Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans
Abstract
:1. Introduction
2. C. elegans as a Model for Aging Research
3. Signaling Pathways and Environmental Factors Related to Aging
4. Bioactive Phytochemicals with Health Benefits
4.1. Polyphenolic Compounds
4.2. Terpenoids
4.3. Alkaloids
4.4. Plants Crude Drugs and Extracts with Lifespan Extending Abilities in C. elegans
5. Summary and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, J.; Park, K.-C.; Awasthi, A.; Prasad, B. Silymarin Extends Lifespan and Reduces Proteotoxicity in C. elegans Alzheimer’s Model. CNS Neurol. Disord.-Drug Targets 2015, 14, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Sahardi, N.F.N.M.; Makpol, S. Ginger (Zingiber officinale Roscoe) in the Prevention of Ageing and Degenerative Diseases: Review of Current Evidence. Evid.-Based Complement. Altern. Med. 2019, 2019, 5054395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutphin, G.L.; Bishop, E.; Yanos, M.E.; Moller, R.M.; Kaeberlein, M. Caffeine extends life span, improves healthspan, and delays age-associated pathology in Caenorhabditis elegans. Longev. Healthspan 2012, 1, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadowska-Bartosz, I.; Bartosz, G. Effect of antioxidants supplementation on aging and longevity. Biomed Res. Int. 2014, 2014, 404680. [Google Scholar] [CrossRef]
- Lee, E.B.; Kim, J.H.; Kim, Y.J.; Noh, Y.J.; Kim, S.J.; Hwang, I.H.; Kim, D.K. Lifespan-extending property of 6-shogaol from Zingiber officinale Roscoe in Caenorhabditis elegans. Arch. Pharm. Res. 2018, 41, 743–752. [Google Scholar] [CrossRef]
- United Nations Department of Economic and Social Affairs: World Population Prospects; United Nations Department of Economic and Social Affairs: New York, NY, USA, 2017; pp. 1–25.
- López-otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging Longevity. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salminen, A.; Kaarniranta, K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res. Rev. 2012, 11, 230–241. [Google Scholar] [CrossRef]
- Li, J.; Huang, K.X.; Le, W.D. Establishing a novel C. elegans model to investigate the role of autophagy in amyotrophic lateral sclerosis. Acta Pharmacol. Sin. 2013, 34, 644–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, A. Damage-Based Theories of Aging and Future Treatment Schemes. Int. J. Sci. Eng. Res. 2011, 2, 1–4. [Google Scholar]
- Gems, D. An integrated theory of ageing in the nematode Caenorhabditis elegans. J. Anat. 2000, 197, 521–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Back, P.; Braeckman, B.P.; Matthijssens, F. ROS in aging Caenorhabditis elegans: Damage or signaling? Oxid. Med. Cell. Longev. 2012, 2012, 608478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, E.B.; Kim, J.H.; Cha, Y.S.; Kim, M.; Song, S.B.; Cha, D.S.; Jeon, H.; Eun, J.S.; Han, S.; Kim, D.K. Lifespan extending and stress resistant properties of vitexin from Vigna angularis in Caenorhabditis elegans. Biomol. Ther. 2015, 23, 582–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, J.J.; Evason, K.; Kornfeld, K. Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp. Gerontol. 2006, 41, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.K.; Bundy, J.G.; Leroi, A.M. Metabolic youth in middle age: Predicting aging in Caenorhabditis elegans using metabolomics. J. Proteome Res. 2015, 14, 4603–4609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, L.M.; Staffa, K.; Perally, S.; LaCourse, E.J.; Brophy, P.M.; Hamilton, J.V. Proteomic analyses of Caenorhabditis elegans dauer larvae and long-lived daf-2 mutants implicates a shared detoxification system in longevity assurance. J. Proteome Res. 2010, 9, 2871–2881. [Google Scholar] [CrossRef] [PubMed]
- Saul, N.; Pietsch, K.; Stürzenbaum, S.R.; Menzel, R.; Steinberg, C.E.W. Diversity of polyphenol action in Caenorhabditis elegans: Between toxicity and longevity. J. Nat. Prod. 2011, 74, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Taira, N.; Nguyen, B.C.Q.; Be Tu, P.T.; Tawata, S. Effect of Okinawa Propolis on PAK1 Activity, Caenorhabditis elegans Longevity, Melanogenesis, and Growth of Cancer Cells. J. Agric. Food Chem. 2016, 64, 5484–5489. [Google Scholar] [CrossRef]
- Chaudhary, M.K.; Rizvi, S.I. Invertebrate and vertebrate models in aging research. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 2019, 163, 114–121. [Google Scholar] [CrossRef]
- Miller, D.L. There Are Worms in My Aging Research. J. Gerontol. Biol. Sci. 2019, 74, 1170–1172. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.J.; Scheibye-Knudsen, M.; Longo, D.L.; De Cabo, R. Animal models of aging research: Implications for human aging and age-related diseases. Annu. Rev. Anim. Biosci. 2015, 3, 283–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, T.; Sammi, S.R.; Nooreen, Z.; Mishra, A.; Ahmad, A.; Bhatta, R.S.; Pandey, R. Anti-ageing and anti-Parkinsonian effects of natural flavonol, tambulin from Zanthoxyllum aramatum promotes longevity in Caenorhabditis elegans. Exp. Gerontol. 2019, 120, 50–61. [Google Scholar] [CrossRef]
- Pandey, S.; Phulara, S.C.; Jha, A.; Chauhan, P.S.; Gupta, P.; Shukla, V. 3-Methyl-3-buten-1-ol (isoprenol) confers longevity and stress tolerance in Caenorhabditis elegans. Int. J. Food Sci. Nutr. 2019, 70, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Tatar, M.; Kopelman, A.; Epstein, D.; Tu, M.P.; Yin, C.M.; Garofalo, R.S. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 2001, 292, 107–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altintas, O.; Park, S.; Lee, S.J.V. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep. 2016, 49, 81–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, J.; Rollins, J.A.; Zang, X.; Wu, D.; Zou, L.; Wang, Z.; Ye, C.; Wu, Z.; Kapahi, P.; Rogers, A.N.; et al. Translational Regulation of Non-autonomous Mitochondrial Stress Response Promotes Longevity. Cell Rep. 2019, 28, 1050–1062.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bras, A. Protein aggregation contributes to aging in C. elegans. Lab Anim. 2019, 48, 200. [Google Scholar] [CrossRef]
- Pigazzini, M.L.; Gallrein, C.; Iburg, M.; Kaminski Schierle, G.; Kirstein, J. Characterization of Amyloid Structures in Aging C. elegans Using Fluorescence Lifetime Imaging. J. Vis. Exp. 2020, 157, e61004. [Google Scholar] [CrossRef]
- Chai, Y.; Li, W.; Feng, G.; Yang, Y.; Wang, X.; Ou, G. Live imaging of cellular dynamics during Caenorhabditis elegans postembryonic development. Nat. Protoc. 2012, 7, 2090–2102. [Google Scholar] [CrossRef]
- Uno, M.; Nishida, E. Lifespan-regulating genes in C. elegans. Npj Aging Mech. Dis. 2016, 2, 16010. [Google Scholar] [CrossRef]
- Olsen, A.; Vantipalli, M.C.; Lithgow, G.J. Using Caenorhabditis elegans as a model for aging and age-related diseases. Ann. N. Y. Acad. Sci. 2006, 1067, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, C.J. The genetics of ageing. Nature 2010, 464, 504–512. [Google Scholar] [CrossRef]
- KLASS, M.R. Culture methods Labeling. Mech. Ageing Dev. 1983, 22, 279–286. [Google Scholar] [CrossRef]
