The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties
Abstract
:1. Introduction
2. Mentha Genus
3. Phytochemical Composition of Mentha
4. Properties of the Mentha Genus
4.1. Antioxidant Activities
4.2. Antibacterial Activities
4.3. Antifungal and Antiyeast Activities
4.4. Antiviral Properties
4.5. Anticancer Activity
5. Clinical Trials
6. Adverse Effects of Mentha Species
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Solecki, R.S. Shanidar IV, a Neanderthal Flower Burial in Northern Iraq. Sci. 1975, 190, 880–881. [Google Scholar] [CrossRef]
- Nirmal, S.A.; Pal, S.C.; Otimenyin, S.O.; Aye, T.; Elachouri, M.; Kundu, S.K.; Thandavarayan, R.A.; Mandal, S.C. Contribution of Herbal Products In Global Market. The pharma review 2013, 95–104. [Google Scholar]
- Sevindik, M. Pharmacological Properties of Mentha Species. J. Tradit. Med. Clin. Naturop. 2018, 7, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Anwar, F.; Abbas, A.; Mehmood, T.; Gilani, A.-H.; Rehman, N.-u. Mentha: A genus rich in vital nutra-pharmaceuticals—A review. Phytother. Res. 2019, 33, 2548–2570. [Google Scholar] [CrossRef] [PubMed]
- Fabricant, D.S.; Fransworth, N.R. The value of Plants used in traditional medicine for drug discovery. Environ Health Perspect 2001, 109, 69–75. [Google Scholar]
- Rates, S. Plants as source of drugs. Toxicon 2001, 39, 603–613. [Google Scholar] [CrossRef]
- Petrovska, B.B. Historical review of medicinal plants’ usage. Phar. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, A.; Ramalingam, K.; Krishnan, S.; Ajm, C. Anti-inflammatory Activity of Morus indica Linn. Ira. J. of Phar. Thera. 2005, 4, 13–15. [Google Scholar]
- Salehi, B.; Valussi, M.; Jugran, A.K.; Martorell, M.; Ramírez-Alarcón, K.; Stojanović-Radić, Z.Z.; Antolak, H.; Kręgiel, D.; Mileski, K.S.; Sharifi-Rad, M.; et al. Nepeta species: From farm to food applications and phytotherapy. Trends Food Sci. Technol. 2018, 80, 104–122. [Google Scholar] [CrossRef]
- Šarić-Kundalić, B.; Fialová, S.; Dobeš, C.; Ölzant, S.; Tekeľová, D.; Grančai, D.; Reznicek, G.; Saukel, J. Multivariate numerical taxonomy of Mentha species, hybrids, varieties and cultivars. Sci. Pharm. 2009, 77, 851–876. [Google Scholar] [CrossRef]
- Salehi, B.; Stojanovi´c-Radi´c, Z.; Mateji´c, J.; Sharopov, F.; Antolak, H.; Kr˛egiel, D.; Sen, S.; Sharifi-Rad, M.; Acharya, K.; Sharifi-Rad, R.; et al. Plants of Genus Mentha: From Farm to Food Factory. Plants. 2018, 7, 70. [Google Scholar] [CrossRef] [Green Version]
- Spencer, A.; Hamill, J.D.; Rhodes, M.J. In Vitro biosynthesis of monoterpenes by Agrobacterium transformed shoot cultures of two Mentha species. Phytochem. 1993, 32, 911–919. [Google Scholar] [CrossRef]
- Lawrence, B.M. Mint. The Genus Mentha; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–56. [Google Scholar]
- Shaikh, S.; Bin Yaacob, H.; Rahim, Z.H.A. Prospective Role In Treatment Of Major Illnesses And Potential Benefits As A Safe Insecticide And Natural Food Preservative of Mint (Mentha spp.): A Review. Asian J. Biomed. Pharm. Sci. 2014, 4, 1–12. [Google Scholar] [CrossRef]
- Park, Y.J.; Baek, S.-A.; Choi, Y.; Kim, J.K.; Park, S.U. Metabolic Profiling of Nine Mentha Species and Prediction of Their An-tioxidant Properties Using Chemometrics. Molecules 2019, 24, 258. [Google Scholar] [CrossRef] [Green Version]
- Gracindo, L.A.M.B.; Grisi, M.C.M.; Silva, D.B.; Alvez, R.B.N.; Bizzo, H.R.; Vieira, R.F. Chemical characterization of mint (Mentha spp.) germplasm at Federal District, Brazil. Rev. Bras. de Pla. Med. 2006, 8, 5–9. [Google Scholar]
- Barros, A.D.S.; Morais, S.M.d.; Ferreira, P.A.T.; Vieira, Í.G.P.; Craveiro, A.A.; Fontenelle, R.O.D.S.; Menezes, J.E.S.A.D.; Silva, F.W.F.D.; Sousa, H.A.D. Chemical composition and functional properties of essential oils from Mentha species. Ind. Cro. and Prod. 2015, 76, 557–564. [Google Scholar] [CrossRef]
- Pereira, O.R.; Cardoso, S.M. Overview on Mentha and Thymus Polyphenols. Cur. Anal. Chem. 2013, 9, 382–396. [Google Scholar] [CrossRef] [Green Version]
- Benedec, D.; Vlase, L.; Oniga, I.; Mot, A.C.; Silaghi-Dumitrescu, R.; Hanganu, D.; Tiperciuc, B.; Crişan, G. LC-MS analysis and antioxidant activity of phenolic compounds from two indigenous species of mentha. Farmacia 2013, 61, 262–267. [Google Scholar]
- Taamalli, A.; Arráez-Román, D.; Abaza, L.; Iswaldi, I.; Fernandez-Gutierrez, A.; Zarrouk, M.; SeguraCarretero, A. LC-MS-based metabolite profiling of methanolic extracts from the medicinal and aromatic species Mentha pulegium and Origanum majorana. Phytochem. Anal. 2015, 26, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Tan, B.; Liu, Y.; Dunn, J.; Guerola, P.M.; Tortajada, M.; Cao, Z.; Ji, P. Chemical Composition and Antioxidant Properties of Essential Oils from Peppermint, Native Spearmint and Scotch Spearmint. Molecules 2019, 24, 2825. [Google Scholar] [CrossRef] [Green Version]
- Koşar, M.; Dorman, H.J.D.; Baser, K.H.C.; Hiltunen, R. Screening of Free Radical Scavenging Compounds in Water Extracts ofMenthaSamples Using a Postcolumn Derivatization Method. J. Agric. Food Chem. 2004, 52, 5004–5010. [Google Scholar] [CrossRef]
- Bimakr, M.; Rahman, R.A.; Taip, F.S.; Ganjloo, A.; Salleh, L.M.; Selamat, J.; Hamid, A.; Zaidul, I. Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod. Process. 2011, 89, 67–72. [Google Scholar] [CrossRef]
- Salin, O.; Törmäkangas, L.; Leinonen, M.; Saario, E.; Hagström, M.; Ketola, R.A.; Saikku, P.; Vuorela, H.; Vuorela, P.M. Corn Mint (Mentha arvensis) Extract Diminishes Acute Chlamydia pneumoniae Infection in Vitro and in Vivo. J. Agric. Food Chem. 2011, 59, 12836–12842. [Google Scholar] [CrossRef] [PubMed]
- Fatiha, B.; Didier, H.; Naima, G.; Khodir, M.; Martin, K.; Léocadie, K.; Caroline, S.; Mohamed, C.; Pierre, D. Phenolic composition, in vitro antioxidant effects and tyrosinase inhibitory activity of three Algerian Mentha species: M. spicata (L.), M. pulegium (L.) and M. rotundifolia (L.) Huds (Lamiaceae). Ind. Crop. Prod. 2015, 74, 722–730. [Google Scholar] [CrossRef]
- Franz, C.; Novak, J. Sources of Essential Oils; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2010; pp. 45–67. [Google Scholar]
- Malingré, T.M. Chemotaxonomic study of Mentha arvensis L. Pharm. week. 1971, 106, 165–171. [Google Scholar]
- Maffei, M.; Codignola, A. Photosynthesis, Photorespiration and Herbicide Effect on Terpene Production in Peppermint (Mentha piperitaL.). J. Essent. Oil Res. 1990, 2, 275–286. [Google Scholar] [CrossRef]
- Sokovic, M.D.; Vukojevic, J.; Marin, P.D.; Brkic, D.D.; Vajs, V.; van Griensven, L.J. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, M.; Pourbaige, M.; Tabar, H.K.; Farhadi, N.; Hosseini, S.M.A. Composition and Antifungal Activity of Peppermint Mentha piperita Essential Oil from Iran. J. of Ess. Oil Bear. Pla. 2013, 16, 506–512. [Google Scholar] [CrossRef]
- Andro, A.-R.; Boz, I.; Zamfirache, M.-M.; Burzo, I. Chemical composition of essential oils from Mentha aquatica L. at different moments of the ontogenetic cycle. J. Med. Plant Res. 2013, 7, 470–473. [Google Scholar]
- Dai, D.N.; Thang, T.D.; Emmanuel, E.E.; Abdulkabir, O.O.; Ogunwande, I.A. Study on essential oil of Mentha aquatica L. from Vietnam. Am. J. Essent. Oil. 2015, 2, 12–16. [Google Scholar]
- Getahun, Z.; Asres, K.; Mazumder, A.; Bucar, F. Essential Oil Composition, Antibacterial and Antioxidant Activities of Mentha aquatica Growing in Ethiopia. Ethiop. Pharm. J. 2008, 26, 9–16. [Google Scholar] [CrossRef]
