Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus
Abstract
1. Introduction
2. Results and Discussion
2.1. Physicochemical Properties of Fermented Milk
The pH Value and Total Acidity
2.2. The Vitamin C
2.3. Syneresis
2.4. Color
2.5. Parameters of Texture
2.6. Microbiology Analysis
2.7. Organoleptic Evaluation
3. Material and Methods
3.1. Materials
Preliminary Studies
3.2. Preparation of Fermented Milk
- K—control milk;
- AC—fermented milk with acerola;
- DR—fermented milk with rosehip;
- VC—fermented milk with L(+) ascorbic acid.
3.3. Determination of Acidity
3.4. Microbiological Analysis
3.5. Syneresis
3.6. Color of Fermented Milk
3.7. Determination of Vitamin C Content
3.8. Parameters of Texture
3.9. Organoleptic Evaluation
- Milky-creamy taste: the taste stimulated by milk powder.
- Sour taste: the taste stimulated by lactic acid.
- Taste of additives: the taste stimulated by added vitamin C depending on the source of origin.
- Sweet taste: the taste stimulated by sucrose.
- Off-taste: an unidentified taste that is not characteristic.
- Fermentation odor: the intensity of odor associated with sour milk, i.e., lactic acid.
- Odor of additives: odor characteristic stimulated by added vitamin C depending on the source of origin.
- Off-odor: unidentified odor that is not characteristic.
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cremonini, F.; Di Caro, S.; Nista, E.C.; Bartolozzi, F.; Capelli, G.; Gasbarrini, G.; Gasbarrini, A. Meta-analysis: The effect of probiotic administration on antibiotic-associated diarrhea. Aliment. Pharmacol. Ther. 2002, 16, 1461–1467. [Google Scholar] [CrossRef]
- Johnston, B.C.; Supina, A.L.; Ospina, M.; Vohra, S. Probiotics for the prevention of pediatric antibotic-associated diarrhea. Cochrane Database Syst. Rev. 2007, 18, CD004827. [Google Scholar] [CrossRef]
- Lee, J.; Seto, D.; Bielory, L. Meta-analysis of clinical trials of probiotics for prevention and treatment of pedatric atopic dermatitis. J. Allergy Clin. Immunol. 2008, 121, 116–121. [Google Scholar] [CrossRef]
- Oleksy-Sobczak, M.; Klewicka, E.; Piekarska-Radzik, L. Exopolysaccharides production by Lactobacillus rhamnosus strains–Optimization of synthesis and extraction conditions. LWT-Food Sci. Technol. 2020, 122, 109055. [Google Scholar] [CrossRef]
- Sharareh, H.; Soltani, H.; Reid, G. Growth and survival of Lactobacillus reuteri RC-14 and Lactobacillus rhamnosus GR-1 in yogurt for use as a functional food. Innov. Food Sci. Emerg. Technol. 2009, 10, 293–296. [Google Scholar] [CrossRef]
- Jyoti, B.D.; Suresh, A.K.; Venkatesh, K.V. Effect of preculturing conditions on growth of Lactobacillus rhamnosus, on medium containing glucose and citrate. Microbiol. Res. 2004, 159, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Innocente, N.; Biasutti, M.; Rita, F.; Brichese, R.; Comi, G.; Iacumin, L. Effect of indigenous Lactobacillus rhamnosus isolated from bovine milk on microbiological characteristics and aromatic profile of traditional yogurt, Lebensm. Wiss. Technol. 2016, 66, 158–164. [Google Scholar] [CrossRef]
