Discovery of Cysteine and Its Derivatives as Novel Antiviral and Antifungal Agents
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Phytotoxic Activity
2.3. Antiviral Activity
2.3.1. In Vitro Anti-TMV Activity
2.3.2. In Vivo Anti-TMV Activity
2.4. Mode of Action Studies
2.4.1. Preliminary Mode of Action
2.4.2. Docking Studies
2.5. Fungicidal Activity
2.5.1. In Vitro Fungicidal Activity
2.5.2. In Vivo Fungicidal Activity
3. Discussion
3.1. Synthesis
3.2. Phytotoxic Activity
3.3. Structure-Activity Relationship of the Antiviral Activity
3.4. Study on the Mechanism of Anti-TMV Activity
3.4.1. Preliminary Mode of Action
3.4.2. Molecular Docking Study
3.5. Structure-Activity Relationship of the Fungicidal Activity
4. Materials and Methods
4.1. General Procedures
4.1.1. Instruments
4.1.2. Synthesis of Compounds 8–24
4.2. Biological Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wilson, R.A.; Talbot, N.J. Fungal physiology—A future perspective. Microbiology 2009, 155, 3810–3815. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.F.; Guo, J.C.; Liu, Y.X.; Lu, A.D.; Wang, Z.W.; Li, Y.Q.; Yang, S.X.; Wang, Q.M. Marine-natural-product development: First discovery of nortopsentin alkaloids as novel antiviral, anti-phytopathogenic-fungus, and insecticidal agents. J. Agric. Food Chem. 2018, 66, 4062–4072. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.C.; Hao, Y.Y.; Ji, X.F.; Wang, Z.W.; Liu, Y.X.; Ma, D.J.; Li, Y.Q.; Pang, H.L.; Ni, J.P.; Wang, Q.M. Optimization, structure−activity relationship, and mode of action of nortopsentin analogues containing thiazole and oxazole moieties. J. Agric. Food Chem. 2019, 67, 10018–10031. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, R.; Li, Y.A.; Li, S.Y.; Yu, J.; Zhao, B.F.; Liao, A.C.; Wang, Y.; Wang, Z.W.; Lu, A.D.; et al. Discovery of pimprinine alkaloids as novel agents against a plant virus. J. Agric. Food Chem. 2019, 67, 1795–1806. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.W.; Zhu, H.H.; Wang, P.Y.; Zeng, D.; Wu, Y.Y.; Liu, L.W.; Wu, Z.B.; Li, Z.; Yang, S. Synthesis of thiazolium-labeled 1,3,4-oxadiazole thioethers as prospective antimicrobials: In vitro and in vivo bioactivity and mechanism of action. J. Agric. Food Chem. 2019, 67, 12696–12708. [Google Scholar] [CrossRef] [PubMed]