- Morteza-Semnani, K.; Saeedi, M.; Akbarzadeh, M. The Essential Oil Composition of Mentha aquatica L. J. Essent. Oil Bear. Plants 2006, 9, 283–286. [Google Scholar] [CrossRef]
- Fancello, F.; Zara, S.; Petretto, G.L.; Chessa, M.; Addis, R.; Rourke, J.P.; Pintore, G. Essential oils from three species of Mentha harvested in Sardinia: Chemical characterization and evaluation of their biological activity. Int. J. Food Prop. 2017, 20, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pereira, O.R.; Macias, R.I.R.; Domingues, M.R.M.; Marin, J.J.G.; Cardoso, S.M. Hepatoprotection of Mentha aquatica L., Lavandula dentata L. and Leonurus cardiaca L. Antioxidants 2019, 8, 267. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Xu, L.; Li, Z.; Qian, S.; Qin, M. Chemical constituents from Mentha canadensis. Biochem. Syst. Ecol. 2013, 49, 144–147. [Google Scholar] [CrossRef]
- Shelepova, O.V.; Voronkova, T.V.; Kondrat’eva, V.V.; Semenova, M.V.; Bidyukova, G.F.; Olehnovich, L.S. Phenotypic and Phytochemical Differences between Mentha arvensis L. and Mentha canadiensis L. Biol. Bull. 2014, 41, 19–23. [Google Scholar] [CrossRef]
- Thawkar, B.S.; Jawarkar, A.G.; Kalamkar, P.V.; Pawar, K.P.; Kale, M.K. Phytochemical and pharmacological review of Mentha arvensis. Int. J. Green Pharm. 2016, 10, 71–76. [Google Scholar]
- Abdel-Hameed, E.-S.S.; Salman, M.S.; Fadl, M.A.; Elkhateeb, A.; Hassan, M.M. Chemical Composition and Biological Activity of Mentha longifolia L. Essential Oil Growing in Taif, KSA Extracted by Hydrodistillation, Solvent Free Microwave and Microwave Hydrodistillation. J. Essent. Oil Bear. Plants 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Teymouri, M.; Alizadeh, A. Chemical composition and antimicrobial activity of the essential oil of Mentha mozaffarianii Jamzad growing wild and cultivated in Iran. Nat. Prod. Res. 2017, 32, 1320–1323. [Google Scholar] [CrossRef] [PubMed]
- Golparvar, A.R.; Hadipanah, A.; Gheisari, M.M.; Salehi, S.; Khaliliazar, R.; Ghasemi, O. Comparative analysis of chemical composition of Mentha longifolia (L.) Huds. J Herb Med 2017, 7, 235–241. [Google Scholar]
- Daneshbakhsh, D.; Asgarpanah, J.; Najafizadeh, P.; Rastegar, T.; Mousavi, Z. Safety Assessment of Mentha mozaffarianii Essential Oil: Acute and Repeated Toxicity Studies. Iran. J. Med. Sci. 2018, 43, 479–486. [Google Scholar]
- Tavakkoli-Khaledi, S.; Asgarpanah, J. Essential Oil Chemical Composition of Mentha mozaffarianii Jamzad Seeds. J. Mex. Chem. Soc. 2017, 60, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Alexa, E.; Danciu, C.; Radulov, I.; Obistioiu, D.; Sumalan, R.M.; Morar, A.; Dehelean, C.A. Phytochemical Screening and Biological Activity of Mentha × piperita L. and Lavandula angustifolia Mill. Extracts. Anal. Cell. Pathol. 2018, 2678924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudjil, M.B.; Ladjel, S.; Ben, S.E.; Zighmi, S.; Hamada, D. Chemical Composition, Antibacterial and Antioxidant Activities of the Essential Oil Extracted from the Mentha piperita of Southern Algeria. Res. J. Phytochem. 2015, 9, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Marwa, C.; Fikri-Benbrahim, K.; Ou-Yahia, D.; Farah, A. African peppermint (Mentha piperita) from Morocco: Chemical composition and antimicrobial properties of essential oil. J. Adv. Pharm. Technol. Res. 2017, 8, 86–90. [Google Scholar] [PubMed]
- Satmi, F.R.S.; Hossain, M.A. In vitro antimicrobial potential of crude extracts and chemical compositions of essential oils of leaves of Mentha piperita L native to the Sultanate of Oman. Pac. Sci. Rev. A: Nat. Sci. Eng. 2016, 18, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Tsai, M.; Wu, C.; Lin, T.; Lin, W.; Huang, Y.; Yang, C. Chemical Composition and Biological Properties of Essential Oils of Two Mint Species. Trop. J. Pharm. Res. 2013, 12, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Politeo, O.; Bektašević, M.; Carev, I.; Jurin, M.; Roje, M. Cover Picture: Phytochemical Composition, Antioxidant Potential and Cholinesterase Inhibition Potential of Extracts from Mentha pulegium L. (C&B 12/2018). Chem. Biodivers. 2018, 15, e1800624. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, F.; Rezaeian-Doloei, R.; Alimoradi, L. Evaluation of Phytochemical Composition of Mentha pulegium L. Essential Oil and Its Antibacterial Activity against Several Pathogenic Bacteria. Iran. J. Med. Microbiol. 2018, 11, 167–177. [Google Scholar]
- Siham, F.; Rachid, B.; Read, A.-Z.M. Chemical Composition and Antioxidant Effect of Mentha rotundifolia Extracts. Pharmacogn. J. 2019, 11, 521–526. [Google Scholar] [CrossRef]
- Derwich, E.; Benziane, Z.; Boukir, A.; Benaabidate, L. GC-MS Analysis of the Leaf Essential Oil of Mentha rotundifolia, a Traditional Herbal Medicine in Morocco. Chem. Bul. “Politehnica” Univ. Timisoara 2009, 54, 85–88. [Google Scholar]
- Riahi, L.; Elferchichi, M.; Ghazghazi, H.; Jebali, J.; Ziadi, S.; Aouadhi, C.; Chograni, H.; Zaouali, Y.; Zoghlami, N.; Mliki, A. Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia. Ind. Crop. Prod. 2013, 49, 883–889. [Google Scholar] [CrossRef]
- Bahadori, M.B.; Zengin, G.; Bahadori, S.; Dinparast, L.; Movahhedin, N. Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). Int. J. Food Prop. 2018, 21, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Brada, M.; Bezzina, M.; Marlier, M.; Lognay, G.C. Chemical Composition of the Leaf Oil of Mentha rotundifolia (L.) from Algeria. J. Essent. Oil Res. 2006, 18, 663–665. [Google Scholar] [CrossRef]
- Yahia, I.B.H.; Jaouadi, R.; Trimech, R.; Boussaid, M.; Zaouali, Y. Variation of chemical composition and antioxidant activity of essential oils of Mentha x rotundifolia (L.) Huds. (Lamiaceae) collected from different bioclimatic areas of Tunisia. Biochem. Syst. Ecol. 2019, 84, 8–16. [Google Scholar] [CrossRef]
- Sytar, O.; Hemmerich, I.; Zivcak, M.; Rauh, C.; Brestic, M. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J. Biol. Sci. 2018, 25, 631–641. [Google Scholar] [CrossRef] [Green Version]
- Bardaweel, S.K.; Bakchiche, B.; Alsalamat, H.A.; Rezzoug, M.; Gherib, A.; Flamini, G. Chemical composition, antioxidant, antimicrobial and Antiproliferative activities of essential oil of Mentha spicata L. (Lamiaceae) from Algerian Saharan atlas. BMC Complement. Altern. Med. 2018, 18, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bayan, Y.; Küsek, M.; Ahi Evran University. Kahramanmaras Sutcu Imam University Chemical Composition and Antifungal and Antibacterial Activity of Mentha spicata L. Volatile Oil. Cienc. Investig. Agrar. 2018, 45, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Sevindik, E.; Yamaner, Ç.; Kurtoğlu, C.; Tin, B. Chemical Composition of Mentha spicata L. subsp. tomentosa and M. pulegium L., and their Antimicrobial Activity on Strong Pathogen Microorganisms. Not. Sci. Biol. 2017, 9, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Bouyahya, A.; Belmehdi, O.; Abrini, J.; Dakka, N.; Bakri, Y. Chemical composition of Mentha suaveolens and Pinus halepensis essential oils and their antibacterial and antioxidant activities. Asian Pac. J. Trop. Med. 2019, 12. [Google Scholar] [CrossRef]
- Božović, M.; Pirolli, A.; Ragno, R. Mentha suaveolens Ehrh. (Lamiaceae) Essential Oil and Its Main Constituent Piperitenone Oxide: Biological Activities and Chemistry. Molecules 2015, 20, 8605–8633. [Google Scholar] [CrossRef] [Green Version]