- Schaffitzel, E.; Hertweck, M. Recent aging research in Caenorhabditis elegans. Exp. Gerontol. 2006, 41, 557–563. [Google Scholar] [CrossRef]
- Tissenbaum, H.A. Using C. elegans for aging research. Invertebr. Reprod. Dev. 2015, 59, 59–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, C.T.; McCarroll, S.A.; Bargmann, C.I.; Fraser, A.; Kamath, R.S.; Ahringer, J.; Li, H.; Kenyon, C. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003, 424, 277–284. [Google Scholar] [CrossRef]
- Johnson, T.E. Subfield History: Caenorhabditis elegans as a System for Analysis of the Genetics of Aging. Sci. Aging Knowl. Environ. 2002, 2002, re4. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.E. Advantages and disadvantages of Caenorhabditis elegans for aging research. Exp. Gerontol. 2003, 38, 1329–1332. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D.; Lee, E.B.; Kim, B.J.; Lee, S.Y.; Lee, T.G.; Ahn, M.S.; Lim, H.W.; Cha, D.S.; Jeon, H.; Kim, D.K. Antioxidant and lifespan extending property of quercetin-3-O-dirhamnoside from Curcuma longa L. in Caenorhabditis elegans. J. Korean Soc. Appl. Biol. Chem. 2014, 57, 709–714. [Google Scholar] [CrossRef]
- Ding, A.J.; Zheng, S.Q.; Huang, X.B.; Xing, T.K.; Wu, G.S.; Sun, H.Y.; Qi, S.H.; Luo, H.R. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. Nat. Products Bioprospect. 2017, 7, 335–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broughton, S.J.; Piper, M.D.W.; Ikeya, T.; Bass, T.M.; Jacobson, J.; Driege, Y.; Martinez, P.; Hafen, E.; Withers, D.J.; Leevers, S.J.; et al. Longer lifespan, altered metabolism, and stress resistance in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. USA 2005, 102, 3105–3110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, R.W.; Kaeberlein, M.; Caldwell, S.D.; Kennedy, B.K.; Fields, S. Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev. 2006, 20, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Hsu, A.L.; Murphy, C.T.; Kenyon, C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 2003, 300, 1142–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhopadhyay, A.; Oh, S.W.; Tissenbaum, H.A. Worming pathways to and from DAF-16/FOXO. Exp. Gerontol. 2006, 41, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Kwon, E.S.; Narasimhan, S.D.; Yen, K.; Tissenbaum, H.A. A new DAF-16 isoform regulates longevity. Nature 2010, 466, 498–502. [Google Scholar] [CrossRef] [Green Version]
- Wolff, S.; Ma, H.; Burch, D.; Maciel, G.A.; Hunter, T.; Dillin, A. SMK-1, an essential regulator of DAF-16-mediated longevity. Cell 2006, 124, 1039–1053. [Google Scholar] [CrossRef] [Green Version]
- Kamath, R.S.; Martinez-Campos, M.; Zipperlen, P.; Fraser, A.G.; Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2001, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Shukitt-Hale, B.; Lau, F.C.; Josep, J.A. Berry fruit supplementation and the aging brain. J. Agric. Food Chem. 2008, 56, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Kaunda, J.S.; Zhang, Y.J. The Genus Solanum: An Ethnopharmacological, Phytochemical and Biological Properties Review; Springer: Singapore, 2019; Volume 9, ISBN 0123456789. [Google Scholar]
- Dehghan, E.; Zhang, Y.; Saremi, B.; Yadavali, S.; Hakimi, A.; Dehghani, M.; Goodarzi, M.; Tu, X.; Robertson, S.; Lin, R.; et al. Hydralazine induces stress resistance and extends C. elegans lifespan by activating the NRF2/SKN-1 signalling pathway. Nat. Commun. 2017, 8, 2223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehghan, E.; Goodarzi, M.; Saremi, B.; Lin, R.; Mirzaei, H. Hydralazine targets cAMP-dependent protein kinase leading to sirtuin1/5 activation and lifespan extension in C. elegans. Nat. Commun. 2019, 10, 4905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gürbüz, N.; Uluişik, S.; Frary, A.; Frary, A.; Doğanlar, S. Health benefits and bioactive compounds of eggplant. Food Chem. 2018, 268, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Onken, B.; Chen, H.; Xiao, S.; Liu, X.; Driscoll, M.; Cao, Y.; Huang, Q. Mechanism of longevity extension of Caenorhabditis elegans induced by pentagalloyl glucose isolated from eucalyptus leaves. J. Agric. Food Chem. 2014, 62, 3422–3431. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Linton, J.M.; Schork, N.J.; Buck, L.B.; Petrascheck, M. A pharmacological network for lifespan extension in Caenorhabditis elegans. Aging Cell 2014, 13, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Jenzer Bern, H.; Sadeghi Bern, L. Phytochemicals: Sources and biological functions. J. Pharmacogn. Phytochem. JPP 2016, 339, 339–341. [Google Scholar]
- Banu, K.S.; Cathrine, L. General Techniques Involved in Phytochemical Analysis. Int. J. Adv. Res. Chem. Sci. 2015, 2, 25–32. [Google Scholar]
- Tiwari, P.; Kumar, B.; Mandeep, K.; Kaur, G.; Kaur, H. Phytochemical screening and Extraction: A Review. Int. Pharm. Sci. 2011, 1, 98–106. [Google Scholar]
- Papaevgeniou, N.; Sakellari, M.; Jha, S.; Tavernarakis, N.; Holmberg, C.I.; Gonos, E.S.; Chondrogianni, N. 18α-Glycyrrhetinic acid proteasome activator decelerates aging and Alzheimer’s disease progression in Caenorhabditis elegans and neuronal cultures. Antioxid. Redox Signal. 2016, 25, 855–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papaevgeniou, N.; Chondrogianni, N. Anti-aging and Anti-aggregation Properties of Polyphenolic Compounds in C. elegans. Curr. Pharm. Des. 2018, 24, 2107–2120. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.M.E.; Shehata, A.M.; Alzahrani, S.O.; Shafi, M.E.; Mesalam, N.M.; Taha, A.E.; Swelum, A.A.; Arif, M.; Fayyaz, M.; Abd El-Hack, M.E. The role of polyphenols in poultry nutrition. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1851–1866. [Google Scholar] [CrossRef] [PubMed]
- Banjarnahor, S.D.S.; Artanti, N. Antioxidant properties of flavonoids. Med. J. Indones. 2014, 23, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Xiao, J.; Xi, Y.; Zhang, X.; Zhong, Q.; Zheng, H.; Cao, Y.; Chen, Y. Rosmarinic acid improved antioxidant properties and healthspan via the IIS and MAPK pathways in Caenorhabditis elegans. BioFactors 2019, 45, 774–787. [Google Scholar] [CrossRef] [PubMed]
- Liao, V.H.C.; Yu, C.W.; Chu, Y.J.; Li, W.H.; Hsieh, Y.C.; Wang, T.T. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech. Ageing Dev. 2011, 132, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.Q.; Huang, X.B.; Xing, T.K.; Ding, A.J.; Wu, G.S.; Luo, H.R. Chlorogenic acid extends the lifespan of Caenorhabditis elegans via Insulin/IGF-1 signaling pathway. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2017, 72, 464–472. [Google Scholar] [CrossRef] [Green Version]
- Abbas, S.; Wink, M. Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway. Phytomedicine 2010, 17, 902–909. [Google Scholar] [CrossRef]
- Abbas, S.; Wink, M. Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med. 2009, 75, 216–221. [Google Scholar] [CrossRef]