- Önen Bayram, F.E.; Sipahi, H.; Acar, E.T.; Kahveci Ulugöl, R.; Buran, K.; Akgün, H. The cysteine releasing pattern of some antioxidant thiazolidine-4-carboxylic acids. Eur. J. Med. Chem. 2016, 114, 334–337. [Google Scholar] [CrossRef]
- Postma, T.M.; Albericio, F. Disulfide formation strategies in peptide synthesis. Eur. J. Org. Chem. 2014, 17, 3519–3530. [Google Scholar] [CrossRef]
- Isidro-Llobet, A.; Álvarez, M.; Albericio, F. Amino acid-protecting groups. Chem. Rev. 2009, 109, 2455–2504. [Google Scholar] [CrossRef] [Green Version]
- White, J.D.; Xu, Q.; Lee, C.S.; Valeriote, F.A. Total synthesis and biological evaluation of (+)-kalkitoxin, a cytotoxic metabolite of the cyanobacterium Lyngbya majuscule. Org. Biomol. Chem. 2004, 2, 2092–2102. [Google Scholar] [CrossRef] [PubMed]
- Puka-Sundvall, M.; Eriksson, P.; Nilsson, P.; Sandberg, M.; Lehmann, A. Neurotoxicity of cysteine: Interaction with glutamate. Brain Res. 1995, 705, 65–70. [Google Scholar] [CrossRef]
- Janáky, R.; Varga, V.; Hermann, A.; Saransaari, P.; Oja, S.S. Mechanisms of L-cysteine neurotoxicity. Neurochem. Res. 2000, 25, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- White, J.D.; Lee, C.S.; Xu, Q. Total synthesis of (+)-kalkitoxin. Chem. Commun. 2003, 34, 2012–2013. [Google Scholar] [CrossRef]
- Nagy, P.; Ashby, M.T. Reactive sulfur species: Kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid. J. Am. Chem. Soc. 2007, 129, 14082–14091. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Imlay, J.A. High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J. Bacteriol. 2003, 185, 1942–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.J.; Guo, X.F.; Fan, Z.J.; Chen, L.; Ma, L.Y.; Wang, H.X.; Wei, Y.; Xu, X.M.; Lin, J.P.; Bakulev, V.A. Approach to thiazole containing thiazole-containing tetrahydropyridines via Aza–Rauhut–Currier reaction and their potent biological fungicidal and insecticidal activity. RSC Adv. 2016, 6, 112704–112711. [Google Scholar] [CrossRef]
- Liu, Y.; Jing, F.B.; Xu, Y.Y.; Xie, Y.C.; Shi, F.Y.; Fang, H.; Li, M.Y.; Xu, W.F. Design, synthesis and biological activity of thiazolidine-4-carboxylic acid derivatives as novel influenza neuraminidase inhibitors. Bioorg. Med. Chem. 2011, 19, 2342–2348. [Google Scholar] [CrossRef] [PubMed]
- El-Gazzar, A.B.A.; Gaafar, A.M.; Aly, A.S. Design, synthesis, and preliminary evaluation as antimicrobial activity of novel spiro-1,3-thiazolidine C-acyclic nucleoside analogs. J. Sulfur Chem. 2008, 29, 549–558. [Google Scholar] [CrossRef]