- Rita, I.; Pereira, C.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C.F.R. Mentha spicata L. infusions as sources of antioxidant phenolic compounds: Emerging reserve lots with special harvest requirements. Food Funct. 2016, 7, 4188–4192. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.I.; Anwar, F.; Shahid, M.; Ashraf, M.; Przybylski, R. Chemical Composition, and Antioxidant and Antimicrobial Activities of Essential Oil of Spearmint (Mentha spicata L.) From Pakistan. J. Essent. Oil Res. 2010, 22, 78–84. [Google Scholar] [CrossRef]
- Al-Okbi, S.Y.; Fadel, H.H.; Mohamed, D.A. Phytochemical constituents, antioxidant and anticancer activity of Mentha citrata and Mentha longifolia. Res. J. Pharm. Biol. Chem 2015, 6, 739–751. [Google Scholar]
- Shahbazi, Y. Chemical Composition and In Vitro Antibacterial Activity of Mentha spicata Essential Oil against Common Food-Borne Pathogenic Bacteria. J. Pathog. 2015, 2015, 1–5. [Google Scholar] [CrossRef]
- Barros, A.D.S.; De Morais, S.M.; Ferreira, P.A.T.; Vieira, Í.G.P.; Craveiro, A.A.; Fontenelle, R.O.D.S.; De Menezes, J.E.S.A.; Da Silva, F.W.F.; De Sousa, H.A. Chemical composition and functional properties of essential oils from Mentha species. Ind. Crop. Prod. 2015, 76, 557–564. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Ma, A.; Bao, Y.; Wang, M.; Sun, Z. In vitro antiviral, anti-inflammatory, and antioxidant activities of the ethanol extract of Mentha piperita L. Food Sci. Biotechnol. 2017, 26, 1675–1683. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Klimek-Szczykutowicz, M.; El-Ansary, D.O.; Mahmoud, E.A. Polyphenol Profile and Antimicrobial and Cytotoxic Activities of Natural Mentha × piperita and Mentha longifolia Populations in Northern Saudi Arabia. Processes 2020, 8, 479. [Google Scholar] [CrossRef] [Green Version]
- Yassin, M.T.; Mostafa, A.A.; Al-Askar, A.A. Anticandidal and anti-carcinogenic activities of Mentha longifolia (Wild Mint) extracts in vitro. J. King Saud Univ.-Sci. 2020, 32, 2046–2052. [Google Scholar] [CrossRef]
- Kee, L.A.; Shori, A.B.; Baba, A.S. Bioactivity and health effects of Mentha spicata. Integr. Food, Nutr. Metab. 2017, 5, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Fan, L.; Balakrishna, S.; Sui, A.; Morris, J.B.; Jordt, S.-E. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain 2013, 154, 2169–2177. [Google Scholar] [CrossRef] [Green Version]
- Uritu, C.M.; Mihai, C.T.; Stanciu, G.-D.; Dodi, G.; Alexa-Stratulat, T.; Luca, A.; Leon-Constantin, M.-M.; Stefanescu, R.; Bild, V.; Melnic, S.; et al. Medicinal Plants of the Family Lamiaceae in Pain Therapy: A Review. Pain Res. Manag. 2018, 2018, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Karashima, Y.; Damann, N.; Prenen, J.; Talavera, K.; Segal, A.; Voets, T.; Nilius, B. Bimodal Action of Menthol on the Transient Receptor Potential Channel TRPA1. J. Neurosci. 2007, 27, 9874–9884. [Google Scholar] [CrossRef]
- Mahboubi, M. Mentha spicata L. essential oil, phytochemistry and its effectiveness in flatulence. J. Tradit. Complement. Med. 2018, 1–7. [Google Scholar] [CrossRef]
- Amato, A.; Liotta, R.; Mulè, F. Effects of menthol on circular smooth muscle of human colon: Analysis of the mechanism of action. Eur. J. Pharmacol. 2014, 740, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Grigoleit, H.-G.; Grigoleit, P. Pharmacology and preclinical pharmacokinetics of peppermint oil. Phytomedicine 2005, 12, 612–616. [Google Scholar] [CrossRef]
- Brabalho, S.M.; Machado, F.M.V.F.; Oshiiwa, M.; Abreu, M.; Guiger, E.L.; Tomazela, P.; Goulart, R.A. Investiga-tion of the effects of peppermint (Mentha piperita) on the biochemical and anthropometric profile of university students. Ciência Tecnol. Alime. 2011, 31, 584–588. [Google Scholar] [CrossRef] [Green Version]
- Ceylan, R.; Zengin, G.; Uysal, S.; Ilhan, V.; Aktumsek, A.; Kandemir, A.; Anwar, F. GC-MS analysis and in vitro antioxidant and enzyme inhibitory activities of essential oil from aerial parts of endemic Thymus spathulifolius Hausskn. et Velen. J. Enzym. Inhib. Med. Chem. 2015, 31, 983–990. [Google Scholar] [CrossRef]
- Anwar, F.; Alkharfy, K.M.; Najeeb-ur-Rehman; Adam, E.H.K.; Gilani, A.-U.-H. Chemo-geographical variations in the com-position of volatiles and the biological attributes of Mentha longifolia (L.) essential oils from Saudi Arabia. Int. J. Pharmacol. 2017, 13, 408–424. [Google Scholar] [CrossRef]
- Nickavar, B.; Alinaghi, A.; Kamalinejad, M. Evaluation of the Antioxidant Properties of Five Mentha Species. Iran. J. Pharm. Sci. 2008, 7, 203–209. [Google Scholar]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounas. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Becker, E.M.; Nissen, L.R.; Skibsted, L.H. Antioxidant evaluation protocols: Food quality or health effects. Eur. Food Res. Technol. 2004, 219, 561–571. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Koşar, M.; Kahlos, K.; Holm, A.Y.; Hiltunen, R. Antioxidant Properties and Composition of Aqueous Extracts fromMenthaSpecies, Hybrids, Varieties, and Cultivars. J. Agric. Food Chem. 2003, 51, 4563–4569. [Google Scholar] [CrossRef]
- Benabdallah, A.; Rahmoune, C.; Boumendjel, M.; Aissi, O.; Messaoud, C. Total phenolic content and antioxidant activity of six wild Mentha species (Lamiaceae) from northeast of Algeria. Asian Pac. J. Trop. Biomed. 2016, 6, 760–766. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Chattopadhyay, S. DNA damage protecting activity and antioxidant potential of pudina extract. Food Chem. 2007, 100, 1377–1384. [Google Scholar] [CrossRef]
- Džamić, A.M.; Soković, M.D.; Ristić, M.S.; Novaković, M.; Grujić-Jovanović, S.; Tešević, V.; Marin, P.D. Antifungal and antioxidant activity of Mentha longifolia (L.) Hudson (Lamiaceae) essential oil. Botanica serbica 2010, 34, 57–61. [Google Scholar]
- Niksic, H.; Bešović, E.K.; Makarević, E.; Duric, K. Chemical composition, antimicrobial and antioxidant properties of Mentha longifolia (L.) Huds. essential oil. J. Heal. Sci. 2012, 2, 192–200. [Google Scholar] [CrossRef]
- Stanisavljevic, D.; Stojicevic, S.; Djordjevic, S.; Zlatkovic, B.; Velickovic, D.; Karabegovic, I.; Lazic, M. Antioxidant activity, the content of total phenols and flavonoids in the ethanol extracts of Mentha longifolia (L.) Hudson dried by the use of different techniques. Chem. Ind. Chem. Eng. Q. 2012, 18, 411–420. [Google Scholar] [CrossRef]
- Saba, I.; Anwar, F. Effect of Harvesting Regions on Physico-chemical and Biological Attributes of Supercritical Fluid-Extracted Spearmint (Mentha spicata L.) Leaves Essential Oil. J. Essent. Oil Bear. Plants 2018, 21, 400–419. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Filai, F.R.; Bou-Idra, M.; Zekkori, B.; Bouymajane, A.; Moukrad, N.; Benhallam, F.; Bentayeb, A. Application of mentha suaveolens essential oil as an antimicrobial agent in fresh turkey sausages. J. Appl Biol & Biotechnol 2018, 6, 7–12. [Google Scholar]
- Dhifi, W.; Jelali, N.; Mnif, W.; Litaiem, M.; Hamdi, N. Chemical composition of the essential oil of Mentha spicata L. from Tunisia and its biological activities. J. Food Biochem. 2013, 37, 362–368. [Google Scholar] [CrossRef]