- Kamal, R.M.; Alnakip, M.E.; Abd El Aal, S.F.; Bayoumi, M.A. Bio-controlling capability of probiotic strain Lactobacillus rhamnosus against some common foodborne pathogens in yoghurt. Int. Dairy J. 2018, 85, 1–7. [Google Scholar] [CrossRef]
- Maćkowiak, K.; Torliński, L. Współczesne poglądy na rolę witaminy C w filozjologii i patologii człowieka. Contemporary view on the role of vitamin c in human physiology and pathology. Now. Lek. 2007, 76, 349–356. (In Polish) [Google Scholar]
- Miktus, M. Witaminy część II: Ogólna charakterystyka witaminy C. Vitamins part II: General characteristics of vitamin C. Zyw. i Zdrowie. 2000, 3, 1–4. (In Polish) [Google Scholar]
- Kleszczewska, E. Biologiczne znaczenie witaminy C ze szczególnym uwzględnieniem jej znaczenia w metabolizmie skóry. Biological role of vitamin C and importance in the skin metabolism. Pol. Merkur. Lek. 2007, 138, 462–465. (In Polish) [Google Scholar]
- Zhang, P.Y.; Xu, X.; Li, X.C. Cardiovascular diseases: Oxidative damage and antioxidant protection. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3091–3096. [Google Scholar]
- Prakash, A.; Baskaran, R. Acerola, an untapped functional superfruit: A review on latest frontiers. J. Food Sci. Technol. 2018, 55, 3373–3384. [Google Scholar] [CrossRef]
- Marques, T.R.; Caetano, A.A.; Simão, A.A.; Castro, F.C.D.O.; Ramos, V.D.O.; Corrêa, A.D. Methanolic extract of Malpighia emarginata bagasse: Phenolic compounds and inhibitory potential on digestive enzymes. Rev. Bras. Farmacogn. 2016, 26, 191–196. [Google Scholar] [CrossRef]
- Hanamura, T.; Uchida, E.; Aoki, H. Changes of the composition in acerola (Malpighia emarginata DC.) fruit in relation to cultivar, growing region and maturity. J. Sci. Food Agric. 2008, 88, 1813–1820. [Google Scholar] [CrossRef]
- Hanamura, T.; Uchida, E.; Aoki, H. Skin-lightening effect of a polyphenol extract from Acerola (Malpighia emarginata DC.) fruit on UV-induced pigmentation. Biosci. Biotechnol. Biochem. 2008, 72, 3211–3218. [Google Scholar] [CrossRef] [PubMed]
- Righetto, A.M.; Netto, F.M.; Carraro, F. Chemical composition and antioxidant activity of juices from mature and immature acerola (Malpighia emarginata DC). Food Sci. Technol. Int. 2005, 11, 315–321. [Google Scholar] [CrossRef]
- Vendramini, A.L.; Trugo, L.C. Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food Chem. 2000, 71, 195–198. [Google Scholar] [CrossRef]
- Mármol, I.; Sánchez-de-Diego, C.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Therapeutic Applications of Rose Hips from Different Rosa Species. Int. J. Mol. Sci. 2017, 18, 1137. [Google Scholar] [CrossRef]
- Hvattum, E. Determination of phenolic compounds in rose hip (Rosa canina) using liquid chromatography soupled to electrospray ionization tandem mass spectrometry and diode-array detection. Rapid Commun. Mass Spetrometry 2002, 16, 655–662. [Google Scholar] [CrossRef]
- Adamczak, A.; Buchwald, W.; Zieliński, J.; Mielcarek, S. Flavonoid and organic acid content in rose hips (Rosa, L., sect. Caninae DC. EM. Christ.). Acta Biol. Crac. Ser. Bot. 2012, 54, 105–112. [Google Scholar] [CrossRef]
