 0 b | - | 0 b | - | 8.80 ± 0.23 c | >100 | 0.32 ± 0.02 b | 19.78 | 0 | - | 5.06 ± 0.04 a | >100 | 2.00 ± 0.03 b | >100 |
F | 0 b | - | 20.70 ± 1.01 a | >100 | 9.37 ± 0.21 c | >100 | 0.99 ± 0.02 a | 77.95 | 0 | - | 2.64 ± 0.02 c | 50.67 | 1.11 ± 0.01 e | >100 |
G | 0 b | - | 0 b | - | ˂LOQ | NB | 0 e | - | 0 | - | 0 g | - | 0 f | - |
H | 0 b | - | 0 b | - | 67.44 ± 1.11 a | >100 | 0.15 ± 0.01 d | 5.69 | 0 | - | 1.71 ± 0.02 e | 80.86 | 0 f | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihaylova, D.; Desseva, I.; Stoyanova, M.; Petkova, N.; Terzyiska, M.; Lante, A. Impact of In Vitro Gastrointestinal Digestion on the Bioaccessibility of Phytochemical Compounds from Eight Fruit Juices. Molecules 2021, 26, 1187. https://doi.org/10.3390/molecules26041187
Mihaylova D, Desseva I, Stoyanova M, Petkova N, Terzyiska M, Lante A. Impact of In Vitro Gastrointestinal Digestion on the Bioaccessibility of Phytochemical Compounds from Eight Fruit Juices. Molecules. 2021; 26(4):1187. https://doi.org/10.3390/molecules26041187
Chicago/Turabian StyleMihaylova, Dasha, Ivelina Desseva, Magdalena Stoyanova, Nadezhda Petkova, Margarita Terzyiska, and Anna Lante. 2021. "Impact of In Vitro Gastrointestinal Digestion on the Bioaccessibility of Phytochemical Compounds from Eight Fruit Juices" Molecules 26, no. 4: 1187. https://doi.org/10.3390/molecules26041187
APA StyleMihaylova, D., Desseva, I., Stoyanova, M., Petkova, N., Terzyiska, M., & Lante, A. (2021). Impact of In Vitro Gastrointestinal Digestion on the Bioaccessibility of Phytochemical Compounds from Eight Fruit Juices. Molecules, 26(4), 1187. https://doi.org/10.3390/molecules26041187