- Sokovi´c, M.D.; Glamoˇclija, J.; Marin, P.D.; Brki´c, D.; van Griensven, L.J.L.D. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Shushni, M.A.; Belkheir, A. Antibacterial and antioxidant activities of Mentha piperita L. Arab. J. Chem. 2015, 8, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Nathan, C. Antibiotics at the crossroads. Nat. Cell Biol. 2004, 431, 899–902. [Google Scholar] [CrossRef] [PubMed]
- Ahameethunisa, A.R.; Hopper, W. Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopath-ogenic bacteria. BMC Complement. Altern Med. 2010, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, G.; Hussain, M.A.; Anwar, F.; Ashraf, M.; Gilani, A.H. Alhagi: A plant genus rich in bioactives for pharma-ceuticals. Phytother. Res. 2015, 29, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Irshad, S.; Butt, M.; Younus, H. In-vitro antibacterial activity of two medicinal plants neem (Azadirachta indica) and pep-permint. Int Res. J. Pharma. 2011, 1, 9–14. [Google Scholar]
- Mahady, G.B.; Pendland, S.L.; Stoia, A.; Hamill, F.A.; Fabricant, D.; Dietz, B.M.; Chadwick, L.R. In Vitro susceptibility ofHelicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phytotherapy Res. 2005, 19, 988–991. [Google Scholar] [CrossRef]
- Dixit, P. A comparative screening of antibacterial activity of Anisomeles indica and Mentha piperita against Human patho-genic micro-organisms. Ind J. Fund. Appl. Life Sci. 2013, 3, 85–88. [Google Scholar]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- O’Bryan, C.A.; Pendleton, S.J.; Crandall, P.G.; Ricke, S.C. Potential of Plant Essential Oils and Their Components in Animal Agriculture–in vitro Studies on Antibacterial Mode of Action. Front. Veter- Sci. 2015, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.-N.; Khan, I.; Kang, S.C. Chemical composition, mechanism of antibacterial action and antioxidant activity of leaf essential oil of Forsythia koreana deciduous shrub. Asian Pac. J. Trop. Med. 2015, 8, 694–700. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.J.; Ferreira, I.C.F.R.; Froufe, H.J.C.; Abreu, R.M.V.; Martins, A.; Pintado, M. Antimicrobial activity of phenolic compounds identified in wild mushrooms, SAR analysis and docking studies. J. Appl. Microbiol. 2013, 115, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Puupponen-Pimia, R.; Nohynek, L.; Meier, C.; Ka¨hko¨nen, M.; Heinonen, M.; Hopia, A.; Oksman-Caldentey, K.-M. Anti-microbial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef]
- Lucchini, J.; Corre, J.; Cremieux, A. Antibacterial Activity of Phenolic Compound and Aromatic Alcohols. Res. Microbiol. 1990, 141, 499–510. [Google Scholar] [CrossRef]
- Stanisavljević, D.; Đorđević, S.; Milenković, M.; Lazić, M.; Veličković, D.; Ranđelović, N.; Zlatković, B. Antimicrobial and Antioxidant Activity of the Essential Oils Obtained from Mentha longifolia L. Hudson, Dried by Three Different Techniques. Rec. Nat. Prod. 2014, 8, 61–65. [Google Scholar]
- Gulluce, M.; Sahin, F.; Sokmen, M.; Ozer, H.; Daferera, D.; Sokmen, A.; Polissiou, M.; Adiguzel, A.; Ozkan, H. Antimicrobial and antioxidant properties of the essential oils and methanol extract from Mentha longifolia L. ssp. longifolia. Food Chem. 2007, 103, 1449–1456. [Google Scholar] [CrossRef]
- Samber, N.; Khan, A.; Varma, A.; Manzoor, N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm. Biol. 2015, 53, 1496–1504. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xu, S.-G.; Liang, W.; Mei, J.; Di, Y.-Y.; Lan, H.-H.; Yang, Y.; Wang, W.-W.; Luo, Y.-Y. Antibacterial Activity and Mode of Action of Mentha arvensis Ethanol Extract against Multidrug-Resistant Acinetobacter baumannii. Trop. J. Pharm. Res. 2015, 14, 2099. [Google Scholar] [CrossRef] [Green Version]
- Antolak, H.; Czyżowska, A.; Kręgiel, D. Activity of Mentha piperita L. Ethanol Extract against Acetic Acid Bacteria Asaia spp. Foods 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Husain, F.M.; Ahmad, I.; Khan, M.S.; Ahmad, E.; Tahseen, Q.; Khan, M.S.; Alshabib, N.A. Sub-MICs of Mentha piperita essential oil and menthol inhibits AHL mediated quorum sensing and biofilm of Gram-negative bacteria. Front. Microbiol. 2015, 6, 420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sujana, P.; Sridhar, T.M.; Josthna, P.; Naidu, C.V. Antibacterial Activity and Phytochemical Analysis of Mentha piperita L. (Peppermint)—An Important Multipurpose Medicinal Plant. Am. J. Plant. Sci. 2013, 4, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Laggoune, S.; Öztürk, M.; Erol, E.; Duru, M.E.; Abaza, I.; Kabouche, A.; Kabouche, Z. Chemical composition, antioxidant and antibacterial activities of the essential oil of Mentha spicata L. from Algeria. J. Mater. Environ. Sci. 2016, 7, 4205–4213. [Google Scholar]
- Bupesh, G.; Amutha, C.; Nandagopal, S.; Ganeshkumar, A.; Sureshkumar, P.; Murali, K.S. Antibacterial activity of Mentha piperita L. (peppermint) from leaf extracts-A medicinal plant. Acta Agric. Slov. 2007, 89, 73–79. [Google Scholar] [CrossRef]
- Golestan, L.; Seyedyousefi, L.; Kaboosi, H.; Safari, H. Effect ofMentha spicataL. andMentha aquaticaL. essential oils on the microbiological properties of fermented dairy product, kashk. Int. J. Food Sci. Technol. 2016, 51, 581–587. [Google Scholar] [CrossRef]
- Zaidi, S.; Dahiya, P. In vitro antimicrobial activity, phytochemical analysis and total phenolic content of essential oil from Mentha spicata and Mentha piperita. Int. Food Res. J. 2015, 22, 2440–2445. [Google Scholar]
- Portillo, A.; Vila, R.; Freixa, B.; Adzet, T.; Cañigueral, S. Antifungal activity of Paraguayan plants used in traditional medicine. J. Ethnopharmacol. 2001, 76, 93–98. [Google Scholar] [CrossRef]
- Fortes, T.O.; Alviano, D.S.; Tupinambá, G.; Padrón, T.S.; Antoniolli, Â.R.; Alviano, C.S.; Seldin, L. Production of an antimi-crobial substance against Cryptococcus neoformans by Paenibacillus brasilensis Sa3 isolated from the rhizosphere of Kalanchoe brasiliensis. Microbiol. Res. 2008, 163, 200–207. [Google Scholar] [CrossRef]
- Nosrati, S.; Esmailzadeh-Hosseini, S.; Sarpeleh, A.; Soflaei Shahrbabak, M.; Soflaei Shahrbabak, Y. Antifungal activity of spearmint (Mentha spicata L.) essential oil on Fusarium oxysporum f. sp. radices cucumerinum the causal agent of stem and crown rot of greenhouse cucumber in Yazd, Iran. In Proceedings of the International Conference on Environmental and Agricultural Engineering, Chengdu, China, 5 May 2011; pp. 52–56. [Google Scholar]
- Hussain, A.I.; Anwar, F.; Nigam, P.S.; Ashraf, M.; Gilani, A.H. Seasonal variation in content, chemical composition and antimicrobial and cytotoxic activities of essential oils from four Mentha species. J. Sci. Food Agric. 2010, 90, 1827–1836. [Google Scholar] [CrossRef]
- Mohamed, A.E.-A.A.R.; Rashed, A.-O.M.; Mahmoud, M.; Shehata, S.M.; Abdelazim, N.S. Chitosan Nanoparticles as a Carrier for Mentha longifolia Extract: Synthesis, Characterization and Antifungal Activity. Curr. Sci. 2018, 114, 2116–2122. [Google Scholar] [CrossRef]
- Moghtader, M. In vitro antifungal effects of the essential oil of Mentha piperita L. and its comparison with synthetic menthol on Aspergillus niger. Afr. J. Plant Sci. 2013, 7, 521–527. [Google Scholar] [CrossRef] [Green Version]
- Mimica-Dukić, N.; Božin, B.; Soković, M.; Mihajlović, B.; Matavulj, M. Antimicrobial and Antioxidant Activities of ThreeMenthaSpecies Essential Oils. Planta Medica 2003, 69, 413–419. [Google Scholar] [CrossRef]