- Nojavan, S.; Khalilian, F.; Kiaie, F.M.; Rahimi, A.; Arabanian, A.; Chalavi, S. Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. J. Food Compos. Anal. 2008, 21, 300–305. [Google Scholar] [CrossRef]
- Ball, G.F.M. Vitamins in Foods/Analysis, Bioavailability, and Stability; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2006. [Google Scholar]
- Linares, D.; Michaud, P.; Delort, A.M.; Traïkia, M.; Warrand, J. Catabolism of L-ascorbate by Lactobacillus rhamnosus GG. J. Agric. Food Chem. 2011, 59, 4140–4147. [Google Scholar] [CrossRef]
- Pérez-Vicente, A.; Gil-Izquierdo, A.; García-Viguera, C. In vitro gastrointestinal digestion study of pomegranate juice phenolic compounds, anthocyanins, and vitamin C. J. Agric. Food Chem. 2002, 50, 2308–2312. [Google Scholar] [CrossRef]
- Yuan, J.P.; Chen, F. Degradation of ascorbic acid in aqueous solution. J. Agric. Food Chem. 1998, 46, 5078–5082. [Google Scholar] [CrossRef]
- Budsławski, J. Zarys chemii mleka. Outline of milk chemistry Państwowe Wydawnictwo Rolnicze i Leśne; PWRiL: Warszawa, Poland, 1971. (In Polish) [Google Scholar]
- Klupsch, H.J.; Verlag, T. Acid Milk Products, Milk Beverage and Desserts; Verlag Th. Mann: Gelsenkirchen–Buer, Germany, 1992. [Google Scholar]
- Ogah, O.; Watkins, C.S.; Ubi, B.E.; Oraguzie, N.C. Phenolic compounds in Rosaceae fruit and nut crops. J. Agric. Food Chem. 2014, 62, 9369–9386. [Google Scholar] [CrossRef] [PubMed]
- Demir, N.; Yildiz, O.; Alpaslan, M.; Hayaloglu, A. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT-Food Sci. Technol. 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Elmastas, M.; Demir, A.; Genc, N.; Dölek, Ü.; Günes, M. Changes in flavonoid and phenolic acid contents in some Rosa species during ripening. Food Chem. 2017, 235, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Nadpal, J.D.; Lesjak, M.M.; Šibul, F.S.; Anackov, G.T.; Cetojevic’-Simin, D.D.; Mimica-Dukic, N.M.; Beara, I.N. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds. Food Chem. 2016, 192, 907–914. [Google Scholar] [CrossRef]
- Tumbas, V.T.; Canadanovic-Brunet, J.M.; Cetojevic-Simin, D.D.; Cetkovic, G.S.; Ethilas, S.M.; Gille, L. Effect of rosehip (Rosa canina L.) phytochemicals on stable free radicals and human cancer cells. J. Sci. Food Agric. 2012, 92, 1273–1281. [Google Scholar] [CrossRef]
- Hosni, K.; Chrif, R.; Zahed, N.; Abid, I.; Medfei, W.; Sebei, H.; Brahim, N.B. Fatty acid and phenolic constituents of leaves, flowers and fruits of tunisian dog rose (Rosa canina L.). Riv. Ital. Sostanze Grasse 2010, 87, 117–123. [Google Scholar]
- Türkben, C.; Uylaşer, V.; İncedayı, B.; Çelikkol, I. Effects of different maturity periods and processes on nutritional components of rose hip (Rosa canina L.). J. Food Agric. Environ. 2010, 8, 26–30. [Google Scholar]
- Olsson, M.E.; Gustavsson, K.E.; Andersson, S.; Nilsson, A.; Duan, R.D. Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agric. Food Chem. 2004, 52, 7264–7271. [Google Scholar] [CrossRef] [PubMed]