- Ayuda-Durán, B.; González-Manzano, S.; Miranda-Vizuete, A.; Dueñas, M.; Santos-Buelga, C.; González-Paramás, A.M. Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway. PLoS ONE 2019, 14, e0199483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büchter, C.; Ackermann, D.; Havermann, S.; Honnen, S.; Chovolou, Y.; Fritz, G.; Kampkötter, A.; Wätjen, W. Myricetin-mediated lifespan extension in Caenorhabditis elegans is modulated by DAF-16. Int. J. Mol. Sci. 2013, 14, 11895–11914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havermann, S.; Chovolou, Y.; Humpf, H.U.; Wätjen, W. Caffeic acid phenethylester increases stress resistance and enhances lifespan in Caenorhabditis elegans by modulation of the insulin-like DAF-16 signalling pathway. PLoS ONE 2014, 9, e100256. [Google Scholar] [CrossRef] [PubMed]
- Asthana, J.; Yadav, D.; Pant, A.; Yadav, A.K.; Gupta, M.M.; Pandey, R. Acacetin 7-O-α-l-rhamnopyranosyl (1-2) β-D-xylopyranoside elicits life-span extension and stress resistance in Caenorhabditis elegans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 1160–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sater, H.M.; Bizzio, L.N.; Tieman, D.M.; Muñoz, P.D. A Review of the Fruit Volatiles Found in Blueberry and Other Vaccinium Species. J. Agric. Food Chem. 2020, 68, 5777–5786. [Google Scholar] [CrossRef] [PubMed]
- Bass, T.M.; Weinkove, D.; Houthoofd, K.; Gems, D.; Partridge, L. Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech. Ageing Dev. 2007, 128, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Zarse, K.; Bossecker, A.; Müller-Kuhrt, L.; Siems, K.; Hernandez, M.A.; Berendsohn, W.G.; Birringer, M.; Ristow, M. The phytochemical glaucarubinone promotes mitochondrial metabolism, reduces body fat, and extends lifespan of Caenorhabditis elegans. Horm. Metab. Res. 2011, 43, 241–243. [Google Scholar] [CrossRef]
- Morselli, E.; Maiuri, M.C.; Markaki, M.; Megalou, E.; Pasparaki, A.; Palikaras, K.; Criollo, A.; Galluzzi, L.; Malik, S.A.; Vitale, I.; et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis. 2010, 1, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampkötter, A.; Timpel, C.; Zurawski, R.F.; Ruhl, S.; Chovolou, Y.; Proksch, P.; Wätjen, W. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 149, 314–323. [Google Scholar] [CrossRef]
- Grünz, G.; Haas, K.; Soukup, S.; Klingenspor, M.; Kulling, S.E.; Daniel, H.; Spanier, B. Structural features and bioavailability of four flavonoids and their implications for lifespan-extending and antioxidant actions in C. elegans. Mech. Ageing Dev. 2012, 133, 1–10. [Google Scholar] [CrossRef]
- Saul, N.; Pietsch, K.; Menzel, R.; Stürzenbaum, S.R.; Steinberg, C.E.W. Catechin induced longevity in C. elegans: From key regulator genes to disposable soma. Mech. Ageing Dev. 2009, 130, 477–486. [Google Scholar] [CrossRef]
- Havermann, S.; Rohrig, R.; Chovolou, Y.; Humpf, H. Molecular Effects of Baicalein in Hct116 Cells and Caenorhabditis elegans: Activation of the Nrf2 Signaling Pathway and Prolongation of Lifespan. J. Agric. Food Chem. 2013, 61, 2158–2164. [Google Scholar] [CrossRef]
- Kampkötter, A.; Gombitang Nkwonkam, C.; Zurawski, R.F.; Timpel, C.; Chovolou, Y.; Wätjen, W.; Kahl, R. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch. Toxicol. 2007, 81, 849–858. [Google Scholar] [CrossRef]
- Bartholome, A.; Kampkötter, A.; Tanner, S.; Sies, H.; Klotz, L.O. Epigallocatechin gallate-induced modulation of FoxO signaling in mammalian cells and C. elegans: FoxO stimulation is masked via PI3K/Akt activation by hydrogen peroxide formed in cell culture. Arch. Biochem. Biophys. 2010, 501, 58–64. [Google Scholar] [CrossRef]
- Pietsch, K.; Saul, N.; Menzel, R.; Stürzenbaum, S.R.; Steinberg, C.E.W. Quercetin mediated lifespan extension in Caenorhabditis elegans is modulated by age-1, daf-2, sek-1 and unc-43. Biogerontology 2009, 10, 565–578. [Google Scholar] [CrossRef]
- Surco-Laos, F.; Dueñas, M.; González-Manzano, S.; Cabello, J.; Santos-Buelga, C.; González-Paramás, A.M. Influence of catechins and their methylated metabolites on lifespan and resistance to oxidative and thermal stress of Caenorhabditis elegans and epicatechin uptake. Food Res. Int. 2012, 46, 514–521. [Google Scholar] [CrossRef]
- Lublin, A.; Isoda, F.; Patel, H.; Yen, K.; Nguyen, L.; Hajje, D.; Schwartz, M.; Mobbs, C. FDA-approved drugs that protect mammalian neurons from glucose toxicity slow aging dependent on Cbp and protect against proteotoxicity. PLoS ONE 2011, 6, e27762. [Google Scholar] [CrossRef] [PubMed]
- Pietsch, K.; Saul, N.; Chakrabarti, S.; Stürzenbaum, S.R.; Menzel, R.; Steinberg, C.E.W. Hormetins, antioxidants and prooxidants: Defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 2011, 12, 329–347. [Google Scholar] [CrossRef] [PubMed]
- Asthana, J.; Mishra, B.N.; Pandey, R. Acacetin promotes healthy aging by altering stress response in Caenorhabditis elegans. Free Radic. Res. 2016, 50, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Asthana, J.; Yadav, A.K.; Pant, A.; Pandey, S.; Gupta, M.M.; Pandey, R. Specioside ameliorates oxidative stress and promotes longevity in Caenorhabditis elegans. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2015, 169, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Dueñas, M.; Surco-Laos, F.; González-Manzano, S.; González-Paramás, A.M.; Gómez-Orte, E.; Cabello, J.; Santos-Buelga, C. Deglycosylation is a key step in biotransformation and lifespan effects of quercetin-3-O-glucoside in Caenorhabditis elegans. Pharmacol. Res. 2013, 76, 41–48. [Google Scholar] [CrossRef]
- Surco-Laos, F.; Cabello, J.; Gómez-Orte, E.; González-Manzano, S.; González-Paramás, A.M.; Santos-Buelga, C.; Dueñas, M. Effects of O-methylated metabolites of quercetin on oxidative stress, thermotolerance, lifespan and bioavailability on Caenorhabditis elegans. Food Funct. 2011, 2, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.J.; Huang, J.H.; Zhang, S.Q.; Wu, B.; Kapahi, P.; Zhang, X.M.; Shen, Z.Y. Icariin and its derivative icariside II extend healthspan via insulin/IGF-1 pathway in C. elegans. PLoS ONE 2011, 6, e28835. [Google Scholar] [CrossRef] [Green Version]
- Büchter, C.; Havermann, S.; Koch, K.; Wätjen, W. Isoxanthohumol, a constituent of hop (Humulus lupulus L.), increases stress resistance in Caenorhabditis elegans dependent on the transcription factor DAF-16. Eur. J. Nutr. 2016, 55, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.B.; Ahn, D.; Kim, B.J.; Lee, S.Y.; Seo, H.W.; Cha, Y.S.; Jeon, H.; Eun, J.S.; Cha, D.S.; Kim, D.K. Genistein from vigna angularis extends lifespan in Caenorhabditis elegans. Biomol. Ther. 2015, 23, 77–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benedetti, M.G.; Foster, A.L.; Vantipalli, M.C.; White, M.P.; Sampayo, J.N.; Gill, M.S.; Olsen, A.; Lithgow, G.J. Compounds that confer thermal stress resistance and extended lifespan. Exp. Gerontol. 2008, 43, 882–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlernitzauer, A.; Oiry, C.; Hamad, R.; Galas, S.; Cortade, F.; Chabi, B.; Casas, F.; Pessemesse, L.; Fouret, G.; Feillet-Coudray, C.; et al. Chicoric acid is an antioxidant molecule that stimulates AMP kinase pathway in L6 myotubes and extends lifespan in Caenorhabditis elegans. PLoS ONE 2013, 8, e78788. [Google Scholar] [CrossRef]