- Tullio, V.; Roana, J.; Scalas, D.; Mandras, N. Evaluation of the Antifungal Activity of Mentha x piperita (Lamiaceae) of Pancalieri (Turin, Italy) Essential Oil and Its Synergistic Interaction with Azoles. Molecules 2019, 24. [Google Scholar] [CrossRef] [Green Version]
- Ling, H.; Chen, B.; Kang, A.; Lee, J.-M.; Chang, M.W. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: Identification of efflux pumps involved in alkane tolerance. Biotechnol. Biofuels 2013, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schenk, M.; Raffellini, S.; Guerrero, S.; Blanco, G.A.; Alzamora, S.M. Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae by UV-C light: Study of cell injury by flow cytometry. LWT 2011, 44, 191–198. [Google Scholar] [CrossRef]
- Ferreira, P.; Cardoso, T.; Ferreira, F.; Fernandes-Ferreira, M.; Piper, P.; Sousa, M.J. Mentha piperita essential oil induces apoptosis in yeast associated with both cytosolic and mitochondrial ROS-mediated damage. FEMS Yeast Res. 2014, 14, 1006–1014. [Google Scholar] [PubMed] [Green Version]
- Almeida, E.T.D.C.; De Souza, G.T.; Guedes, J.P.D.S.; Barbosa, I.M.; De Sousa, C.P.; Castellano, L.R.C.; Magnani, M.; De Souza, E.L. Mentha piperita L. essential oil inactivates spoilage yeasts in fruit juices through the perturbation of different physiological functions in yeast cells. Food Microbiol. 2019, 82, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Melzer, J.; Rösch, W.; Reichling, J.; Brignoli, R.; Saller, R. Meta-analysis: Phytotherapy of functional dyspepsia with the herbal drug preparation STW 5 (Iberogast). Aliment. Pharmacol. Ther. 2004, 20, 1279–1287. [Google Scholar] [CrossRef] [PubMed]
- Orhan, İ.E.; ÖZÇELİK, B.; Kartal, M.; Kan, Y. Antimicrobial and antiviral effects of essential oils from selected Umbelliferae and Labiatae plants and individual essential oil components. Turk. J. Biol. 2012, 36, 239–246. [Google Scholar]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytother. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef]
- Yamasaki, K.; Nakano, M.; Kawahata, T.; Mori, H.; Otake, T.; Ueda, N.; Oishi, I.; Inami, R.; Yamane, M.; Nakamura, M.; et al. Anti-HIV-1 Activity of Herbs in Labiatae. Biol. Pharm. Bull. 1998, 21, 829–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amzazi, S.; Ghoulami, S.; Bakri, Y.; Idrissi, A.I.; Fkih-Tétouani, S.; Benjouad, A. Human immunodeficiency virus type 1 inhibitory activity of Mentha longifolia. Therapie 2003, 58, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Schuhmacher, A.; Reichling, J.; Schnitzler, P. Virucidal effect of peppermint oil on the enveloped viruses herpes simplex virus type 1 and type 2 in vitro. Phytomedicine 2003, 10, 504–510. [Google Scholar] [CrossRef] [Green Version]
- Clurman, B.E.; Roberts, J.M. Cell Cycle and Cancer. J. Natl. Cancer Inst. 1995, 87, 1499–1501. [Google Scholar] [CrossRef]
- World Health Organization. Cancer report. 12 December. Available online: https://www.who.int/health-topics/cancer (accessed on 12 December 2020).
- Doll, R.; Peto, R. The Quantitative of Cancer Causes of Cancer: Estimates of Avoidable Risks in the United States Today. J. Natl. Cancer Inst. 1981, 66, 1191–1308. [Google Scholar] [CrossRef]
- Surh, Y.-J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar] [CrossRef]
- Ochwang’I, D.O.; Kimwele, C.N.; Oduma, J.A.; Gathumbi, P.K.; Mbaria, J.M.; Kiama, S.G. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J. Ethnopharmacol. 2014, 151, 1040–1055. [Google Scholar] [CrossRef]
- Greenwell, M.; Rahman, P. Medicinal Plants: Their Use in Anticancer Treatment. Int. J. Pharm. Sci. Res. 2015, 6, 4103–4112. [Google Scholar] [CrossRef] [PubMed]
- Anwar, F.; Muhammad, G.; Hussain, M.A.; Zengin, G.; Alkharfy, K.M.; Ashraf, M.; Gilani, A.-H. Capparis spinosa L.: A Plant with High Potential for Development of Functional Foods and Nutraceuticals/Pharmaceuticals. Int. J. Pharmacol. 2016, 12, 201–219. [Google Scholar] [CrossRef] [Green Version]
- Gull, T.; Anwar, F.; Sultana, B.; Alcayde, M.A.C.; Nouman, W. Capparis species: A potential source of bioactives and high-value components: A review. Ind. Crop. Prod. 2015, 67, 81–96. [Google Scholar] [CrossRef]
- Sivaraj, R.; Rahman, P.K.S.M.; Rajiv, P.; Narendhran, S.; Venckatesh, R. Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim. Acta Part. A Mol. Biomol. Spectrosc. 2014, 129, 255–258. [Google Scholar] [CrossRef]
- Fouche, G.; Cragg, G.; Pillay, P.; Kolesnikova, N.; Maharaj, V.; Senabe, J. In vitro anticancer screening of South African plants. J. Ethnopharmacol. 2008, 119, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant derived substances with anti-cancer activity: From folklore to practice. Front. Plant Sci. 2015, 6, 799. [Google Scholar] [CrossRef]
- Manson, M.M. Cancer prevention–the potential for diet to modulate molecular signalling. Trends Mol. Med. 2003, 9, 11–18. [Google Scholar] [CrossRef]
- Rahimifard, N.; Hajimehdipoor, H.; Hedayati, M.; Bagheri, O.; Pishehvar, H.; Ajani, Y. Cytotoxic Effects of Essential Oils and Extracts of some Mentha species on Vero, Hela and Hep2 Cell Lines. J. Med. Plants 2010, 9, 88–92. [Google Scholar]
- Fatemeh, H.; Vida, H.; Hajighasemi, F.; Hashemi, V. Down regulation of matrix metalloproteinases by spearmint extract in Wehi-164 cells. J. Med. Plants Res. 2012, 6, 5222–5227. [Google Scholar] [CrossRef] [Green Version]
- Patti, F.; Palmioli, A.; Vitalini, S.; Bertazza, L.; Redaelli, M.; Zorzan, M.; Rubin, B.; Mian, C.; Bertolini, C.; Iacobone, M.; et al. Anticancer Effects of Wild Mountain Mentha longifolia Extract in Adrenocortical Tumor Cell Models. Front. Pharmacol. 2020, 10, 1647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohara, A.; Matsuhisa, T. Anti-Tumor Promoting Activities of Edible Plants against Okadaic Acid. Food Sci. Technol. Res. 2002, 8, 158–161. [Google Scholar] [CrossRef] [Green Version]
- Karakas, F.P.; Yildirim, A.; Turker, A. Biological screening of various medicinal plant extracts for antibacterial and antitumor activities. Turkish J. Biol. 2012, 36, 641–652. [Google Scholar]
- Khan, R.A.; Khan, N.A.; Khan, F.U.; Ahmed, M.; Shah, A.S.; Khan, M.R.; Shah, M.S. Phytochemical, antioxidant and cytotoxic activities of Periploca aphyla and Mentha longifolia, selected medicinal plants of District Bannu, Pakistan. Afr. J. Pharm. Pharmacol. 2012, 6, 3130–3135. [Google Scholar] [CrossRef] [Green Version]
- Al-Ali, K.; Abdelrazik, M.; Alghaithy, A.; Diab, A.; El-Beshbishy, H.; Baghdadi, H. Antimutagenic and Anticancer Activity of Al Madinah Alhasawy Mint (Mentha longifolia) Leaves Extract. Pak. J. Biol. Sci. 2014, 17, 1231–1236. [Google Scholar] [CrossRef] [Green Version]
- Shirazi, F.H.; Ahmadi, N.; Kamalinejad, M. Evaluation of northern Iran Mentha pulegium L. cytotoxicity. DARU J. Pharm. Sci. 2004, 212, 106–110. [Google Scholar]
- Jain, D.; Pathak, N.; Khan, S.; Raghuram, G.V.; Bhargava, A.; Samarth, R.; Mishra, P.K. Evaluation of Cytotoxicity and An-ticarcinogenic Potential of Mentha Leaf Extracts. Int. J. Toxicol. 2011, 30, 225–236. [Google Scholar] [CrossRef]
- Kelkawi, A.H.A.; Kajani, A.A.; Bordbar, A.-K. Green synthesis of silver nanoparticles using Mentha pulegium and investigation of their antibacterial, antifungal and anticancer activity. IET Nanobiotechnology 2017, 11, 370–376. [Google Scholar] [CrossRef]