- Ilic, D.B.; Ashoor, S.H. Stability of Vitamins A and C in Fortified Yogurt. J. Dairy Sci. 1988, 71, 1492–1498. [Google Scholar] [CrossRef]
- Dave, R.I.; Shah, N.P. Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. Int. Dairy J. 1997, 7, 435–443. [Google Scholar] [CrossRef]
- Graulet, B. Ruminant milk: A source of vitamins in human nutrition. Anim. Front. 2014, 4, 24–30. [Google Scholar] [CrossRef][Green Version]
- Rani, R.; Dharaiya, C.N.; Unnikrishnan, V.; Singh, B. Factors Affecting Syneresis from Yoghurt for Preparation of Chakka. Indian J. Dairy Sci. 2012, 65, 135–140. [Google Scholar]
- Peng, Y.; Horne, D.S.; Lucey, J.A. Impact of preacidification of milk and fermentation time on the properties of yogurt. J. Dairy Sci. 2009, 92, 2977–2990. [Google Scholar] [CrossRef]
- Oktavia, H.; Radiati, L.E.; Rosyidi, D. Evaluation of Physicochemical Properties and Exopolysaccharides Production of Single Culture and Mixed Culture in Set Yoghurt. J-PAL 2016, 7, 52–59. [Google Scholar]
- Sun, J.; Chen, H.; Qiao, Y.; Liu, G.; Leng, C.; Zhang, Y.; Lv, X.; Feng, Z. The nutrient requirements of Lactobacillus rhamnosus GG and their application to fermented milk. J. Dairy Sci. 2019, 102, 5971–5978. [Google Scholar] [CrossRef]
- Kaszuba, M.; Viapiana, A.; Wesołowski, M. Dzika róża (Rosa canina L.) jako źródło witamin i przeciwutleniaczy w diecie człowieka. Rose hip (Rosa canina L.) as a vitamin and antioxidants source in human diet. Pol. Tow. Farm. 2019, 75, 97–102. (In Polish) [Google Scholar] [CrossRef]
- Belwal, T.; Devkota, H.P.; Hassan, H.A.; Ahluwalia, S.; Ramadan, M.F.; Mocan, A.; Atanasov, A.G. Phytopharmacology of Acerola (Malpighia spp.) and its potential as functional food. Trends Food Sci. Technol. 2018, 74, 99–106. [Google Scholar] [CrossRef]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef]
- Damin, M.R.; Alcântara, M.R.; Nunes, A.P.; Oliveira, M.N. Effects of milk supplementation with skim milk powder, whey protein concentrate and sodium caseinate on acidification kinetics, rheological properties and structure of nonfat stirred yogurt. LWT-Food Sci. Technol. 2009, 42, 1744–1750. [Google Scholar] [CrossRef]
- Macit, E.; Bakirci, İ. Effect of different stablizers on quality characteristics of the set-type yoğurt. Afr. J. Biotechnol. 2017, 16, 2142–2151. [Google Scholar] [CrossRef]
- Bourne, M. Food Texture and Viscosity Concept and Measurement; Academic Press: New York, NY, USA, 2002. [Google Scholar]
- Mousavi, M.; Heshmati, A.; Daraei Garmakhany, A.; Vahidinia, A.; Taheri, M. Texture and sensory characterization of functional yogurt supplemented with flaxseed during cold storage. Food Sci. Nutr. 2019, 7, 907–917. [Google Scholar] [CrossRef]
- Ognyanova, M.; Remoroza, C.; Schols, H.A.; Georgiev, Y.; Kratchanova, M.; Kratchanov, C. Isolation and structure elucidation of pectic polysaccharide from rose hip fruits (Rosa canina L.). Carbohydr. Polym. 2016, 151, 803–811. [Google Scholar] [CrossRef]