- Saul, N.; Pietsch, K.; Menzel, R.; Stürzenbaum, S.R.; Steinberg, C.E.W. The longevity effect of tannic acid in Caenorhabditis elegans: Disposable soma meets hormesis. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2010, 65 A, 626–635. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kwon, G.; Park, J.; Kim, J.K.; Lim, Y.H. Brief Communication: SIR-2.1-dependent lifespan extension of Caenorhabditis elegans by oxyresveratrol and resveratrol. Exp. Biol. Med. 2016, 241, 1757–1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Büchter, C.; Zhao, L.; Havermann, S.; Honnen, S.; Fritz, G.; Proksch, P.; Wätjen, W. TSG (2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside) from the Chinese herb Polygonum multiflorum increases lifespan and stress resistance of Caenorhabditis elegans. Oxid. Med. Cell. Longev. 2015, 2015, 124357. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Gao, X.; Qin, J. Probing the anti-aging role of polydatin in Caenorhabditis elegans on a chip. Integr. Biol. (UK) 2014, 6, 35–43. [Google Scholar] [CrossRef]
- Shen, P.; Yue, Y.; Sun, Q.; Kasireddy, N.; Kim, K.H.; Park, Y. Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16. BioFactors 2017, 43, 379–387. [Google Scholar] [CrossRef]
- Ryu, D.; Mouchiroud, L.; Andreux, P.A.; Katsyuba, E.; Moullan, N.; Nicolet-Dit-Félix, A.A.; Williams, E.G.; Jha, P.; Lo Sasso, G.; Huzard, D.; et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med. 2016, 22, 879–888. [Google Scholar] [CrossRef] [PubMed]
- Yaguchi, Y.; Komura, T.; Kashima, N.; Tamura, M.; Kage-Nakadai, E.; Saeki, S.; Terao, K.; Nishikawa, Y. Influence of oral supplementation with sesamin on longevity of Caenorhabditis elegans and the host defense. Eur. J. Nutr. 2014, 53, 1659–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, S.; Wink, M. Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans. Phytochemistry 2015, 117, 340–350. [Google Scholar] [CrossRef]
- Cañuelo, A.; Gilbert-López, B.; Pacheco-Liñán, P.; Martínez-Lara, E.; Siles, E.; Miranda-Vizuete, A. Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans. Mech. Ageing Dev. 2012, 133, 563–574. [Google Scholar] [CrossRef]
- Ayyadevara, S.; Bharill, P.; Dandapat, A.; Hu, C.; Khaidakov, M.; Mitra, S.; Shmookler Reis, R.J.; Mehta, J.L. Aspirin inhibits oxidant stress, reduces age-associated functional declines, and extends lifespan of Caenorhabditis elegans. Antioxid. Redox Sign. 2013, 18, 481–490. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Caito, S.W.; Zackert, W.E.; West, J.D.; Zhu, S.; Aschner, M.; Fessel, J.P.; Roberts, L.J. Scavengers of reactive γ-ketoaldehydes extend Caenorhabditis elegans lifespan and healthspan through protein-level interactions with SIR-2.1 and ETS-7. Aging (Albany NY) 2016, 8, 1759–1780. [Google Scholar] [CrossRef] [Green Version]
- Heidler, T.; Hartwig, K.; Daniel, H.; Wenzel, U. Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology 2010, 11, 183–195. [Google Scholar] [CrossRef]
- Li, H.; Yu, X.; Meng, F.; Zhao, Z.; Guan, S.; Wang, L. Ferulic acid supplementation increases lifespan and stress resistance via insulin/IGF-1 signaling pathway in C. elegans. Int. J. Mol. Sci. 2021, 22, 4279. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Tang, W.; Bidigare, R.R. Terpenoids as therapeutic drugs and pharmaceutical agents. In Natural Products: Drug Discovery and Therapeutic Medicine; Humana Press: Totowa, NJ, USA, 2005; pp. 197–227. ISBN 9781588293831. [Google Scholar]
- Lin, C.; Zhang, X.; Xiao, J.; Zhong, Q.; Kuang, Y.; Cao, Y.; Chen, Y. Effects on longevity extension and mechanism of action of carnosic acid in: Caenorhabditis elegans. Food Funct. 2019, 10, 1398–1410. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Zhang, X.; Su, Z.; Xiao, J.; Lv, M.; Cao, Y.; Chen, Y. Carnosol improved lifespan and healthspan by promoting antioxidant capacity in Caenorhabditis elegans. Oxid. Med. Cell. Longev. 2019, 2019, 5958043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pant, A.; Saikia, S.K.; Shukla, V.; Asthana, J.; Akhoon, B.A.; Pandey, R. Beta-caryophyllene modulates expression of stress response genes and mediates longevity in Caenorhabditis elegans. Exp. Gerontol. 2014, 57, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.; Yadav, D.; Phulara, S.C.; Gupta, M.M.; Saikia, S.K.; Pandey, R. Longevity-promoting effects of 4-hydroxy-E-globularinin in Caenorhabditis elegans. Free Radic. Biol. Med. 2012, 53, 1848–1856. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, L.; Zhou, L. Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 2015, 468, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chotiko, A.; Chouljenko, A.; Gao, C.; Zheng, J.; Sathivel, S. Delivery of alpha-tocopherol through soluble dietary fibre-based nanofibres for improving the life span of Caenorhabditis elegans. Int. J. Food Sci. Nutr. 2019, 70, 172–181. [Google Scholar] [CrossRef]
- Akhoon, B.A.; Pandey, S.; Tiwari, S.; Pandey, R. Withanolide A Offers Neuroprotection, Ameliorates Stress Resistance and Prolongs the Life Expectancy of Caenorhabditis Elegans; Elsevier B.V.: Amsterdam, The Netherlands, 2016; Volume 78, ISBN 5222718530. [Google Scholar]
- Pant, A.; Asthana, J.; Yadav, A.K.; Rathor, L.; Srivastava, S.; Gupta, M.M.; Pandey, R. Verminoside mediates life span extension and alleviates stress in Caenorhabditis elegans. Free Radic. Res. 2015, 49, 1384–1392. [Google Scholar] [CrossRef] [PubMed]
- Negi, H.; Shukla, A.; Khan, F.; Pandey, R. 3β-Hydroxy-urs-12-en-28-oic acid prolongs lifespan in C. elegans by modulating JNK-1. Biochem. Biophys. Res. Commun. 2016, 480, 539–543. [Google Scholar] [CrossRef]
- Shukla, V.; Phulara, S.C.; Yadav, D.; Tiwari, S.; Kaur, S.; Gupta, M.M.; Nazir, A.; Pandey, R. Iridoid Compound 10-O-trans-p-Coumaroylcatalpol Extends Longevity and Reduces Alpha Synuclein Aggregation in Caenorhabditis elegans. CNS Neurol. Disord.-Drug Targets 2013, 11, 984–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lashmanova, E.; Proshkina, E.; Zhikrivetskaya, S.; Shevchenko, O.; Marusich, E.; Leonov, S.; Melerzanov, A.; Zhavoronkov, A.; Moskalev, A. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol. Res. 2015, 100, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.W.; Cheon, S.M.; Lee, M.H.; Kim, H.J.; Jeon, H.; Cha, D.S. Catalpol modulates lifespan via DAF-16/FOXO and SKN-1/Nrf2 activation in Caenorhabditis elegans. Evidence-Based Complement. Altern. Med. 2015, 2015, 524878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayed, A.A.R. Ferulsinaic acid attenuation of advanced glycation end products extends the lifespan of Caenorhabditis elegans. J. Pharm. Pharmacol. 2011, 63, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kang, Y.-G.; Lee, J.; Choi, D.; Cho, Y.; Shin, J.-M.; Park, J.S.; Lee, J.H.; Kim, W.G.; Seo, D.B.; et al. The natural phytochemical dehydroabietic acid is an anti-aging reagent that mediates the direct activation of SIRT1. Mol. Cell. Endocrinol. 2015, 412, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Tan, L.; Zhou, X.G.; Yang, Z.L.; Zhu, Q.; Chen, J.N.; Luo, H.R.; Wu, G.S. Secoisolariciresinol Diglucoside Delays the Progression of Aging-Related Diseases and Extends the Lifespan of Caenorhabditis elegans via DAF-16 and HSF-1. Oxid. Med. Cell. Longev. 2020, 2020, 1293935. [Google Scholar] [CrossRef] [PubMed]