- Banerjee, P.P.; Bandyopadhyay, A.; Harsha, S.N.; Policegoudra, R.S.; Bhattacharya, S.; Karak, N.; Chattopadhyay, A. Mentha arvensis (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells. Breast Cancer: Targets Ther. 2017, 9, 265–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faridi, U.; Dhawan, S.S.; Pal, S.; Gupta, S.; Shukla, A.K.; Darokar, M.P.; Sharma, A.; Shasany, A.K. Repurposing L-Menthol for Systems Medicine and Cancer Therapeutics? L-Menthol Induces Apoptosis through Caspase 10 and by Suppressing HSP90. OMICS: A J. Integr. Biol. 2016, 20, 53–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belanger, J.T. Perillyl alcohol: Applications in oncology. Altern. Med. Rev.: A J. Clin. Ther. 1998, 3, 448–457. [Google Scholar]
- Reddy, B.S.; Wang, C.X.; Samaha, H.; Lubet, R.; E Steele, V.; Kelloff, G.J.; Rao, C.V. Chemoprevention of colon carcinogenesis by dietary perillyl alcohol. Cancer Res. 1997, 57, 420–425. [Google Scholar] [PubMed]
- Clark, S.S.; Zhong, L.; Filiault, D.; Perman, S.; Ren, Z.; Gould, M.; Yang, X. Anti-leukemia effect of perillyl alcohol in Bcr/Abl-transformed cells indirectly inhibits signaling through Mek in a Ras- and Raf-independent fashion. Clin. Cancer Res. 2003, 9, 4494–4504. [Google Scholar]
- Sahin, M.; Perman, S.; Jenkins, G.; Clark, S. Perillyl alcohol selectively induces G0/G1 arrest and apoptosis in Bcr/Abltransformed myeloid cell lines. Leukemia 1999, 13, 1581–1591. [Google Scholar] [CrossRef] [Green Version]
- Stayrook, K.R.; McKinzie, J.H.; Burke, Y.D.; Crowell, P.L. Induction of the apoptosis-promoting protein Bak by perillyl alcohol in pancreatic ductal adenocarcinoma relative to untransformed ductal epithelial cells. Carcinog. 1997, 18, 1655–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barthelman, M.; Chen, W.; Gensler, H.L.; Huang, C.; Dong, Z.; Bowden, G.T. Inhibitory effects of perillyl alcohol on UVB-induced murine skin cancer and AP-1 transactivation. Cancer Res. 1998, 58, 711–716. [Google Scholar] [PubMed]
- Hassan, H.A.; Hafez, H.S.; Goda, M.S. Mentha piperita as a pivotal neuro-protective agent against gamma irradiation induced DNA fragmentation and apoptosis. Cytotechnology 2012, 65, 145–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Samarth, R.M.; Yasmeen, S.; Sharma, A.; Sugahara, T.; Terado, T.; Kimura, H. Anticancer and radioprotective potentials of Mentha piperita. BioFactors 2004, 22, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Arima, Y.; Nishigori, C.; Takeuchi, T.; Oka, S.; Morimoto, K.; Utani, A.; Miyachi, Y. 4-Nitroquinoline 1-Oxide Forms 8-Hydroxydeoxyguanosine in Human Fibroblasts through Reactive Oxygen Species. Toxicol. Sci. 2006, 91, 382–392. [Google Scholar] [CrossRef]
- Arumugam, P.; Ramesh, A. Antigenotoxic and antioxidant potential of aqueous fraction of ethanol extract of Mentha spicata (L.) against 4-nitroquinoline-1-oxide–induced chromosome damage in mice. Drug Chem. Toxicol. 2009, 32, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Willits, I.; Price, L.; Parry, A.; Tilby, M.J.; Ford, D.; Cholerton, S.; Pearson, A.D.J.; Boddy, A.V. Pharmacokinetics and metabolism of ifosfamide in relation to DNA damage assessed by the COMET assay in children with cancer. Br. J. Cancer 2005, 92, 1626–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furlanut, M.; Franceschi, L. Pharmacology of Ifosfamide. Oncol. 2003, 65, 2–6. [Google Scholar] [CrossRef]
- Saleem, M.A.; Al-Attar, M.S.M. Protective Effects Of Mentha Spicata Aqueous Extract Against Ifosfamide Induced Chromosomal Aberrations And Sperm Abnormalities In Male Albino Mice. Trends Biotechnol. Res. 2013, 2, 17–23. [Google Scholar]
- Dhanasekaran, S.; Sangavi, J.; Ramya, R.; Nithya, K. Mint Leaves Inhibits Tumour Angiogenesis via Suppression of Sonic Hedgehog Pathway by In vitro Analysis for Colorectal Cancer. Int. J. Eng. Techn. Res. 2014, 2, 131–134. [Google Scholar]
- Sonawane, H.; Shinde, A.; Jadhav, J. Evaluation of anti-angiogenic potential of Mentha arvensis Linn. Leaf extracts using chorioallantoic membrane assay. World J. Pharm. Res. 2016, 5, 677–689. [Google Scholar]
- Chang, C.-T.; Soo, W.-N.; Chen, Y.-H.; Shyur, L.-F. Essential Oil of Mentha aquatica var. Kenting Water Mint Suppresses Two-Stage Skin Carcinogenesis Accelerated by BRAF Inhibitor Vemurafenib. Molecules 2019, 24, 2344. [Google Scholar] [CrossRef] [Green Version]
- Nagase, H.; Visse, R.; Murphy, G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 2006, 69, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Lo¨ffek, S.; Schilling, O.; Franzke, C.-W. Biological role of matrix metalloproteinases: A critical balance. Eur Res-Piratory J. 2011, 38, 191–208. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zheng, J.; Zhou, H. TLRs as pharmacological targets for plant-derived compounds in infectious and inflammatory diseases. Int. Immunopharmacol. 2011, 11, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Gonulalan, E.-M.; Nemutlu, E.; Demirezer, L.-O. A new perspective on evaluation of medicinal plant biological activities: The correlation between phytomics and matrix metalloproteinases activities of some medicinal plants. Saudi Pharm. J. 2019, 27, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Direito, R.; Rocha, J.; Lima, A.; Gonçalves, M.M.; Duarte, M.P.; Mateus, V.; Sousa, C.; Fernandes, A.; Pinto, R.; Ferreira, R.B.; et al. Reduction of Inflammation and Colon Injury by a Spearmint Phenolic Extract in Experimental Bowel Disease in Mice. Medicine 2019, 6, 65. [Google Scholar] [CrossRef] [Green Version]
- Son, D.; Kim, M.; Woo, H.; Park, D.; Jung, E. Anti-Thermal Skin Aging Activity of Aqueous Extracts Derived from Apple Mint (Mentha suaveolens Ehrh.) in Human Dermal Fibroblasts. Evidence-Based Compl. Altern. Med. 2018, 1, 1–7. [Google Scholar] [CrossRef]
- Nisticò, P.; Bissell, M.J.; Radisky, D.C. Epithelial-Mesenchymal Transition: General Principles and Pathological Relevance with Special Emphasis on the Role of Matrix Metalloproteinases. Cold Spring Harbor Persp. Biol. 2012, 4, a011908. [Google Scholar] [CrossRef] [PubMed]
- Rygiel, K.A.; Robertson, H.; Marshall, H.L.; Pekalski, M.; Zhao, L.; Booth, T.A.; Jones, D.E.; Burt, A.D.; Kirby, J.A. Epithelial–mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Lab. Invest. 2008, 88, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, C.S.; Tubergen, E.A.V.; Inglehart, R.C.; D’Silva, N.J. Biomarkers of Epithelial Mesenchymal Transition in Squamous Cell Carcinoma. J. Dental Res. 2012, 92, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Lamouille, S.; Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009, 19, 156–172. [Google Scholar] [CrossRef] [PubMed]
- Ogaly, H.A.; Eltablawy, N.A.; Abd-Elsalam, R.M. Antifibrogenic Influence of Mentha piperita L. Essential Oil against CCl4-Induced Liver Fibrosis in Rats. Oxid. Med. Cell. Long. 2018, 2018, 4039753. [Google Scholar] [CrossRef]
- Nakamura, Y.; Hasegawa, Y.; Shirota, K.; Suetome, N.; Nakamura, T.; Chomnawang, M.T.; Thirapanmethee, K.; Khuntayaporn, P.; Boonyaritthongchai, P.; Wongs-Aree, C.; et al. Differentiation-inducing effect of piperitenone oxide, a fragrant ingredient of spearmint (Mentha spicata), but not carvone and menthol, against human colon cancer cells. J. Funct. Foods 2014, 8C, 62–67. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Clinical Trials. Available online: https://clinicaltrials.gov (accessed on 3 January 2020).