- Albersheim, P.; Darvill, A.G.; O’Neill, M.A.; Schols, H.A.; Voragen, A.G.J. An Hypothesis: The Same Six Polysaccharides are Components of the Primary Cell Walls of All Higher Plants; Visser, J., Voragen, A.G.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; pp. 47–55. [Google Scholar]
- Sah, B.N.P.; Vasiljevic, T.; McKechnie, S.; Donkor, O.N. Physicochemical, textural and rheological properties of probiotic yogurt fortified with fibre-rich pineapple peel powder during refrigerated storage. LWT-Food Sci. Technol. 2016, 65, 978–986. [Google Scholar] [CrossRef]
- Tudorica, C.M.; Jones, T.E.R.; Kuri, V.; Brennan, C.S. The effects of refined barley beta-glucan on the physico-structural properties of low-fat dairy products: Curd yield, microstructure, texture and rheology. J. Sci. Food Agric. 2004, 84, 1159–1169. [Google Scholar] [CrossRef]
- Lee, W.J.; Lucey, J.A. Formation and physical properties of yogurt. Asian-Australas. J. Anim. Sci. 2010, 23, 1127–1136. [Google Scholar] [CrossRef]
- Santillan-Urquiza, E.; Mendez-Rojas, M.A.; Velez-Ruiz, J.F. Fortification of yogurt with nano and micro sized calcium, iron and zinc, effect on the physicochemical and rheological properties. LWT-Food Sci. Technol. 2017, 80, 462–469. [Google Scholar] [CrossRef]
- Tan, P.Y.; Tan, T.B.; Chang, H.W.; Tey, B.T.; Chan, E.S.; Lai, O.M.; Baharin, B.S.; Nehdi, I.A.; Tan, C.P. Effects of storage and yogurt matrix on the stability of tocotrienols encapsulated in chitosan-alginate microcapsules. Food Chem. 2018, 241, 79–85. [Google Scholar] [CrossRef]
- Curti, C.A.; Vidal, P.M.; Curti, R.N.; Ramon, A.N. Chemical characterization, texture and consumer acceptability of yogurts supplemented with quinoa flour. Food Sci. Technol. 2017, 37, 627–631. [Google Scholar] [CrossRef]
- Choi, S.H.; Lim, Y.S. Viability of Probiotic Bacteria in Yogurt Supplemented with Enzyme-Bioconverted Ginseng, Ascorbic Acid, and Yeast Extract. J. Dairy Sci. Biotechnol. 2019, 37, 57–68. [Google Scholar] [CrossRef]
- Collins, F.L.; Rios-Arce, N.D.; Schepper, J.D.; Parameswaran, N.; McCabe, L.R. The Potential of Probiotics as a Therapy for Osteoporosis. Microbiol. Spectr. 2017, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Talwalkar, A.; Kailasapathy, K. A review of oxygen toxicity in probiotic yogurts: Influence on the survival of probiotic bacteria and protective techniques. Compr. Rev. Food Sci. Food Saf. 2004, 3, 117–124. [Google Scholar] [CrossRef]
- Champagne, C.P.; . Gardner, N.J.; Roy, D. Challenges in the Addition of Probiotic Cultures to Foods. Crit. Rev. Food Sci. Nutr. 2005, 45, 61–84. [Google Scholar] [CrossRef]
- Szajnar, K.; Znamirowska, A.; Kuźniar, P. Sensory and textural properties of fermented milk with viability of Lactobacillus rhamnosus and Bifidobacterium animalis ssp. lactis Bb-12 and increased calcium concentration. Int. J. Food Prop. 2020, 23, 582–598. [Google Scholar] [CrossRef]
- Jemaa, M.B.; Falleh, H.; Neves, M.A.; Isoda, H.; Nakajima, M.; Ksouri, R. Quality Preservation of Deliberately Contaminated Milk Using Thyme Free and Nanoemulsified Essential Oils. Food Chem. 2017, 217, 726–734. [Google Scholar] [CrossRef]
