Broadband and Highly Directional Visible Light Scattering by Laser-Splashed Lossless TiO2 Nanoparticles
Abstract
1. Introduction
2. Results and Discussions
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Hillenbrand, R.; Taubner, T.; Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 2002, 418, 159–162. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Deng, Z.-L.; Cao, Y.; Hu, D.; Xu, Y.; Cai, B.; Jin, L.; Bao, Y.; Wang, X. Angular Momentum-Dependent Transmission of Circularly Polarized Vortex Beams Through a Plasmonic Coaxial Nanoring. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Qian, X.; Peng, X.-H.; Ansari, O.D.; Yin-Goen, Q.; Chen, G.Z.; Shin, D.M.; Yang, L.; Young, A.N.; Wang, M.D.; Nie, S. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 2008, 26, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lu, Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc. 2006, 1, 246–252. [Google Scholar] [CrossRef]
- Chen, L.M.; Liu, Y.N. Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: Effect of metal ions. ACS Appl. Mater. Interfaces 2011, 3, 3091–3096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, J.; Shi, L.; Chen, S.; Feng, Z.; Lu, H.; Gu, M.; Li, X. Extremely Polarized and Efficient Hot Electron Intraband Luminescence from Aluminum Nanostructures for Nonlinear Optical Encoding. Laser Photonics Rev. 2021, 15, 2000339. [Google Scholar] [CrossRef]
- Zhu, Z.; Shi, L.; Chen, S.; Han, J.; Zhang, H.; Li, M.; Hao, H.; Luo, J.; Wang, X.; Gu, B.; et al. Enhanced second harmonic emission with simultaneous polarization state tuning by aluminum metal-insulator-metal cross nanostructures. Opt. Express 2019, 27, 30909–30918. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ouyang, Z.; Stokes, N.; Jia, B.; Shi, Z.; Gu, M. Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Appl. Phys. Lett. 2012, 100, 151101. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, B.; Gu, M. Biomimetic and plasmonic hybrid light trapping for highly efficient ultrathin crystalline silicon solar cells. Opt. Express 2016, 24, A506. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Cai, B.; Luan, H.; Zhang, Q.; Gu, M. Photonics Empowered Passive Radiative Cooling. Adv. Photonics Res. 2021, 2, 2000106. [Google Scholar] [CrossRef]
- Liberal, I.; Ederra, I.; Gonzalo, R.; Ziolkowski, R. Induction Theorem Analysis of Resonant Nanoparticles: Design of a Huygens Source Nanoparticle Laser. Phys. Rev. Appl. 2014, 1, 044002. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Chen, S.; Lü, H.; Chen, K.; Cao, Y.; Miroshnichenko, A.E.; Gu, M.; Li, X. Ultra-Broadband Directional Scattering by Colloidally Lithographed High-Index Mie Resonant Oligomers and Their Energy-Harvesting Applications. ACS Appl. Mater. Interfaces 2018, 10, 16776–16782. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Hu, D.; Xu, Y.; Wang, S.; Qin, F.; Cao, Y.; Guan, B.; Miroshnichenko, A.; Gu, M.; et al. Coloring solar cells with simultaneously high efficiency by low-index dielectric nanoparticles. Nano Energy 2019, 62, 682–690. [Google Scholar] [CrossRef]
- Gómez-Medina, R.; Garcia-Camara, B.; Suárez-Lacalle, I.; González, F.; Moreno, F.; Nieto-Vesperinas, M.; Sáenz, J.J. Electric and magnetic dipolar response of germanium nanospheres interference effects, scattering anisotropy, and optical forces. J. Nanophotonics 2011, 5, 30–32. [Google Scholar] [CrossRef]
- Evlyukhin, A.B.; Novikov, S.M.; Zywietz, U.; Eriksen, R.L.; Reinhardt, C.; Bozhevolnyi, S.I.; Chichkov, B.N. Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 2012, 12, 3749–3755. [Google Scholar] [CrossRef] [PubMed]