- Roy, A. A review on the alkaloids an important therapeutic compound from plants. Int. J. Plant Biotechnol. 2017, 3, 1–9. [Google Scholar] [CrossRef]
- Hardie, D.G. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function. Genes Dev. 2011, 25, 1895–1908. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, D.; Arya, U.; SoundaraRajan, T.; Dwivedi, H.; Kumar, S.; Subramaniam, J.R. Reserpine can confer stress tolerance and lifespan extension in the nematode C. elegans. Biogerontology 2008, 9, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Roxo, M.; Cheng, X.; Zhang, S.; Cheng, H.; Wink, M. Pro-oxidant and lifespan extension effects of caffeine and related methylxanthines in Caenorhabditis elegans. Food Chem. X 2019, 1, 100005. [Google Scholar] [CrossRef] [PubMed]
- Bridi, J.C.; de Almeida Barros, A.G.; Sampaio, L.R.; Damásio Ferreira, J.C.; Antunes Soares, F.A.; Romano-Silva, M.A. Lifespan extension induced by caffeine in Caenorhabditis elegans is partially dependent on adenosine signaling. Front. Aging Neurosci. 2015, 7, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, E.F.; Waltz, T.B.; Kassahun, H.; Lu, Q.; Kerr, J.S.; Morevati, M.; Fivenson, E.M.; Wollman, B.N.; Marosi, K.; Wilson, M.A.; et al. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci. Rep. 2017, 7, 46208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morselli, E.; Mariño, G.; Bennetzen, M.V.; Eisenberg, T.; Megalou, E.; Schroeder, S.; Cabrera, S.; Bénit, P.; Rustin, P.; Criollo, A.; et al. Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 2011, 192, 615–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenberg, T.; Knauer, H.; Schauer, A.; Büttner, S.; Ruckenstuhl, C.; Carmona-Gutierrez, D.; Ring, J.; Schroeder, S.; Magnes, C.; Antonacci, L.; et al. Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 2009, 11, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Wink, M. Chlorophyll enhances oxidative stress tolerance in Caenorhabditis elegans and extends its lifespan. PeerJ 2016, 4, e1879. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Z.; Huang, J.H.; Khanabdali, R.; Kalionis, B.; Xia, S.J.; Cai, W.J. Pyrroloquinoline quinone enhances the resistance to oxidative stress and extends lifespan upon DAF-16 and SKN-1 activities in C. elegans. Exp. Gerontol. 2016, 80, 43–50. [Google Scholar] [CrossRef]
- Lu, L.; Zhao, X.; Zhang, J.; Li, M.; Qi, Y.; Zhou, L. Calycosin promotes lifespan in Caenorhabditis elegans through insulin signaling pathway via daf-16, age-1 and daf-2. J. Biosci. Bioeng. 2017, 124, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, H.; Roxo, M.; Silva, E.; Valente, K.; Braun, M.; Wang, X.; Wink, M. Bark extract of the amazonian tree endopleura uchi (humiriaceae) extends lifespan and enhances stress resistance in Caenorhabditis elegans. Molecules 2019, 24, 915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peixoto, H.; Roxo, M.; Koolen, H.; Da Silva, F.; Silva, E.; Braun, M.S.; Wang, X.; Wink, M. Calycophyllum spruceanum (Benth.), the amazonian “tree of youth” prolongs longevity and enhances stress resistance in Caenorhabditis elegans. Molecules 2018, 23, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangsinth, P.; Prasansuklab, A.; Duangjan, C.; Gu, X.; Meemon, K.; Wink, M.; Tencomnao, T. Leaf extract of Caesalpinia mimosoides enhances oxidative stress resistance and prolongs lifespan in Caenorhabditis elegans. BMC Complement. Altern. Med. 2019, 19, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tambara, A.L.; de Los Santos Moraes, L.; Dal Forno, A.H.; Boldori, J.R.; Gonçalves Soares, A.T.; de Freitas Rodrigues, C.; Mariutti, L.R.B.; Mercadante, A.Z.; de Ávila, D.S.; Denardin, C.C. Purple pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food Chem. Toxicol. 2018, 120, 639–650. [Google Scholar] [CrossRef] [PubMed]
- Duangjan, C.; Rangsinth, P.; Gu, X.; Wink, M.; Tencomnao, T. Lifespan extending and oxidative stress resistance properties of a leaf extracts from anacardium occidentale L. in Caenorhabditis elegans. Oxid. Med. Cell. Longev. 2019, 2019, 9012396. [Google Scholar] [CrossRef] [Green Version]
- Duangjan, C.; Rangsinth, P.; Gu, X.; Zhang, S.; Wink, M.; Tencomnao, T. Glochidion zeylanicum leaf extracts exhibit lifespan extending and oxidative stress resistance properties in Caenorhabditis elegans via DAF-16/FoxO and SKN-1/Nrf-2 signaling pathways. Phytomedicine 2019, 64, 153061. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.; Weldle, N.; Baier, S.; Büchter, C.; Wätjen, W. Hibiscus sabdariffa L. extract prolongs lifespan and protects against amyloid-β toxicity in Caenorhabditis elegans: Involvement of the FoxO and Nrf2 orthologues DAF-16 and SKN-1. Eur. J. Nutr. 2020, 59, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Rathor, L.; Pant, A.; Awasthi, H.; Mani, D.; Pandey, R. An antidiabetic polyherbal phytomedicine confers stress resistance and extends lifespan in Caenorhabditis elegans. Biogerontology 2017, 18, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Phulara, S.C.; Mishra, S.K.; Bajpai, R.; Kumar, A.; Niranjan, A.; Lehri, A.; Upreti, D.K.; Chauhan, P.S. Betula utilis extract prolongs life expectancy, protects against amyloid-β toxicity and reduces Alpha Synuclien in Caenorhabditis elegans via DAF-16 and SKN-1. Comp. Biochem. Physiol. Part-C Toxicol. Pharmacol. 2020, 228, 108647. [Google Scholar] [CrossRef] [PubMed]
- Sayed, S.M.A.; Siems, K.; Schmitz-Linneweber, C.; Luyten, W.; Saul, N. Enhanced healthspan in Caenorhabditis elegans treated with extracts from the traditional chinese medicine plants Cuscuta chinensis Lam. and Eucommia ulmoides Oliv. Front. Pharmacol. 2021, 12, 604435. [Google Scholar] [CrossRef]
- O’Reilly, L.P.; Luke, C.J.; Perlmutter, D.H.; Silverman, A.G.; Pak, S.C. C. elegans in high-throughput drug discovery. Adv. Drug Deliv. Rev. 2014, 23, 247–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Yakar, A. High-content and high-throughput in vivo drug screening platforms using microfluidics. Assay Drug Dev. Technol. 2019, 17, 8–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Riordan, M.; Bhat, M.A. Genetic aspects of autism spectrum disorders: Insights from animal models. Front. Cell. Neurosci. 2014, 8, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmeisser, K.; Parker, J.A. Worms on the spectrum-C. elegans models in autism research. Exp. Neurol. 2018, 299, 199–206. [Google Scholar] [CrossRef] [PubMed]
Polyphenolic Compounds | Mean Lifespan Extension * | Plant Source # | Ethnobotanical Use | Implicated * Genes | Pathway * | Anti-Aging Effect * | References |
---|---|---|---|---|---|---|---|
Flavonoids | |||||||
Tambulin | 16% at 50 µM | Zanthoxylum armatum (Indian thorny ash, or Nepali Dhania, or Chinese coriander or timur) | Medicinal | daf-16, sod-1, sod-3, ctl-2 | IIS | Anti-Parkinson’s | [22] |
Rosmarinic acid | 40% at 60 µM 49% at 120 µM 63% at 180 µM | Rosmarinus officinalis (Rosemary) | Medicinal, Ornamental, Culinary, Source of essential oil | ins-18, daf-16, sek-1, skn-1, ctl-1, sod-3, sod-5. | IIS and MAPK | Anti-oxidative, Healthspan extension | [63] |