- Onen-Bayram, F.E.; Durmaz, I.; Scherman, D.; Herscovici, J.; Cetin-Atalay, R. A novel thiazolidine compound induces caspase-9 dependent apoptosis in cancer cells. Bioorg. Med. Chem. 2012, 20, 5094–5102. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Yin, Q.M.; Li, C.X.; Wang, E.K.; Gao, F.; Zhang, X.B.; Yin, Z.; Wei, S.N.; Li, X.L.; Meng, M.; et al. Synthesis of C-pseudonucleosides bearing thiazolidin-4-one as a novel potential immunostimulating agent. ACS Med. Chem. Lett. 2011, 2, 845–848. [Google Scholar] [CrossRef] [Green Version]
- Thalamuthu, S.; Annaraj, B.; Vasudevan, S.; Sengupta, S.; Neelakantan, M.A. DNA binding, nuclease, and colon cancer cell inhibitory activity of a Cu(II) complex of a thiazolidine-4-carboxylic acid derivative. J. Coord. Chem. 2013, 66, 1805–1820. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, B.; Fan, Z.J.; Hu, M.X.; Li, Q.; Hu, W.H.; Li, J.W.; Zhang, J.L. Discovery of novel isothiazole, 1,2,3-thiadiazole, and thiazole-based cinnamamides as fungicidal candidates. J. Agric. Food Chem. 2019, 67, 12357–12365. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, Y.J.; Fan, Z.J.; Guo, X.F.; Zhang, Z.M.; Xu, J.H.; Song, Y.Q.; Yurievich, M.Y.; Belskaya, N.P.; Bakulev, V.A. Synthesis of 1,2,3-thiadiazole and thiazole-based strobilurins as potent fungicide candidates. J. Agric. Food Chem. 2017, 65, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.N.; Yang, S.; Li, H.Y.; Lu, A.D.; Wang, Z.W.; Yao, Y.W.; Wang, Q.M. Discovery, structural optimization, and mode of Action of essramycin alkaloid and its derivatives as anti-tobacco mosaic virus and anti-phytopathogenic fungus agents. J. Agric. Food Chem. 2020, 68, 471–484. [Google Scholar] [CrossRef]
- Zhang, B.; Li, L.; Liu, Y.X.; Wang, Q.M. Antiviral mechanism study of gossypol and its Schiff base derivatives based on reactive oxygen species (ROS). RSC Adv. 2016, 6, 87637–87648. [Google Scholar] [CrossRef]