- Zywietz, U.; Evlyukhin, A.; Reinhardt, C.; Chichkov, B. Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses. Nat. Commun. 2014, 5, 3402. [Google Scholar] [CrossRef]
- Person, S.; Jain, M.; Lapin, Z.; Sáenz, J.J.; Wicks, G.; Novotny, L. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 2013, 13, 1806–1809. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Yan, J.; Huang, Y.; Yang, G. Directional Scattering in a Germanium Nanosphere in the Visible Light Region. Adv. Opt. Mater. 2017, 5, 1700761. [Google Scholar] [CrossRef]
- Fu, Y.H.; Kuznetsov, A.; Miroshnichenko, A.; Yu, Y.F.; Luk’Yanchuk, B. Directional visible light scattering by silicon nanoparticles. Nat. Commun. 2013, 4, 1527. [Google Scholar] [CrossRef]
- Wiecha, P.R.; Cuche, A.; Kallel, H.; Francs, G.C.D.; Lecestre, A.; Larrieu, G.; Larrey, V.; Fournel, F.; Baron, T.; Arbouet, A.; et al. Fano-Resonances in High Index Dielectric Nanowires for Directional Scattering. Phys. Appl. 2018, 283–309. [Google Scholar] [CrossRef][Green Version]
- Yan, J.H.; Liu, P.; Lin, Z.; Wang, H.; Chen, H.J.; Wang, C.X.; Yang, G.W. Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers. Nat. Commun. 2015, 6, 7042. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zhang, S.; Jiang, R.; Xie, Y.M.; Ruan, Q.; Yang, B.; Wang, J.; Lin, H.Q. Colloidal Moderate-Refractive-Index Cu2O Nanospheres as Visible-Region Nanoantennas with Electromagnetic Resonance and Directional Light-Scattering Properties. Adv. Mater. 2015, 27, 7432–7439. [Google Scholar] [CrossRef]
- Jankuj, J. The normal inhomogeneity studies of the refractive index in titanium dioxide films. Czechoslov. J. Phys. B 1986, 36, 855–862. [Google Scholar] [CrossRef]
- Zhao, Z.; Tay, B.K.; Yu, G. Room-temperature deposition of amorphous titanium dioxide thin film with high refractive index by a filtered cathodic vacuum arc technique. Appl. Opt. 2004, 6, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Van de Hulst, H.C. Light Scattering by Small Particles. Q. J. R. Meteorol. Soc. 1957, 84, 198–199. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhou, J.; Zhang, F.; Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today 2009, 12, 60–69. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, L.; Hu, D.; Chen, S.; Xie, S.; Lu, Y.; Cao, Y.; Zhu, Z.; Jin, L.; Guan, B.-O.; et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing. Nanoscale Horiz. 2019, 4, 601–609. [Google Scholar] [CrossRef]
- Hu, D.; Lu, Y.; Cao, Y.; Zhang, Y.; Xu, Y.; Li, W.; Gao, F.; Cai, B.; Guan, B.-O.; Qiu, C.-H.; et al. Laser Splashed Three-Dimensional Plasmonic Nanovolcanoes for Steganography in Angular Anisotropy. ACS Nano 2018, 12, 9233–9239. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, S.; Han, J. Broadband and Highly Directional Visible Light Scattering by Laser-Splashed Lossless TiO2 Nanoparticles. Molecules 2021, 26, 6106. https://doi.org/10.3390/molecules26206106
Zhang Y, Chen S, Han J. Broadband and Highly Directional Visible Light Scattering by Laser-Splashed Lossless TiO2 Nanoparticles. Molecules. 2021; 26(20):6106. https://doi.org/10.3390/molecules26206106
Chicago/Turabian StyleZhang, Yinan, Shiren Chen, and Jing Han. 2021. "Broadband and Highly Directional Visible Light Scattering by Laser-Splashed Lossless TiO2 Nanoparticles" Molecules 26, no. 20: 6106. https://doi.org/10.3390/molecules26206106
APA StyleZhang, Y., Chen, S., & Han, J. (2021). Broadband and Highly Directional Visible Light Scattering by Laser-Splashed Lossless TiO2 Nanoparticles. Molecules, 26(20), 6106. https://doi.org/10.3390/molecules26206106