Curcumin | 39% at 20 µΜ | Curcuma longa (Turmeric) | Medicinal, Culinary | age-1, skn-1, sir-2.1, sek-1, unc-43, osr-1, mek-1genes | IIS, MAPK and JNK | Anti-oxidative, Healthspan extension | [64] |
Chlorogenic acid | 20% at 50 µM | Coffea arabica (Coffee), Camellia sinensis (Tea) | Medicinal, Beverage | daf-16, skn-1 and hsf-1 | IIS | Anti-oxidative, Healthspan extension | [65] |
Epigallocatechin gallate (EGCG) | 10%–14% at 220 µΜ | Camellia sinensis (Green tea) | Medicinal, Beverage | daf-16 | IIS | Anti-oxidative, Anti-Alzheimer’s | [66,67] |
20% at 100 μM | daf-16, sod-3 | IIS | [81] | ||||
Myricetin | 32% at 100 µM | Abelmoschus moschatus (musk mallow), Citrus sinensis (Navel oranges), Vaccinium sect. Cyanococcus (Blueberry leaves) | Medicinal, Food | daf-16 | IIS | Anti-oxidative | [69] |
18% at 100 µM | daf-16, sod-3 | IIS | [74] | ||||
Quercetin | 15% at 100 µM | Allium cepa L. (Onions), Malus domestica (Apples), Brassica oleracea (Broccoli), Vitis vinifera (Grape) | Functional food, Culinary | daf-16 | IIS | Anti-oxidative, Healthspan extension | [73] |
5% at 100 µM | daf-16 | IIS | [74] | ||||
11% at 100 µM 18% at 200 µM | age-1, daf-2, sek-1 and unc-43 | IIS, CaMKII and p38 MAPK | [82] | ||||
Kaempferol | 5% at 100 µM | Camellia sinensis (Tea), Brassica oleracea (Broccoli), Vitis vinifera (Grape), Solanum lycopersicum (Tomato), Fragaria ananassa (Strawberries), Malus domestica (Apples) | Beverage, Functional foods | daf-16 | IIS | Anti-oxidative, Healthspan extension | [74] |
10% at 100 µM | daf-16 | IIS | [77] | ||||
Fisetin | 6% at 100 µM | Fragaria ananassa (Strawberries), Malus domestica (Apples), Diospyros kaki (Persimmons), Allium cepa L. (Onions), Cucumis sativus (Cucumbers) | Functional foods | daf-16 | IIS | Anti-oxidative | [77] |
Catechin | 8% at 200 µM | Camellia sinensis (Green tea), Theobroma cacao (Cocoa), Vitis vinifera (Grape), Malus domestica (Apples) | Medicinal, Functional foods | akt-2, mev-1, nhr-8 | IIS | Anti-oxidative, Healthspan extension | [75] |
Epicatechin (EC) | 15% at 100 µM | Camellia sinensis (Tea), Theobroma cacao (Cocoa), Vitis vinifera (Grape red wine) | Functional foods, Beverage | daf-16, sod-3 | IIS | Anti-oxidative, Healthspan extension | [81] |
47% at 200 µM | daf-2, age-1, akt-1, akt-2, sgk-1, daf-16, skn-1, hsf-1, gst-4, gst-7, hsp-16.2 and hsp-70 | IIS | [68] | ||||
3′-O-methylepicatechin | 6% at 200 µM | Malus domestica (Apples), Vitis vinifera (Grape), Theobroma cacao (Cocoa), Camellia sinensis (Tea) | Functional foods, Beverage | - | - | Anti-oxidative, Healthspan extension | [83] |
4′-O-methylepicatechin | 12% at 200 µM | - | - | [83] | |||
Baicalein | 45% at 100 µM | Scutellaria baicalensis (Baikal skullcap or Chinese skullcap) | Medicinal | skn-1 | IIS | Anti-oxidative | [76] |
36% at 0.1% w/v | cbp-1 | - | [84] | ||||
Caffeic acid | 11% at 300 µM | Coffea arabica (Coffee) | Beverage, Medicinal | osr-1, sek-1, sir-2.1, unc-43, and daf-16 | Anti-oxidative, | [85] | |
Acacetin (5,7-dihydroxy-4-methoxyflavone) | 27% at 25 µM | Tephroseris kirilowii (Dog Tongue grass, Cotton bat) | Medicinal | sod-3, gst-4, ctl-1 and hsp-16.2 | IIS | Anti-oxidative, Stress Resistance | [86] |
Acacetin 7-O-α-l-rhamnopyranosyl(1–2)β-D-xylopyranoside | 39% at 25 µM | Premna integrifolia (Wind killer) | Medicinal | sir-2.1, skn-1, daf-16, and hsf-1 | Anti-oxidative, Stress Resistance | [87] | |
Quercetin-3-O-dirhamnoside | 21% at 200 µM | Curcuma longa (turmeric) | Culinary, Medicinal | - | - | Anti-oxidative, Stress Resistance | [39] |
Quercetin-3-O-glucoside | 23% at 25 µM | Erica multiflora (Winter Heather) | Medicinal | - | - | Anti-oxidative | [88] |
Isorhamnetin (Quercetin 3′-O-methylether) | 16% at 200 μM | Ginkgo biloba (ginkgo or gingko also known as the maidenhair tree), Hippophae rhamnoides (Sea buckthorn), Vaccinium sect. Cyanococcus (Blueberry) | Medicinal, Food | - | - | Anti-oxidative, Stress Resistance | [89] |
Tamarixetin (Quercetin 4′-O-methylether) | 11% at 200 μM | Cyperus teneriffae (Coco-grass) | Medicinal | - | - | Stress resistance, Anti-oxidative | [89] |
Icariin | 20% at 45 μM | Herba epimedii (Horny Goat Weed) | Medicinal | daf-2, daf-16, hsf-1 | IIS | Anti-oxidative, Anti-neurodegenerative diseases | [90] |
Icariside II | 20% at 20 μM | Herba epimedii (Horny Goat Weed) | Medicinal | daf-2, daf-16, hsf-1 | IIS | Anti-oxidative, Stress resistance, Anti-neurodegenerative diseases | [90] |
Isoxanthohumol | 2% at 100 μM | Humulus lupulus (hops) | Medicinal Beverage | daf-16 | IIS | Anti-oxidative, Stress resistance | [91] |
Silymarin | 10% at 25 µM 24% at 50 µM | Silybum marianum (Milk thistle) | Medicinal | - | - | Anti-oxidative, Stress resistance, Anti- Alzheimer’s | [1] |
Genistein | 27% at 100 µM | Vigna angularis (adzuki bean) | Medicinal, Food | hsp 16.2, sod-3 | Healthspan extension, Stress resistance | [92] | |
Taxifolin | 51% at 820 µM | Silybum marianum (blessed thistle or milk thistle), Carduus marianus (Marian thistle or Our-Lady’s-thistle), Allium cepa L. (Onions) | Medicinal, Culinary | - | - | Stress Resistance, Ameliorates Cerebral Amyloid Angiopathy (ACAA) | [93] |
Trolox (6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid | 31% at 0.6 mM–3 mM | Fragaria ananassa (Strawberries) | Functional food | - | - | Anti-oxidative | [93] |
Chicoric Acid | 20% at 100µM | Cichorium intybus (Chicory), Echinacea angustifolia (Purple cone flower), Lactuca sativa (Lettuce), Ocimum basilicum (Basil) | Medicinal, Culinary | - | AMPK | Anti-oxidative | [94] |
Naringin | 23% at 50 µM | Citrus grandis (Pomelo), Citrus paradise (grapefruit), and Citrus aurantium (Bitter orange) | Functional food | daf-16, daf-2, akt-1, akt-2. eat-2, sir-2.1, rsks-1, and clk-1 | IIS | Anti-oxidative, Anti-Alzheimer’s, Anti-Parkinson’s | [35] |
Tannins | |||||||
Tannic acid | 18% at 100 μM | Camellia sinensis (Tea), Vitis vinifera (Grape), Arachis hypogaea (Pea nuts) | Functional food | sek-1 | MAPK | Anti-oxidative, Anti-Alzheimers’, Neuroprotective Others Anti-amyloidogenic, Antimicrobial, Anticancer, Antimutagenic | [95] |
24% at 0.01% w/v | daf-16 | IIS | [84] | ||||
Pentagalloyl Glucose | 18% at 160 μM | Eucalyptus leaves (Southern blue gum or blue gum) | daf-16, age-1, eat-2, sir-2.1, and isp-1 | IIS, DR, SIR-2.1 and METC. | Anti-oxidative Others Estrogenic, Anti-inflammatory, Anti-oxidative, Anticancer | [53] | |
Stilbene | |||||||
Resveratrol | Variable effects at 100 μM | Vitis vinifera (Grape), Peanuts, Theobroma cacao (Cocoa), Vaccinium sect. Cyanococcus (Blueberry), Vaccinium myrtillus (Bilberry), Vaccinium macrocarpon (cranberry) | Functional food | sir 2.1 | - | Anti-oxidative Others Antiviral, Anti-depressant, Anti-nociceptive, Anti-diabetic activities | [70] |
3% at 5 μM | - | - | [71] | ||||
11% at 100 µg/mL | - | [72] | |||||
OxyResveratrol | 31% at 1000 µM | Morus alba (white mulberry) | Functional food, Medicine | sir-2.1, aak | AMPK and SIR-2.1 | Anti-oxidative, Neuroprotective | [96] |