- Chen, P.H.; Horton, L.B.; Mikulski, R.L.; Deng, L.S.; Sundriyal, S.; Palzkill, T.; Song, Y.C. 2-Substituted 4,5-dihydrothiazole-4-carboxylic acids are novel inhibitors of metallo-β-lactamases. Bioorg. Med. Chem. Lett. 2012, 22, 6229–6232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, A.D.; Wang, T.N.; Hui, H.; Wei, X.Y.; Cui, W.H.; Zhou, C.L.; Li, H.Y.; Wang, Z.W.; Guo, J.C.; Ma, D.Y.; et al. Natural products for drug discovery: Discovery of gramines as novel agents against a plant virus. J. Agric. Food Chem. 2019, 67, 2148–2156. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.P.; Liu, Y.X.; Cui, Z.P.; Beattie, D.; Gu, Y.C.; Wang, Q.M. Design, synthesis, and biological activities of arylmethylamine substituted chlorotriazine and methylthiotriazine compounds. J. Agric. Food Chem. 2011, 59, 11711–11717. [Google Scholar] [CrossRef] [PubMed]
- Kappachery, S.; Paul, D.; Kweon, J.H. Effect of N-acetylcysteine against biofouling of reverse osmosis membrane. Desalination 2012, 285, 184–187. [Google Scholar] [CrossRef]
- Perez-Giraldo, C.; Rodriguez-Benito, A.; Moran, F.J.; Hurtado, C.; Blanco, M.T.; Gomez-Garcia, A.C. Influence of N-acetylcysteine on the formation of biofilm by Staphylococcus epidermidis. J. Antimicrob. Chemother. 1997, 39, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Stey, C.; Steurer, J.; Bachmann, S.; Medici, T.C.; Tramer, M.R. The effect of oral N-acetylcysteine in chronic bronchitis: A quantitative systematic review. Eur. Respir. J. 2000, 16, 253–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, A.L.; Appelt, H.R.; Schneider, P.H.; Rodrigues, O.E.D.; Silveira, C.C.S.; Wessjohann, L.A. New C2-symmetric chiral disulfide ligands derived from (R)-cysteine. Tetrahedron 2001, 57, 3291–3295. [Google Scholar] [CrossRef]
- Györgydeák, Z.; Kajtár-Peredy, M.; Kajtár, J.; Kajtár, M. Synthesis and chiroptical properties of N-acetyl-2-aryl-4-thiazolidinecarboxylic acids. Liebigs Ann. Chem. 1987, 11, 927–934. [Google Scholar] [CrossRef]
- Soloway, H.; Kipnis, F.; Ornfelt, J.; Spoerri, P.E. 2-Substituted-thiazolidine-4-carboxylic acids. J. Am. Chem. Soc. 1948, 70, 1667–1668. [Google Scholar] [CrossRef]
- Sutcliffe, O.B.; Storr, R.C.; Gilchrist, T.L.; Rafferty, P. Azafulvenium methides: New extended dipolar systems. J. Chem. Soc. Perkin. Trans. 1 2001, 15, 1795–1806. [Google Scholar] [CrossRef]
- Schmolka, I.R.; Spoerri, P.E. Thiazolidine Chemistry. Ⅱ. The preparation of 2-substituted thiazolidine-4-carboxylic acids. J. Org. Chem. 1957, 22, 943–946. [Google Scholar] [CrossRef]
Compd. | Concn (μg/mL) | Inhibition Rate (%) a | Compd. | Concn (μg/mL) | Inhibition Rate (%) a |
---|---|---|---|---|---|