- Lima, K.G.; Kruger, M.F.; Behrens, J.; Destro, M.T.; Landgraf, M.; Franco, B.D.G. Evaluation of Culture Media for Enumeration of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium animalis in the presence of Lactobacillus delbrueckii subsp bulgaricus and Streptococcus thermophilus. LWT-Food Sci. Technol. 2009, 42, 491–495. [Google Scholar] [CrossRef]
- Szajnar, K.; Znamirowska, A.; Kalicka, D. Effects of various magnesium salts for the production of milk fermented by Bifidobacterium animalis ssp. lactis Bb-12. Int. J. Food Prop. 2019, 22, 1087–1099. [Google Scholar] [CrossRef]
- Szajnar, K.; Pawlos, M.; Znamirowska, A. The Effect of the Addition of Chokeberry Fiber on the Quality of Sheep’s Milk Fermented by Lactobacillus rhamnosus and Lactobacillus acidophilus. Int. J. Food Sci. 2021, 1, 1–9. [Google Scholar] [CrossRef] [PubMed]
- PN-A-04019:1998. In Produkty Spożywcze—Oznaczanie Zawartości Witaminy C. Food Products—Determination of Vitamin C; Polish Committee for Standardization: Warsaw, Poland, 1998. (In Polish)
- Baryłko-Pikielna, N.; Matuszewska, I. Sensoryczne Badania Żywności. Podstawy—Metody—Zastosowania. Sensory Food Testing. Fundamentals-Methods-Applications. Wyd. Nauk. Pttż. Krakow. 2014, 66, 150–157. (In Polish) [Google Scholar]
- PN-ISO 22935-2:2013-07. In Milk and Milk Products—Sensory Analysis—Part. 2: Recommended Methods for Sensory Evaluation; Polish Committee for Standardization: Warsaw, Poland, 2013. (In Polish)
Properties | Storage Time | K 1 | DR 2 | AC 3 | VC 4 | |
---|---|---|---|---|---|---|
pH | 0 | 6.65 cB ± 0.03 | 5.33 aC ± 0.11 | 6.52 bC ± 0.06 | 6.26 dC ± 0.02 | |
1 | 4.65 bA ± 0.30 | 4.86 cB ± 0.02 | 4.38 aB ± 0.01 | 4.76 bB ± 0.05 | ||
21 | 4.39 aA ± 0.09 | 4.70 cA ± 0.02 | 4.30 aA ± 0.01 | 4.42 bA± 0.01 | ||
Total acidity, g lactic acid L−1 | 1 | 0.72 bA ± 0.02 | 0.69 bA ± 0.01 | 0.83 cA ± 0.05 | 0.65 aA ± 0.04 | |
21 | 0.74 aA ± 0.14 | 0.70 aA ± 0.01 | 0.75 aA ± 0.07 | 0.72 aA ± 0.04 | ||
Vitamin C, mg 100 g−1 | 0 | 10.58 aC ± 0.36 | 43.33 bC ± 0.20 | 43.06 bC ± 0.30 | 43.72 bB ± 0.30 | |
1 | 9.52 aB ± 0.26 | 42.30 bB ± 0.20 | 42.00 bB ± 0.10 | 43.06 cB ± 0.39 | ||
21 | 5.10 aA ± 0.51 | 40.72 bA ± 0.11 | 40.30 bA ± 0.21 | 40.22 bA ± 0.10 | ||
Syneresis, % | 1 | 64.23 bA ± 1.18 | 61.93 aA ± 1.05 | 72.53 cB ± 0.59 | 61.37 aA ± 1.29 | |
21 | 65.86 aA ± 0.66 | 60.20 cA ± 0.38 | 64.05 bA ± 0.34 | 63.19 bB ± 0.96 | ||
Color | L* | 1 | 94.96 cA ± 1.85 | 58.02 aB ± 1.66 | 86.95 bB ± 1.21 | 95.04 cA ± 1.46 |
21 | 90.60 aA ± 4.26 | 51.42 aA ± 2.52 | 82.38 bA ± 0.22 | 94.20 dA ± 0.42 | ||
a* | 1 | −1.81 aA ± 0.29 | 3.88 cA ± 0.30 | 1.54 bA ± 0.25 | −1.55 aB ± 0.18 | |
21 | −1.89 aA ± 0.35 | 6.37 dB ± 0.27 | 1.69 cA ± 0.33 | −1.32 bA ± 0.02 | ||
b* | 1 | 8.54 aA ± 0.97 | 17.74 cA ± 1.21 | 9.06 bA ± 0.55 | 6.89 aA ± 0.47 | |
21 | 8.12 bA ± 0.21 | 19.24 dA ± 0.74 | 10.20 cA ± 0.89 | 6.84 aA ± 0.12 | ||
C | 1 | 8.76 aA ± 1.98 | 18.16 bA ± 1.21 | 9.19 aA ± 1.57 | 7.06 aA ± 0.47 | |