TSG (2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside) | 23% at 100 μM | Polygonum multiflorum (Tuber fleeceflower) | Medicinal | - | - | Anti-oxidative, Stress resistance | [97] |
Polydatin | 30% at 1 mM | Vitis vinifera (Grape) | Functional food | sir-2.1, skn-1, sod-3, and daf-16 | IIS | Anti-oxidative, Stress resistance, Neuroprotective | [98] |
Piceatannol | 18% at 50 and 100 µM | Passiflora edulis (Passion fruit), Camellia sinensis (White Tea), Vitis vinifera (Grape) | Functional food | daf-16, hsp 16.2, sod-3, sir-2.1 | IIS | Anti-oxidative Others Estrogenic, Anti-inflammatory, Anti-oxidative, Anticancer | [99] |
Coumarins | |||||||
^ Urolithin A (UA) | 45% at 50 µM | Vaccinium sect. Cyanococcus (Blueberry), Fragaria ananassa (Strawberries), Arachis hypogaea (Pea nuts), Quercus spp (acorns), Punica granatum (pomegranates), Juglans regia (Walnut), Rubus idaeus (raspberries) | Functional food | - | - | Anti-oxidative, Healthspan extension | [100] |
^ Urolithin B (UB) | 36% at 50 µM | Vaccinium sect. Cyanococcus (Blueberry), Fragaria ananassa (Strawberries), Arachis hypogaea (Pea nuts), Quercus spp (acorns), Punica granatum (pomegranates), Juglans regia (Walnut), Rubus idaeus (raspberries) | Functional food | - | - | Anti-oxidative, Healthspan extension | [100] |
^ Urolithin C (UC) | 36% at 50 µM | Vaccinium sect. Cyanococcus (Blueberry), Fragaria ananassa (Strawberries), Arachis hypogaea (Pea nuts), Quercus spp (acorns), Punica granatum (pomegranates), Juglans regia (Walnut), Rubus idaeus (raspberries) | Functional food | - | - | Anti-oxidative, Healthspan extension | [100] |
^ Urolithin D (UD) | 19% at 50 µM | Vaccinium sect. Cyanococcus (Blueberry), Fragaria ananassa (Strawberries), Arachis hypogaea (Pea nuts), Quercus spp (acorns), Punica granatum (pomegranates), Juglans regia (Walnut), Rubus idaeus (raspberries) | Functional food | - | - | Anti-oxidative, Healthspan extension | [100] |
Lignan | |||||||
Sesamin | 13% at 6.3 µg/plate | Sesamum indicum L. (Sesame Seeds) | Functional Food | daf-2, skn-1, pmk-1, and daf-16 | IIS | Anti-oxidative Others Anti-allergenic, Anti-carcinogenic, Antihypertensive, Hypocholesterolemic | [101] |
Vitexin | 17% at 100 mM | Vigna angularis (adzuki beans) | Functional Food | sod-3, hsp-16.2 | IIS | Anti-oxidative Others Antiviral, Anti-depressant, Anti-nociceptive, Anti-diabetic | [13] |
Arctigenin | 13% at 100 µM | Arctium lappa (Greater burdock) | Medicinal | daf-16, jnk-1 | IIS | Anti-oxidative, Stress resistance | [102] |
Matairesinol | 25% at 100 µM | Arctium lappa (Greater burdock) | Medicinal | daf-16, jnk-1 | IIS | Anti-oxidative, Stress resistance | [102] |
Arctiin | 15% at 100 µM | Arctium lappa (Greater burdock) | Medicinal | daf-16, jnk-1 | IIS | Anti-oxidative, Stress resistance | [102] |
Lappaol C | 11% at 100 µM | Arctium lappa (Greater burdock) | Medicinal | daf-16, jnk-1 | IIS | Anti-oxidative, Stress resistance | [102] |
Lappaol F | 12% at 100 µM | Arctium lappa (Greater burdock) | Medicinal | daf-16, jnk-1 | IIS | Anti-oxidative, Stress resistance | [102] |
(Iso) lappaol A | 11% at 100 µM | Arctium lappa (Greater burdock) | Medicinal | daf-16, jnk-1 | IIS | Anti-oxidative, Stress resistance | [102] |
Phenolic Compounds | |||||||
Tryosol | 21% at 250 μM | Olea Europea L. (Olive tree) | Medicinal, Food | hsf-1, daf-2, daf-16 | IIS | Anti-oxidative, Stress resistance | [103] |
6-Gingerol | 20% at 25 µM | Zingiber officinale (Ginger) | Culinary, Medicinal | hsp-16.2, sod-3 | Anti-oxidative, Stress resistance | [5] | |
6-Shogaol | 19% at 12.5 µM 25% at 25 µM | Zingiber officinale (Ginger) | Culinary, Medicinal | sod-3, hsp-16.2 | Anti-oxidative, Stress resistance | [5] | |
Salicyclic Acid | 14% at 1 mM | Rubus idaeus (raspberries), Salix alba L. (Willow tree) | Medicinal, Food | daf-16, sod-3, sod-5, ctl-2, gst-4, gst-10 | IIS | Anti-oxidative, Stress resistance | [104] |
Salicylamine | 32% at 100 µM 56% at 500 µM | Fagopyrum esculentum (Buckwheat) | Culinary | sir-2.1, ets-7 | - | Healthspan extension | [105] |
Juglone | 29% at 40 µM | Juglans nigra (Black Walnut) | Functional Food, Medicinal | daf-16, sod-3, hsp-16.2, sir-2.1 | IIS | Anti-oxidative, Stress resistance | [106] |
Gallic Acid | 25% at 300 μM | Punica granatum (Pomegranate), Aspalathus linearis (Rooibos tea), Vitis vinifera (Grape), Raphanus sativus (Black radish), Allium cepa L. (Onions) | Functional food | - | - | Stress resistance | [17] |
Ferulic Acid | 9.58% at 500 µM | Beta vulgaris (Beet root), Oryza sativa (Rice), Glycine max (Soyabean), Daucus carota (Carrot), Avena sativa (Oats) | Functional food | daf-2, daf-16, hlh-30, skn-1, and hsf-1 | IIS | Healthspan extension, Stress resistance, Anti- Huntington’s disease | [107] |
Terpenoids | Mean Lifespan Extension * | Plant Source # | Ethnobotanical Use | Implicated * Genes | Pathway * | Anti-Aging Effect * | References |
---|---|---|---|---|---|---|---|
Carnosic Acid | 3% at 60 µM 8% at 120 µM 16% at 180 µM | Rosmarinus officinalis L (Rosemary) | Food, Medicinal | sod-5, hsp-16.2, hsp-16.1, sek-1, skn-1 | MAPK and HSF-1 | Anti-oxidant, Anti-inflammatory, Antibacterial, Anti-cancer, Neuroprotective | [109] |
Carnosol | 19% at 180 µM | Rosmarinus officinalis L (Rosemary) | Medicinal, Culinary | sod-3, sod-5, hsp-16.1, hsp-16.2, hsf-1, daf-16. | IIS | Antioxidant, Anticancer, Antimicrobial, Anti-inflammatory | [110] |
Beta-Caryophyllene | >22% at 50 μM | Syzygium aromaticum (Clove), Cannabis sativa (hemp), Rosmarinus officinalis L (Rosemary, Humulus lupulus (Hops) | Culinary, Beverages | pha-4, sir-2.1, hsf-1, skn-1, daf-16, gst-4, gst-7, hsp-70, sod-2, sod-3 and daf-9 | IIS | Anti-oxidant, Anti-inflammatory, anti-biotic, Anti-carcinogenic, local anesthetic | [111] |
4-Hydroxy-E-globularinin | 18% at 20 μM | Premna integrifolia (Wind killer) | Medicinal | daf-16, hsp-16.2, sod-3 | IIS | Anti-oxidant | [112] |
10-O-trans-p-Coumaroylcatalpol | 17% at 20 μM | Premna integrifolia (Wind killer) | Medicinal | daf-16 | IIS | Anti-oxidant, Anti-parkinson’s disease | [118] |
Oleanolic acid | 16% at 300 μM | Constituent of the leaves and roots of more than 120 plant species such as Olea europaea (olive tree), Viscum album (European mistletoe or common mistletoe), Aralia chinensis (Chinese Angelica Tree) | Food, Medicinal | sod-3, hsp-16.2, ctl-1, daf-16 | IIS | Anti-oxidant, Hepatoprotective, Hypoglycemic, Anti-inflammatory | [113] |
α-Tocopherol | 7% at 50 µg/mL 15% at 100 µg/mL 17% at 200 µg/mL | Sunflower seeds (Helianthus annuus), Prunus dulcis (Almonds), Corylus avellana L. (Hazelnuts), Arachis hypogaea (Pea nuts), Spinacia oleracea (Spinach), Brassica oleracea var. italica (Broccoli), Actinidia deliciosa (Kiwifruit), Mangifera indica (Mango) | Functional food | - | - | Anti-oxidant | [114] |
Withanolide-A | 29% at 5 μM | Withania Somnifera (Ashwagandha) | Medicinal | sgk-1, daf-16, sod-3, skn-1, hsf-1, gst-4, hsp-16.2 | IIS | Neuroprotective, Stress resistance | [115] |
Specioside | 15% at 25 μM | Stereospermum suaveolens (Patala) | Medicinal | sod-1, sod-2, sod-3, gst-4, gst-7, hsp-16.2, hsp-70, clt-1 | IIS | Antioxidant, Stress resistance | [87] |