1-D | 500 | 39 ± 3 | 13 | 500 | 43 ± 1 |
100 | 13 ± 2 | 100 | 17 ± 1 | ||
1-L | 500 | 41 ± 2 | 14 | 500 | 18 ± 2 |
100 | 11 ± 1 | 100 | 0 | ||
2-D | 500 | 38 ± 2 | 15 | 500 | 34 ± 1 |
100 | 15 ± 2 | 100 | 12 ± 1 | ||
2-L | 500 | 40 ± 1 | 16 | 500 | 40 ± 2 |
100 | 16 ± 2 | 100 | 16 ± 2 | ||
3 | 500 | 48 ± 1 | 17 | 500 | 39 ± 1 |
100 | 13 ± 2 | 100 | 14 ± 2 | ||
4 | 500 | 45 ± 2 | 18 | 500 | 24 ± 2 |
100 | 12 ± 1 | 100 | 0 | ||
5 | 500 | 42 ± 2 | 19 | 500 | 32 ± 2 |
100 | 10 ± 1 | 100 | 0 | ||
6 | 500 | 40 ± 2 | 20 | 500 | 43 ± 2 |
100 | 20 ± 1 | 100 | 18 ± 2 | ||
7 | 500 | 44 ± 2 | 21 | 500 | 35 ± 2 |
100 | 22 ± 1 | 100 | 11 ± 1 | ||
8 | 500 | 33 ± 2 | 22 | 500 | 33 ± 1 |
100 | 9 ± 2 | 100 | 10 ± 1 | ||
9 | 500 | 35 ± 1 | 23 | 500 | 46 ± 1 |
100 | 12 ± 2 | 100 | 17 ± 2 | ||
10 | 500 | 39 ± 2 | 24 | 500 | 45 ± 1 |
100 | 13 ± 1 | 100 | 19 ± 1 | ||
11 | 500 | 43 ± 1 | Ribavirin | 500 | 35 ± 1 |
100 | 19 ± 1 | 100 | 7 ± 1 | ||
12 | 500 | 38 ± 2 | Ningnanmycin | 500 | 61 ± 2 |
100 | 16 ± 1 | 100 | 23 ± 2 |
Compd. | Concn (μg/mL) | Inactivation Effect (%) a | Curative Effect (%) a | Protection Effect (%) a |
---|---|---|---|---|
1-D | 500 | 44 ± 2 | 38 ± 2 | 37 ± 1 |
100 | 18 ± 3 | 15 ± 2 | 14 ± 1 | |
1-L | 500 | 43 ± 1 | 42 ± 2 | 40 ± 1 |
100 | 20 ± 2 | 16 ± 1 | 13 ± 2 | |
2-D | 500 | 37 ± 2 | 41 ± 3 | 36 ± 1 |
100 | 12 ± 1 | 13 ± 1 | 15 ± 2 | |
2-L | 500 | 39 ± 1 | 40 ± 2 | 38 ± 2 |
100 | 11 ± 2 | 14 ± 1 | 12 ± 1 | |
3 | 500 | 51 ± 2 | 47 ± 2 | 49 ± 2 |
100 | 26 ± 1 | 23± 1 | 25 ± 1 | |
4 | 500 | 45 ± 1 | 43 ± 1 | 46 ± 1 |
100 | 18 ± 2 | 20 ± 2 | 22 ± 2 | |
5 | 500 | 40 ± 1 | 39 ± 2 | 37 ± 2 |
100 | 13 ± 1 | 16 ± 1 | 16 ± 1 | |
6 | 500 | 38 ± 2 | 40 ± 2 | 35 ± 2 |
100 | 16 ± 2 | 16 ± 1 | 16 ± 1 | |
7 | 500 | 44 ± 1 | 42 ± 2 | 41 ± 2 |
100 | 20 ± 2 | 16 ± 1 | 18 ± 1 | |
8 | 500 | 37 ± 2 | 33 ± 2 | 35 ± 2 |
100 | 11 ± 1 | 10 ± 1 | 11 ± 1 | |
9 | 500 | 36 ± 2 | 35 ± 1 | 34 ± 1 |
100 | 10 ± 1 | 9 ± 1 | 9 ± 1 | |
10 | 500 | 41 ± 2 | 40 ± 2 | 41 ± 2 |
100 | 10 ± 1 | 10 ± 1 | 13 ± 1 | |
11 | 500 | 40 ± 2 | 39 ± 2 | 40 ± 2 |
100 | 15 ± 1 | 17 ± 1 | 12 ± 1 | |
12 | 500 | 43 ± 2 | 36 ± 2 | 41 ± 2 |
100 | 14 ± 1 | 13 ± 1 | 15 ± 1 | |
13 | 500 | 49 ± 2 | 46 ± 2 | 44 ± 2 |
100 | 18 ± 2 | 15 ± 2 | 13 ± 2 | |
14 | 500 | 21 ± 2 | 17 ± 2 | 15 ± 2 |
100 | 0 | 0 | 0 | |
15 | 500 | 28 ± 2 | 33 ± 2 | 25 ± 2 |
100 | 9 ± 1 | 11 ± 1 | 7 ± 1 | |