- Tayarani-Najaran, Z.; Talasaz-Firoozi, E.; Nasiri, R.; Jalali, N.; Hassanzadeh, M. Antiemetic activity of volatile oil from Mentha spicata and Mentha × piperita in chemotherapy-induced nausea and vomiting. Canc. Med. Sci. 2013, 7, 290. [Google Scholar]
- Tavakoli Ardakani, M.; Ghassemi, S.; Mehdizadeh, M.; Mojab, F.; Salamzadeh, J.; Ghassemi, S.; Hajifathali, A. Evaluating the effect of Matricaria recutita and Mentha piperita herbal mouthwash on management of oral mucositis in patients undergoing hematopoietic stem cell transplantation: A randomized, double blind, placebo controlled clinical trial. Compl. Ther. Med. 2016, 29, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Amui Roknabad, M.; Sarafraz, N. Comparison between the Effect of Supermint and Ibuprofen on Primary Dysmenorrheal: A Randomized Clinical Trial. Qom Univ Med. Sci J. 2011, 5, 37–41. [Google Scholar]
- Nasiri, A.; Pakmehr, M.; Shahdadi, H.; Balouchi, A.; Sepehri, Z.; Ghalenov, A.R. A Comparative Study of Dimethicone and Supermint Anti-flatulence Effects on Reducing Flatulence in Patients with Irritable Bowel Syndrome. Der. Pharm. Lett. 2015, 7, 432–436. [Google Scholar]
- Akdoğan, M.; Tamer, M.N.; Cüre, E.; Cüre, M.C.; Köroğlu, B.K.; Delibaş, N. Effect of spearmint (Mentha spicata Labiatae) teas on androgen levels in women with hirsutism. Phytother. Res. 2007, 21, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, I.T.A.; Furletti, V.F.; Anibal, P.C.; Duarte, M.C.T.; Höfling, J.F. Potential pharmacological and toxicological basis of the essential oil from Mentha spp. Rev. Ciênc. Farm. Básica Apl. 2010, 30, 235–239. [Google Scholar]
- Gürbüz, P. An Overview about Adverse Hepatic Effects of the Plants Used in Turkey. Cerrahpaşa Med J. 2020, 44, 115–124. [Google Scholar]
- Douros, A.; Bronder, E.; Andersohn, F.; Klimpel, A.; Kreutz, R.; Garbe, E.; Bolbrinker, J. Herb-induced liver injury in the Berlin case-control surveillance study. Int J. Mol. Sci 2016, 17, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balakrishnan, A. Therapeutic uses of peppermint –A review. J. Pharm. Sci. Res. 2015, 7, 474–476. [Google Scholar]
- Hawthorn, M.; Ferrante, J.; Luchowski, E.; Rutledge, A.; Wei, X.Y.; Triggle, D.J. The actions of peppermint oil and menthol on calcium channel dependent processes in intestinal, neuronal and cardiac preparations. Alim. Pharm. Ther. 1988, 2, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Amat-ur-Rasool, H.; Symes, F.; Tooth, D.; Schaffert, L.-N.; Elmorsy, E.; Ahmed, M.; Hasnain, S.; Carter, W.G. Potential Nutraceutical Properties of Leaves from Several Commonly Cultivated Plants. Biomolecules 2020, 10, 1556. [Google Scholar] [CrossRef]
- Jarosz, M.; Taraszewska, A. Risk factors for gastroesophageal reflux disease: The role of diet. Prz Gastroenterol. 2014, 9, 297. [Google Scholar] [CrossRef]
- DeVault, K.R.; Castell, D.O. Updated guidelines for the diagnosis and treatment of gastroesophageal reflux disease. Am. J. Gastroenter. 2005, 100, 190–200. [Google Scholar] [CrossRef]
- Zong, L.; Qu, Y.; Luo, D.X.; Zhu, Z.Y.; Zhang, S.; Su, Z.; Shan, J.C.; Gao, X.P.; Lu, L.G. Preliminary experimental research on the mechanism of liver bile secretion stimulated by peppermint oil. J. Dig. Dis. 2011, 12, 295–301. [Google Scholar] [CrossRef]
- Sharma, V.; Hussain, S.; Gupta, M.; Saxena, A.K. In vitro anticancer activity of extracts of Mentha spp. against human cancer cells. Indian J. Biochem. Biophys. 2014, 51, 416–419. [Google Scholar]
- Alankar, S. A review on peppermint oil. Asian J. Pharm. Clin. Res. 2009, 2, 27–33. [Google Scholar]
- Dos Santos, M.; CE, S.G. Menthol-induced asthma: A case report. J. Invest. Allerg. Clin. Immun. 2001, 11, 56–58. [Google Scholar]
- Thorup, I.; Würtzen, G.; Carstensen, J.; Olsen, P. Short term toxicity study in rats dosed with pulegone and menthol. Toxicol. Let. 1983, 19, 207–210. [Google Scholar] [CrossRef]
- Madsen, C.; Würtzen, G.; Carstensen, J. Short-term toxicity study in rats dosed with menthone. Toxicol. Let. 1986, 32, 147–152. [Google Scholar] [CrossRef]
- Kristiansen, E.; Madsen, C. Induction of protein droplet (α2μ-globulin) nephropathy in male rats after short-term dosage with 1, 8-cineole and l-limonene. Toxicol. Let. 1995, 80, 147–152. [Google Scholar] [CrossRef]
- Shah, P.P.; Mello, P. A review of medicinal uses and pharmacological effects of Mentha piperita. Nat. Prod. Rad. 2004, 3, 214–221. [Google Scholar]
Scientific Name | Common Name |
---|---|
M. aquatica L. | Water mint |
M. piperita ‘Lavendula’ | Lavender mint |
M. arvensis L. | Corn mint, field mint, ginger mint, wild mint |
M. canadensis L. | American wild mint, Canada mint, Chinese mint, East Asian wild mint, Japanese mint, Sakhalin mint |
M. longifolia L. | Himalayan silver mint, horsemint |
M. piperita L. | Peppermint |
M. piperita f. citrate | Bergamotmint, eau de cologne mint, orange mint |
M. pulegium | Mosquito plant, pennyroyal mint, pennyrile, pudding grass, squaw mint |
M. spicata L. | Ciudad del Este mint, common mint, garden mint, homegrown mint, lamb mint, mackerel mint, spearmint |
M. suaveolens | Apple mint, pineapple mint, round-leafed mint, woolly mint |
M. suaveolens ‘Variegata’ | Pineapple mint |
M. x piperitaf. citrate ‘Chocolate’ | Chocolate mint |
M. suaveolens× piperita | Grapefruit mint |
Species Name | Essential Oil Components | Other Polyphenol Compounds | References |
---|---|---|---|
M. aquatica L. | epi-bicyclosesquiphellandrene, 1,8-cineole, menthofuran, β-caryophyllene, limonene, p-menthone, β-pinene, germacrene D, α-pinene, α-humulene, δ-cadinene, caryophyllene oxide, viridiflorol, viridiflorol epoxide II, α-cadinol, β-bisabolenol, α-trans-bergamotene, p-cymene, borneol, sabinene, β-myrcene, terpinyl acetate, eucalyptol | Rosmarinic acid, lavandulifolioside, rutin-O-glc, eriodictyol-O-rut, quercetin-3-O-soph, verbascoside, caffeic acid | [31,32,33,34,35,36] |
