Optimized Extraction of Amikacin from Murine Whole Blood
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. HPLC-PDA Analysis
3.3. Whole Blood Samples
3.4. Extraction of Amk from Whole Blood
3.5. Derivatization of Amk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ramirez, M.S.; Tolmasky, M.E. Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017, 22, 2267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaske, D.E.; Strate, R.G.; Kohls, P.R. Amikacin pharmacokinetics: Wide interpatient variation in 98 patients. J. Clin. Pharmacol. 1991, 31, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, W.A. Optimizing Aminoglycoside Use. Crit. Care Clin. 2011, 27, 107–121. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M. Amikacin Liposome Inhalation Suspension: A Review in Mycobacterium avium Complex Lung Disease. Drugs 2019, 79, 555–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, S.; de Gatta, M.M.F.; Calvo, M.V.; Caballero, D.; Dominguez-Gil, A.; Lanao, J.M. Population pharmacokinetics of amikacin in patients with haematological malignancies. J. Antimicrob. Chemother. 1999, 44, 235–242. [Google Scholar] [CrossRef]
- Certara. Blood or Plasma? Which Should You Assay for Drug Concentration? Available online: https://www.certara.com/knowledge-base/blood-or-plasma-which-should-you-assay-for-drug-concentration/ (accessed on 27 January 2020).
- Kalamaridis, D.; Di Loreto, K. Drug Partition in Red Blood Cells. In Optimization in Drug Discovery. Methods in Pharmacology and Toxicology; Caldwell, G., Yan, Z., Eds.; Humana Press: Totowa, NJ, USA, 2014; pp. 39–47. [Google Scholar]
- Ruiz-Ramos, J.; Gimeno, R.; Pérez, F.; Ramirez, P.; Villarreal, E.; Gordon, M.; Vicent, C.; Marqués, M.R.; Castellanos-Ortega, A. Pharmacokinetics of Amikacin in Critical Care Patients on Extracorporeal Device. ASAIO J. 2018, 64, 686–688. [Google Scholar] [CrossRef]
- Kato, K.; Hagihara, M.; Hirai, J.; Sakanashi, D.; Suematsu, H.; Nishiyama, N.; Koizumi, Y.; Yamagishi, Y.; Matsuura, K.; Mikamo, H. Evaluation of Amikacin Pharmacokinetics and Pharmacodynamics for Optimal Initial Dosing Regimen. Drugs R D 2017, 17, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, K.; Hamishehkar, H.; Najmeddin, F.; Ahmadi, A.; Hazrati, E.; Honarmand, H.; Mojtahedzadeh, M. High-dose amikacin for achieving serum target levels in critically ill elderly patients. Infect. Drug Resist. 2018, 11, 223–228. [Google Scholar] [CrossRef] [Green Version]
- Lode, H.; Grunert, K.; Koeppe, P.; Langmaack, H. Pharmacokinetic and clinical studies with amikacin, a new aminoglycoside antibiotic. J. Infect. Dis. 1976, 134, S316–S322. [Google Scholar] [CrossRef]
- Clarke, J.T.; Libke, R.D.; Regamey, C.; Kirby, W.M.M. Comparative pharmacokinetics of amikacin and kanamycin. Clin. Pharmacol. Ther. 1974, 15, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Malinin, V.; Neville, M.; Eagle, G.; Gupta, R.; Perkins, W.R. Pulmonary Deposition and Elimination of Liposomal Amikacin for Inhalation and Effect on Macrophage Function after Administration in Rats. Antimicrob. Agents Chemother. 2016, 60, 6540–6549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchand, S.; Boisson, M.; Mehta, S.; Adier, C.; Mimoz, O.; Grégoire, N.; Couet, W. Biopharmaceutical Characterization of Nebulized Antimicrobial Agents in Rats: 6. Aminoglycosides. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, W.; Yang, D.; Mei, H.; Zhao, J.; Liang, B.; Bai, N.; Chai, D.; Cui, J.; Wang, R.; Liu, Y. Penetration of Ciprofloxacin and Amikacin into the Alveolar Epithelial Lining Fluid of Rats with Pulmonary Fibrosis. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Li Bassi, G.; Motos, A.; Fernandez-Barat, L.; Aguilera Xiol, E.; Chiurazzi, C.; Senussi, T.; Saco, M.A.; Fuster, C.; Carbonara, M.; Bobi, J.; et al. Nebulized Amikacin and Fosfomycin for Severe Pseudomonas aeruginosa Pneumonia: An Experimental Study. Crit. Care Med. 2019, 47, e470–e477. [Google Scholar] [CrossRef]
- Craig, W.A.; Redington, J.; Ebert, S.C. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob. Chemother. 1991, 27, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Papp, E.A.; Knupp, C.A.; Barbhaiya, R.H. High-performance liquid chromatographic assays for the quantification of amikacin in human plasma and urine. J. Chromatogr. B Biomed. Sci. Appl. 1992, 574, 93–99. [Google Scholar] [CrossRef]
- Xiroudaki, S.; Ianni, F.; Sabbatini, S.; Roselletti, E.; Monari, C.; Sardella, R.; Vecchiarelli, A.; Giovagnoli, S. Initial In Vivo Evaluation of a Novel Amikacin-Deoxycholate Hydrophobic Salt Delivers New Insights on Amikacin Partition in Blood and Tissues. Pharmaceutics 2021, 13, 85. [Google Scholar] [CrossRef]
- Ezquer-Garin, C.; Escuder-Gilabert, L.; Martín-Biosca, Y.; Ferriols Lisart, R.; Sagrado, S.; Medina-Hernández, M.J. Fit-for-purpose chromatographic method for the determination of amikacin in human plasma for the dosage control of patients. Talanta 2016, 150, 510–515. [Google Scholar] [CrossRef]
- Omar, M.A.; Nagy, D.M.; Hammad, M.A.; Aly, A.A. Highly Sensitive Spectrofluorimetric Method for Determination of Certain Aminoglycosides in Pharmaceutical Formulations and Human Plasma. AAPS Pharm. Sci. Tech. 2013, 14, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Pucciarini, L.; Saluti, G.; Galarini, R.; Carotti, A.; Macchiarulo, A.; Rudaz, S.; Sardella, R. Optimized one-pot derivatization and enantioseparation of cysteine: Application to the study of a dietary supplement. J. Pharm. Biomed. Anal. 2020, 180, 113066. [Google Scholar] [CrossRef] [PubMed]
- Ianni, F.; Sardella, R.; Lisanti, A.; Gioiello, A.; Goga, B.T.C.; Lindner, W.; Natalini, B. Achiral-chiral two-dimensional chromatography of free amino acids in milk: A promising tool for detecting different levels of mastitis in cows. J. Pharm. Biomed. Anal. 2015, 116, 40–46. [Google Scholar] [CrossRef] [PubMed]
- González-Curbelo, M.Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; González-Sálamo, J.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Evolution and applications of the QuEChERS method. TrAC Trends Anal. Chem. 2015, 71, 169–185. [Google Scholar] [CrossRef]
- Jones, R.; Williams, L.; Lamboley, C.; Senior, A.; Edgington, A.; Lodder, H.; Davies, G.; Jordan, S.; Desbrow, C.; Roberts, P.; et al. Drugs of abuse extraction from whole blood using supported liquid extraction (SLE) and Extrahera automation prior to UPLC-MS/MS analysis. Toxicol. Anal. Clin. 2018, 30, S62. [Google Scholar] [CrossRef]
Entry | Extraction Mixtures 1 | Other Extraction Conditions | Yield 2 |