16 | 500 | 42 ± 1 | 37 ± 1 | 35 ± 1 |
100 | 0 | 0 | 0 | |
17 | 500 | 40 ± 1 | 36 ± 1 | 35 ± 1 |
100 | 0 | 0 | 0 | |
18 | 500 | 24 ± 2 | 23 ± 2 | 20 ± 2 |
100 | 0 | 0 | 0 | |
19 | 500 | 34 ± 2 | 30 ± 2 | 36 ± 2 |
100 | 0 | 0 | 0 | |
20 | 500 | 47 ± 2 | 45 ± 2 | 43 ± 2 |
100 | 21 ± 2 | 19 ± 2 | 14 ± 2 | |
21 | 500 | 37 ± 2 | 40 ± 2 | 34 ± 2 |
100 | 11 ± 2 | 15 ± 2 | 11 ± 2 | |
22 | 500 | 33 ± 2 | 37 ± 2 | 32 ± 2 |
100 | 10 ± 2 | 13 ± 2 | 9 ± 2 | |
23 | 500 | 48 ± 1 | 49 ± 1 | 47 ± 1 |
100 | 19 ± 2 | 15 ± 2 | 17 ± 2 | |
24 | 500 | 47 ± 1 | 42 ± 1 | 43 ± 1 |
100 | 15 ± 1 | 17 ± 1 | 15 ± 1 | |
Ribavirin | 500 | 40 ± 1 | 40 ± 1 | 38 ± 1 |
100 | 13 ± 1 | 15 ± 1 | 10 ± 1 | |
Ningnanmycin | 500 | 56 ± 2 | 53 ± 2 | 59 ± 1 |
100 | 28 ± 1 | 24 ± 1 | 30 ± 1 |
Compd. | Fungicidal Activity (%) a at 50 μg/mL | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F.Cb | C.Hb | P.Pb | R.Cb | B.Mb | W.Ab | F.Mb | A.Sb | F.Gb | P.Ib | P.Cb | S.Sb | B.Cb | R.Sb | |
1-D | 18 ± 2 | 7 ± 1 | 30 ± 2 | 9 ± 1 | 10 ± 2 | 11 ± 3 | 9 ± 1 | 37 ± 3 | 16 ± 2 | 8 ± 2 | 27 ± 3 | 20 ± 1 | 16 ± 2 | 11 ± 1 |
1-L | 16 ± 1 | 5 ± 1 | 35 ± 1 | 11 ± 1 | 7 ± 2 | 16 ± 1 | 6 ± 1 | 35 ± 1 | 10 ± 2 | 10 ± 1 | 22 ± 1 | 25 ± 1 | 18 ± 1 | 12 ± 1 |
2-D | 13 ± 1 | 19 ± 2 | 25 ± 2 | 12 ± 1 | 26 ± 2 | 30 ± 2 | 16 ± 1 | 42 ± 1 | 24 ± 1 | 13 ± 1 | 16 ± 1 | 31 ± 3 | 24 ± 1 | 17 ± 2 |
2-L | 18 ± 1 | 13 ± 2 | 29 ± 2 | 15 ± 1 | 21 ± 2 | 33 ± 2 | 19 ± 1 | 49 ± 2 | 26 ± 1 | 13 ± 1 | 17 ± 1 | 36 ± 2 | 21 ± 1 | 14 ± 1 |
3 | 11 ± 1 | 13 ± 1 | 22 ± 1 | 26 ± 2 | 10 ± 1 | 11 ± 1 | 13 ± 1 | 39 ± 1 | 13 ± 1 | 15 ± 1 | 21 ± 1 | 23 ± 1 | 17 ± 1 | 16 ± 1 |
4 | 9 ± 1 | 7 ± 1 | 31 ± 1 | 16 ± 1 | 13 ± 2 | 22 ± 1 | 16 ± 1 | 36 ± 1 | 13 ± 2 | 15 ± 2 | 12 ± 1 | 19 ± 1 | 10 ± 1 | 17 ± 2 |
5 | 23 ± 1 | 16 ± 2 | 35 ± 1 | 10 ± 1 | 23 ± 2 | 16 ± 1 | 24 ± 1 | 42 ± 1 | 10 ± 1 | 13 ± 1 | 17 ± 1 | 29 ± 1 | 14 ± 1 | 13 ± 2 |
6 | 12 ± 1 | 18 ± 1 | 41 ± 1 | 36 ± 1 | 26 ± 2 | 19 ± 2 | 15 ± 1 | 43 ± 1 | 13 ± 1 | 11 ± 1 | 17 ± 1 | 21 ± 1 | 8 ± 1 | 13 ± 1 |
7 | 37 ± 1 | 15 ± 1 | 32 ± 1 | 42 ± 1 | 25 ± 1 | 19 ± 1 | 23 ± 1 | 46 ± 1 | 17 ± 1 | 13 ± 1 | 34 ± 1 | 19 ± 1 | 22 ± 1 | 17 ± 1 |
8 | 10 ± 1 | 14 ± 1 | 14 ± 1 | 9 ± 1 | 7 ± 1 | 16 ± 1 | 6 ± 2 | 42 ± 1 | 42 ± 1 | 16 ± 1 | 12 ± 1 | 19 ± 2 | 14 ± 1 | 6 ± 1 |
9 | 16 ± 1 | 14 ± 1 | 17 ± 1 | 5 ± 1 | 17 ± 1 | 12 ± 1 | 18 ± 1 | 39 ± 1 | 32 ± 2 | 10 ± 2 | 6 ± 1 | 25 ± 1 | 13 ± 1 | 8 ± 1 |