M. arvensis L. | 3-Octanol, fenchone, endo-fenchol, p-menthone, iso-menthone, neo-menthol, menthol, epi-bicyclosesquiphellandrene, isopulegone, 1-α-terpineol, pulegone, eugenol, cis-jasmone, β-bisabolene, cis-3-hexenyl phenyl acetate, β-eudesmol, oxygenated monoterpenes, 1,8-cineole, β-caryophyllene oxide, linalyl acetate, α-phellandrene, terpinolene, limonene, pulegone | Monogalactosyl diglycerides, digalactosyldiglycerides, decyl anhydride, 1-decanol | [17,35,36] |
M. canadensis L. | Oxygenated monoterpenes, 1-menthol, isomenthone, 1-limonene, menthone, neomenthol, isopulegone, pulegone, linalyl acetate, piperitone | 3,4-Dihydro-3,6,7-trihydroxy-2(1H)-quinolinone, (E)-2-methoxy-2- oxethyl-3-(4-hydroxyphenyl) acrylate, syringic acid, p-coumaric acid, esculetin, methyl rosmarinate, nepetoidin B, syringaresinol, methyl ester of caffeoyl glycollic acid, 2″,3″-diacetyl- martynoside and bracteanolide A, cis-3-[2-[1-(3,4-dihydroxyphenyl)-1-hydroxymethyl]-1,3-benzodioxol-5-yl]-(E)-2-propenoic acid | [17,35,37] |
M. longifolia L. | τ-Cadinol, γ-cadinene, γ-gurjunene, 1-limonene, piperitone oxide, piperitenone oxide, piperitenone, menthone, borneol, pulegone, verbenone, β-caryophyllene, linalool, 3-tripinolenone, dihydrocarvon, 1,8-cineol, germacrene D, citronellal | Prasterone acetate, sclareol | [38,39] |
M. mozaffarian L. | Piperitone, 1,8-cineol, linalool, α-terpineol | Piperitenone, pulegone, piperitenone oxide, menthone, cis-piperitone epoxide | [38,39,40] |
M. piperita L. | Oxygenated monoterpenes, menthol, methyl petroselinate, menthyl acetate, isopulegol, pulegone, carvone, menthone, cineole, menthofuran, isomenthone, limonene, β-pinene, β-myrcene, α-pinene, α-thujene, linalool | Riboflavin, cis-carvone oxide, caffeic acid, p-cumaric acid, ferulic acid, rosmarinic acid, caftaric acid, chlorogenic acid, m-coumaric acid, o-coumaric acid, | [35,41,42,43,44,45] |
M. pulegium L. | Piperitone, piperitenone, 4-terpineol, menthone, limonene, naringenin, pulegone, iso-methone | Rosmarinic acid, ellagic acid, caffeic acid, caftaric acid, chlorogenic acid, m-coumaric acid, o-coumaric acid, p-coumaric acid, cryptochlorogenic acid, isochlorogenic acid, neochlorogenic acid, protocatechuic acid | [35,46,47] |
M. rotundifolia L. | Menthol, menthone, menthyl acetate, menthofuran, piperitone oxide, linalyl acetate, neomenthol, piperitone, isomenthone, 1,8-cineole, linalool, geraniol, myrcene, geranyl acetate, germacrene D, carveol, limonene, rotundifolone, p-menthane-1,2,3-triol, D-limonene, piperitol, diosphenol, β-caryophyllene,, germacrene D, calamenene, trans-piperitone epoxide, piperitenone oxide, cis-piperitone oxide, cyclohexanol, trans-sabinene hydrate | Hypericin, apigenin, quercetin, trans-cinamaldehyde acid, rosmarinic acid, quercetin3-O-galactoside, hydroxybenzoic acid, procyanidin B2 | [48,49,50,51,52] |
M. spicata L. | Carvone, piperitenone oxide, pulegone, 1,8-cineole, limonene, cis-piperitone oxide, piperitone, piperitenone, menthofuran, caryophyllene | Rosmarinic acid, salvianolic acids, hydroxybenzoic acids, caffeoylquinic acids, hydroxycinnamic acids, flavanones, and flavones | [53,54,55] |
M. suaveolens Ehrh L. | Piperitenone oxide, pulegone, trans-caryophyllene, germacrene D, nepetalactone, piperitenone, cis-piperitone, limonene, menthone, terpinen-4-ol, p-cymen-8-ol, E-hydrate sabinene | 4-Hydroxybenzoic acid, vanillic acid, chlorogenic acid, syringic acid, o-coumaric acid, p-coumaric acid | [56,57,58] |
M. viridis L. | Carvone, 1,8-cineole, 2-methyl- 5-(1-methylethenyl) limonene | Rosmarinic acid, caffeic acid, luteolin-7-O-rutinoside, rosmarinic acid and luteolin-7-O-glucoside, 3-O-caffeoylquinic acid, 3-acylchlorogenic acids | [59,60,61,62,63,64] |
Pharmacological Properties | Chemical Compounds Responsible for Pharmacological Properties | References |
---|---|---|
Antioxidant | Ascorbic acid, rosmarinic acid, δ-terpinene, α-terpinene, p-cymene, 1,8-cineole, cis-carveol, carvone, rosmarinic acid, cynaroside, cryptochlorogenic acid, naringin | [59,65,66] |
Antibacterial | Luteolin, rosmarinic acid, caffeic acid, gallocatechin, epigallocatechin gallate, catechins, menthone, isomenthone, hexadecanoic acid, cis-carveol, carvone, limonene | [4,65,66] |
Antifungal and Antiyeast | Limonene, piperitenone oxide, menthol, menthone, carvone, cis-carveol and carvone, piperitone, citronellal, caffeic acid, naringin, cryptochlorogenic acid, rosmarinic acid | [4,65,67] |
Antiviral | Menthol, eriocitrin, rosmarinic acid, luteolin 7-O-rutinoside, hesperidin, phytol | [4,68] |
Anticancer | Eugenol, caryophyllene, t-cadinol, menthone, menthol crotonate, naringin, cryptochlorogenic acid, rosmarinic acid | [69,70,71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tafrihi, M.; Imran, M.; Tufail, T.; Gondal, T.A.; Caruso, G.; Sharma, S.; Sharma, R.; Atanassova, M.; Atanassov, L.; Valere Tsouh Fokou, P.; et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules 2021, 26, 1118. https://doi.org/10.3390/molecules26041118
Tafrihi M, Imran M, Tufail T, Gondal TA, Caruso G, Sharma S, Sharma R, Atanassova M, Atanassov L, Valere Tsouh Fokou P, et al. The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules. 2021; 26(4):1118. https://doi.org/10.3390/molecules26041118
Chicago/Turabian StyleTafrihi, Majid, Muhammad Imran, Tabussam Tufail, Tanweer Aslam Gondal, Gianluca Caruso, Somesh Sharma, Ruchi Sharma, Maria Atanassova, Lyubomir Atanassov, Patrick Valere Tsouh Fokou, and et al. 2021. "The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties" Molecules 26, no. 4: 1118. https://doi.org/10.3390/molecules26041118
APA StyleTafrihi, M., Imran, M., Tufail, T., Gondal, T. A., Caruso, G., Sharma, S., Sharma, R., Atanassova, M., Atanassov, L., Valere Tsouh Fokou, P., & Pezzani, R. (2021). The Wonderful Activities of the Genus Mentha: Not Only Antioxidant Properties. Molecules, 26(4), 1118. https://doi.org/10.3390/molecules26041118