Ursolic acid | 32% at 25 μM | Malus domestica (Apple peels), , rosemary, Lavandula angustifolia (lavender), Mentha piperita (Peppermint), Thymus vulgaris (thyme), Ocimum basilicum (Basil), Vaccinium myrtillus (Bilberry) | Medicinal, Culinary | jnk-1, jkk-1 | JNK-1 | Antioxidant, Stress resistance | [117] |
18α-Glycyrrhetinic acid | 17% at 20 μg/mL | Glycyrrhiza glabra (Licorice) | Medicinal, Culinary | skn-1, daf-16 | p38 MAPK | Neuroprotective | [59] |
Glaucarubinone | 1.9 days at 100 nM | Simaroubaceae spp. (Amargo, Bitterwood, Marupa, or Quassia) | Ornamental, Medicinal | - | - | Anti-oxidant Others Antimalarial | [71] |
Fucoxanthin | 14% at 5 μM | Undaria pinnatifida (Wakame), Hijikia fusiformis (Hijiki) | Medicinal | - | - | Antioxidant, Stress resistance | [119] |
Catalpol | 28% at 25 μM | Rehmannia glutinosa (Chinese foxglove) | Medicinal plant | mek-1, daf-2, age-1, daf-16, and skn-1 | IIS | Anti-oxidant, Anti- Alzheimer’s, Anti-Parkinson’s, Anti-stroke Others Anticancer, Anti-diabetes | [120] |
Ferulsinaic acid | 20% at 100 µM | Ferula communis (Giant Fennel) | Medicinal, Culinary | - | - | Anti-oxidant | [121] |
Verminoside | 20% at 25 µM | Stereospermum suaveolens (Patala) | Medicinal | daf-16 | - | Antioxidant, Stress resistance | [116] |
Dehydroabietic acid | 15% at 10 µM | Pinus densiflora (Japanese red pine), Pinus sylvestris (Scots pine), Abies grandis(Grand fir) | Medicinal | sir-2.1 | - | Healthspan extension | [122] |
Secoisolariciresinol Diglucoside | 22% at 500 µM | Linum usitatissimum (Flaxseed) | Food, Medicine | daf-16, hsf-1, nhr-80, daf-12, glp-1, eat-2, and aak-2. | IIS | Anti-oxidant, Anti-Alzheimer’s, Anti-Parkinson’s | [123] |
Alkaloids | Mean Lifespan Extension * | Plant Source # | Ethnobotanical Use | Implicated * Genes | Pathway * | Anti-Aging Effect * | References |
---|---|---|---|---|---|---|---|
Reserpine | 31% at 30 μM | Rauwolfia serpentine (Indian snakeroot), Rauwolfia vomitoria (the poison devil’s-pepper) | Medicinal | tph-1 (serotonin) | Serotonin pathway | Anti-oxidant, Antipsychotic, Anti-hypertensive | [126] |
Tomatidine | 7% at 25 μM | Solanum lycopersicum (Unripe tomato fruits, leaves and stems) | Medicinal, Functional food | skn-1 | IIS | Anti-inflammatory, Anti- tumorigenic, Lipid-lowering activities | [129] |
Spermidine | 18% at 0.2 mM | Glycine max (soy bean), Pisum sativum (green peas), Zea mays (Maize corn) | Functional food | - | - | Enhanced autophagy | [130] |
15% at 0.2 mM | - | - | [131] | ||||
Caffeine | 29% at 0.1% w/v | Theobroma cacao (Cocoa beans), Cola acuminata (kola nuts), Camellia sinensis (Tea leaves), Coffea arabica (coffee beans) | Beverages, Medicinal | daf-16 | IIS | Antioxidant, Stress resistance, Neuroprotective, Anti-Alzheimer’s | [84] |
16% at 10 mM | daf-16 | IIS | [3] | ||||
80% at 5 mM | daf-2 | IIS | [128] | ||||
31.9% at 5 mM | skn-1, gst-4 | IIS | [127] | ||||
Theophylline | 25% at 5 mM | Camellia sinensis (Tea), Coffea arabica (Coffea) | Beverages, Medicinal | skn-1, gst-4 | IIS | Antioxidant, Stress resistance | [127] |
Chlorophyll | 23% at 10 µg/mL 25% at 40 µg/mL | Spinacia oleracea (Spinach) | Food, Medicinal | daf-16, sod-3 | IIS | Antioxidant | [132] |
Pyrroloquinoline quinone | 33% at 0.5 mM | Actinidia deliciosa (Kiwifruit), Petroselinum crispum (Parsley), Capsicum annuum (Green bell pepper), Carica papaya (Pawpaw) | Functional food, Culinary | daf-16,skn-1, sod-3, hsp 16.2, gst-1 and gst-10 | IIS | Antioxidant, Stress resistance | [133] |
Calycosin | 21% at 200 µM | Astragalus mongholicus Bunge (membranous milk-vetch) | Medicinal | daf-16, hsp-16.2, ctl-1, sod-3 | IIS | Antioxidant, Stress resistance | [134] |
Plant Source # | Mean Lifespan Extension * | Ethnobotanical Use | Implicated Genes * | Pathway * | Anti-Aging Effect * | References |
---|---|---|---|---|---|---|
Endopleura uchi (Uxi) | 33% at 300 µg/mL | Medicinal | daf-16, hsp-16.2 and sod-3 | IIS | Antioxidant, Stress resistance, Anti-Huntington’s disease | [135] |
Calycophyllum spruceanum (capirona) | 16% at 300 µg/mL | Medicinal | daf-16 | IIS | Antioxidant, Stress resistance, Healthspan extension | [136] |
Caesalpinia mimosoides (Pansi) | 4% at 50 µg/mL | Food vegetable | daf-16, sod-3, gst-4 | IIS | Antioxidant, Stress resistance | [137] |
Eugenia uniflora (Surinam cherry) | Significant increase at 500 µg/mL | Food, Medicinal | daf-16, hsp-16.2 and sod-3 | IIS | Antioxidant, Stress resistance, Healthspan extension | [138] |
Anacardium occidentale (Cashew) | 20% by 50 μg/mL | Medicinal, Functional food | daf-16, skn-1, sod-3, gst-4 | IIS | Antioxidant, Stress Resistance, Healthspan extension | [139] |
Glochidion zeylanicum (Umbrella Cheese) | 10% at 100 µg/mL | Medicinal, Food | daf-16, skn-1, sod-3, gst-4 | IIS | Antioxidant, Stress Resistance, Healthspan extension | [140] |
Hibiscus sabdariffa L. (Roselle) | 24% at 1 mg/mL | Medicinal, Beverage, Food supplement | daf-16, skn-1 | IIS | Antioxidant, Stress Resistance, Anti-Neurodegenerative | [141] |
Polyherbal extract of Berberis aristata (Indian barberry); Emblica officinalis (Indian gooseberry or amla); Cyperus rotundus (Purple Nutsedge); Terminalia chebula (gall nut); Cedrus deodara(Himalayan cedar); Terminalia bellirica (beleric myrobalan) | 16% at 0.01 µg/mL | Medicinal | daf-16, daf-2, skn-1, sod-3 and gst-4 | IIS | Antioxidant, Stress Resistance, Anti-Neurodegenerative | [142] |
Betula utilis (Himalayan Silver Birch) | 35.99 % at 50 μg/mL | Medicinal | daf-16, hsf-1, skn-1, sod-3 and gst-4. | IIS | Antioxidant, Healthspan extension | [143] |
Citrus sinensis (Orange extracts) | 10.5%, 18.0%, and 26.2% at 100, 200, and 400 mg/mL, respectively | Functional food | daf-16, sod-3, gst-4, sek-1, and skn-1 | IIS | Antioxidant, Healthspan extension | [35] |
Cuscuta chinensis (Chinese Dodder) | 24% at 30 µg/mL | Medicinal | hsp-16.1 and hsp-12.6 | IIS | Stress Resistance, Healthspan extension | [144] |
Eucommia ulmoides (Hardy Rubber Tree) | 9% at 30 µg/mL | - | - | Stress resistance | [144] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoro, N.O.; Odiba, A.S.; Osadebe, P.O.; Omeje, E.O.; Liao, G.; Fang, W.; Jin, C.; Wang, B. Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans. Molecules 2021, 26, 7323. https://doi.org/10.3390/molecules26237323
Okoro NO, Odiba AS, Osadebe PO, Omeje EO, Liao G, Fang W, Jin C, Wang B. Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans. Molecules. 2021; 26(23):7323. https://doi.org/10.3390/molecules26237323
Chicago/Turabian StyleOkoro, Nkwachukwu Oziamara, Arome Solomon Odiba, Patience Ogoamaka Osadebe, Edwin Ogechukwu Omeje, Guiyan Liao, Wenxia Fang, Cheng Jin, and Bin Wang. 2021. "Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans" Molecules 26, no. 23: 7323. https://doi.org/10.3390/molecules26237323
APA StyleOkoro, N. O., Odiba, A. S., Osadebe, P. O., Omeje, E. O., Liao, G., Fang, W., Jin, C., & Wang, B. (2021). Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans. Molecules, 26(23), 7323. https://doi.org/10.3390/molecules26237323