21 | 8.39 bA ± 0.24 | 20.56 dB ± 0.04 | 10.35 cA ± 0.91 | 6.96 aA ± 0.11 | ||
h0 | 1 | 102.30 cA ± 1.34 | 77.67 aB ± 0.31 | 99.72 bA ± 0.42 | 102.72 cA ± 1.52 | |
21 | 103.37 cA ± 0.28 | 72.07 aA ± 0.99 | 99.42 bA ± 0.88 | 100.92 bA ± 0.29 |
Properties | Storage Time p-Values | Source of Vitamin C p-Values | Storage Time × Source of Vitamin C p-Values |
---|---|---|---|
Vitamin C | 0.0018↑ | 0.1010 n.s. | 0.0510 n.s. |
pH | 0.0003↑ | 0.0003↑ | 0.0138↑ |
Total acidity | 0.9937 n.s. | 0.0139↑ | 0.5691 n.s. |
Syneresis | 0.0073↑ | 0.0262↑ | 0.0065↑ |
L* | 0.0907↑ | 0.0000↑ | 0.0091↑ |
a* | 0.0000↑ | 0.0000↑ | 0.0000↑ |
b* | 0.0907 n.s. | 0.0000↑ | 0.0863 n.s. |
C | 0.0719 n.s. | 0.0000↑ | 0.0482 |
h0 | 0.0503 n.s. | 0.0000↑ | 0.0512 n.s. |
Hardness | 0.7351 n.s. | 0.0000↑ | 0.8059 n.s. |
Adhesiveness | 0.6535 n.s. | 0.1805 n.s. | 0.7476↑ |
Cohesiveness | 0.3739 n.s. | 0.0860 n.s. | 0.9642 n.s. |
Springiness | 0.4008 n.s. | 0.0514 n.s. | 0.7199 n.s. |
Consistency | 0.0002↑ | 0.0006↑ | 0.0003↑ |
Milky-creamy taste | 0.0004↑ | 0.0126↑ | 0.0261↑ |
Sour taste | 0.0003↑ | 0.1947 n.s. | 0.1588 n.s. |
Taste of additives | 0.0824 n.s. | 0.0340↑ | 0.4515 n.s. |
Sweet taste | 0.0321↑ | 0.0451↑ | 0.0472↑ |
Off-taste | 0.8451 n.s. | 0.7142 n.s. | 0.9411 n.s. |
Fermentation odor | 0.0295↑ | 0.0140↑ | 0.0092↑ |
Odor of additives | 0.7419 n.s | 0.0121↑ | 0.8134 n.s. |
Off-odor | 0.6912 n.s. | 0.4120 n.s. | 0.0529 n.s. |
L. rhamnosus | 0.0228↑ | 0.0362↑ | 0.0014↑ |
Properties | Storage Time | K 1 | DR 2 | AC 3 | VC 4 |
---|---|---|---|---|---|
Hardness, N | 1 | 0.91 aA ± 0.52 | 2.29 bA ± 0.18 | 1.37 bA ± 0.20 | 0.78 aA ± 0.05 |
21 | 0.92 aA ± 0.45 | 1.93 bA ± 0.27 | 1.51 bA ± 0.04 | 0.78 aA ± 0.13 | |
Adhesiveness, mJ | 1 | 1.10 aA ± 0.95 | 1.73 bB ± 0.19 | 1.77 bA ± 0.21 | 1.70 bB ± 0.26 |
21 | 1.04 bA ± 0.17 | 1.13 bA ± 0.13 | 1.83 cA ± 0.05 | 0.67 aA ± 0.06 | |
Cohesiveness | 1 | 0.63 aA ± 0.19 | 0.55 aA ± 0.21 | 0.46 aA ± 0.02 | 0.63 aA ± 0.22 |
21 | 0.56 aA ± 0.09 | 0.50 aA ± 0.07 | 0.44 aA ± 0.12 | 0.59 aA ± 0.06 | |
Springiness, mm | 1 | 13.64 aA ± 0.54 | 14.74 aA ± 0.67 | 13.45 aA ± 0.27 | 13.94 aA ± 0.53 |
21 | 13.41 aA ± 0.75 | 14.02 aA ± 0.56 | 13.55aA ± 0.35 | 13.93aA ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znamirowska, A.; Szajnar, K.; Pawlos, M. Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus. Molecules 2021, 26, 6187. https://doi.org/10.3390/molecules26206187
Znamirowska A, Szajnar K, Pawlos M. Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus. Molecules. 2021; 26(20):6187. https://doi.org/10.3390/molecules26206187
Chicago/Turabian StyleZnamirowska, Agata, Katarzyna Szajnar, and Małgorzata Pawlos. 2021. "Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus" Molecules 26, no. 20: 6187. https://doi.org/10.3390/molecules26206187
APA StyleZnamirowska, A., Szajnar, K., & Pawlos, M. (2021). Effect of Vitamin C Source on Its Stability during Storage and the Properties of Milk Fermented by Lactobacillus rhamnosus. Molecules, 26(20), 6187. https://doi.org/10.3390/molecules26206187