---|---|---|---|
1 | 500 µL AmkDS + 300 µL ACN + 200 µL WB | 15000 rpm, 25 min, 5 °C | ND 3 |
2 | 200 µL AmkDS + 600 µL ACN + 200 µL WB | 15000 rpm, 25 min, 5 °C | ND 3 |
3 | step 1: 1500 µL AmkDS + 500 µL WB step 2: 200 µL surnatant + 300 µL ACN | 15000 rpm, 25 min, 5 °C | ND 3 |
4 | 10 µL AmkDS + 180 µL ACN + 90 µL WB | 15000 rpm, 25 min, 5 °C | ND 3 |
5 | 40 µL AmkDS + 300 µL ACN + 60 µL WB | step 1: 15000 rpm, 25 min, 5 °C step 2: 200 µL of surnatant dried under vacuum, re-dissolution with 200 µL water | ND 3 |
6 | 40 µL AmkDS + 300 µL ACN + 0.1% (v) TFA + 60 µL WB | 15000 rpm, 25 min, 5 °C | ND 3 |
7 | 20 µL AmkDS + 600 µL ACN + 20 µL WB | step 1: 15000 rpm, 25 min, 5 °C step 2: 200 µL of surnatant dried under vacuum, re-dissolution with 200 µL water | ND 3 |
8 | 10 µL AmkDS + 300 µL ACN + 1.0% (v) FA 4 + 90 µL WB | step 1: 15000 rpm, 25 min, 5 °C step 2: 100 µL of surnatant dried under vacuum, re-dissolution with 100 µL water | ND 3 |
9 | 10 µL AmkDS + 300 µL ACN + 1.0% FA (v) 4 + 1.0 mM EDTA 4 + 90 µL WB | step 1: 15000 rpm, 25 min, 5 °C step 2: 100 µL of surnatant dried under vacuum, re-dissolution with 100 µL water | ND 3 |
10 | 10 µL AmkDS + 300 µL ACN + 1.0 mM NH4OAc 4 + 1.0% (v) FA 4 + 90 µL WB | step 1: 15000 rpm, 25 min, 5 °C step 2: 100 µL of surnatant dried under vacuum, re-dissolution with 100 µL water | ND 3 |
11 | 10 µL AmkDS + 300 µL ACN + 10% (v) FA 4 + 90 µL WB | step 1: 15000 rpm, 25 min, 5 °C step 2: 100 µL of surnatant dried under vacuum, re-dissolution with 100 µL water | ND3 |
12 | 10 µL AmkDS + 300 µL ACN + 1.0 mM NH4OAc 4 + 1.0% (v) FA 4 + 90 µL WB | step 1: 15000 rpm, 25 min, 5 °C step 2: 100 µL of surnatant treated with 100 µL Na2SO4/NaCl (1:4) saturated solutionstep 3: 3000 rpm, 15 min, 20 °C step 4:100 µL of surnatant dried under vacuum, re-dissolution with 100 µL water | ND3 |
13 | 10 µL AmkDS + 250 µL ACN + 1.0% FA (v) 4 + 90 µL WB | 15000 rpm, 25 min, 5 °C | 12.8 |
14 | 10 µL AmkDS + 300 µL ACN + 1.0% (v) TCA 4 + 90 µL WB | 15000 rpm, 15 min, 5 °C | 14.6 |
15 | 10 µL AmkDS + 125 µL ACN + 1.0% (v) NH4OH 4 + 90 µL WB | 15000 rpm, 25 min, 5 °C | 17.4 |
16 | 10 µL AmkDS + 300 µL ACN + 1.0% (v) NH4OH 4 + 90 µL WB | step 1: 15000 rpm, 25 min, 5°C step 2: 100 µL of surnatant dried under vacuum, re-dissolution with 100 µL water | 20.8 |
17 | 10 µL AmkDS + 125 µL ACN + NH4OH 5% (v) 4 + 90 µL WB | 15000 rpm, 25 min, 5 °C | 96.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sardella, R.; Xiroudaki, S.; Mercolini, L.; Sabbatini, S.; Monari, C.; Perito, S.; Ianni, F.; Vecchiarelli, A.; Giovagnoli, S. Optimized Extraction of Amikacin from Murine Whole Blood. Molecules 2021, 26, 665. https://doi.org/10.3390/molecules26030665
Sardella R, Xiroudaki S, Mercolini L, Sabbatini S, Monari C, Perito S, Ianni F, Vecchiarelli A, Giovagnoli S. Optimized Extraction of Amikacin from Murine Whole Blood. Molecules. 2021; 26(3):665. https://doi.org/10.3390/molecules26030665
Chicago/Turabian StyleSardella, Roccaldo, Styliani Xiroudaki, Laura Mercolini, Samuele Sabbatini, Claudia Monari, Stefano Perito, Federica Ianni, Anna Vecchiarelli, and Stefano Giovagnoli. 2021. "Optimized Extraction of Amikacin from Murine Whole Blood" Molecules 26, no. 3: 665. https://doi.org/10.3390/molecules26030665