10 | 29 ± 1 | 52 ± 2 | 62 ± 1 | 28 ± 1 | 14 ± 2 | 32 ± 1 | 18 ± 2 | 39 ± 1 | 32 ± 1 | 10 ± 1 | 12 ± 1 | 13 ± 1 | 9 ± 1 | 16 ± 1 |
11 | 19 ± 2 | 14 ± 1 | 24 ± 1 | 12 ± 1 | 7 ± 1 | 16 ± 1 | 18 ± 2 | 39 ± 2 | 13± | 10 ± 1 | 10 ± 1 | 31 ± 1 | 4 ± 1 | 23 ± 1 |
12 | 29 ± 1 | 19 ± 1 | 10 ± 1 | 11 ± 2 | 14 ± 2 | 24 ± 2 | 24 ± 1 | 23 ± 1 | 10 ± 1 | 13 ± 2 | 14 ± 1 | 19 ± 2 | 13 ± 1 | 12 ± 1 |
13 | 26 ± 1 | 10 ± 1 | 38 ± 2 | 9 ± 1 | 17 ± 1 | 16 ± 1 | 12 ± 1 | 39 ± 1 | 10 ± 1 | 3 ± 1 | 12 ± 1 | 25 ± 1 | 11 ± 1 | 6 ± 1 |
14 | 13 ± 1 | 0 | 17 ± 1 | 0 | 10 ± 1 | 12 ± 1 | 6 ± 1 | 42 ± 1 | 16 ± 1 | 7 ± 1 | 8 ± 1 | 25 ± 1 | 13 ± 1 | 8 ± 1 |
15 | 19 ± 2 | 10 ± 2 | 20 ± 2 | 18 ± 1 | 7 ± 1 | 16 ± 2 | 12 ± 2 | 27 ± 1 | 10 ± 1 | 13 ± 1 | 4 ± 1 | 19 ± 1 | 9 ± 1 | 12 ± 1 |
16 | 32 ± 1 | 71 ± 1 | 83 ± 1 | 54 ± 1 | 45 ± 1 | 16 ± 2 | 18 ± 1 | 58 ± 1 | 32 ± 1 | 10 ± 1 | 31 ± 2 | 50 ± 1 | 48 ± 1 | 29 ± 1 |
17 | 16 ± 1 | 10 ± 1 | 38 ± 1 | 18 ± 1 | 10 ± 1 | 20 ± 1 | 12 ± 1 | 31 ± 1 | 10 ± 1 | 13 ± 2 | 16 ± 1 | 44 ± 2 | 18 ± 1 | 8 ± 1 |
18 | 16 ± 1 | 48 ± 1 | 45 ± 2 | 23 ± 2 | 10 ± 1 | 20 ± 1 | 18 ± 1 | 27 ± 1 | 19 ± 1 | 10 ± 1 | 20 ± 1 | 31 ± 1 | 7 ± 1 | 12 ± 1 |
19 | 48 ± 2 | 33 ± 1 | 45 ± 1 | 19 ± 1 | 10 ± 1 | 36 ± 1 | 35 ± 1 | 35 ± 2 | 13 ± 2 | 7 ± 1 | 29 ± 1 | 13 ± 1 | 11 ± 1 | 6 ± 1 |
20 | 26 ± 1 | 10 ± 1 | 21 ± 1 | 12 ± 1 | 3 ± 2 | 16 ± 1 | 12 ± 1 | 39 ± 2 | 16 ± 1 | 10 ± 1 | 6 ± 1 | 19 ± 1 | 7 ± 1 | 6 ± 1 |
21 | 19 ± 2 | 0 | 17 ± 1 | 28 ± 1 | 14 ± 2 | 20 ± 1 | 24 ± 1 | 46 ± 1 | 32 ± 1 | 10 ± 2 | 22 ± 1 | 25 ± 1 | 4 ± 1 | 12 ± 1 |
22 | 16 ± 1 | 10 ± 1 | 31 ± 1 | 14 ± 1 | 7 ± 1 | 12 ± 1 | 12 ± 2 | 39 ± 1 | 32 ± 1 | 16 ± 1 | 16 ± 1 | 19 ± 1 | 21 ± 1 | 12 ± 1 |
23 | 23 ± 1 | 19 ± 1 | 21 ± 1 | 9 ± 1 | 10 ± 1 | 16 ± 1 | 29 ± 1 | 35 ± 1 | 16 ± 1 | 13 ± 1 | 6 ± 1 | 31 ± 1 | 21 ± 1 | 12 ± 1 |
24 | 19 ± 1 | 19 ± 1 | 35 ± 1 | 12 ± 1 | 7 ± 1 | 16 ± 1 | 18 ± 1 | 50 ± 1 | 42 ± 1 | 3 ± 1 | 6 ± 1 | 31 ± 1 | 27 ± 2 | 14 ± 1 |
Chlorothalonil c | 100 | 69 ± 1 | 89 ± 1 | 100 | 91 ± 1 | 95 ± 1 | 100 | 56 ± 1 | 100 | 100 | 55 ± 2 | 100 | 100 | 100 |
Carbendazim c | 100 | 53 ± 1 | 100 | 100 | 100 | 100 | 71 ± 1 | 56 ± 2 | 88 ± 2 | 83 ± 1 | 90 ± 2 | 100 | 96 ± 1 | 100 |
Compd. | Inhibition Rate a (%) at 200 μg/mL | |||||
---|---|---|---|---|---|---|
B.Gb | S.Sb | B.Cb | R.Sb | C.Cb | P.Cb | |
1-D | 0 | 12 ± 2 | 5 ± 1 | 9 ± 2 | 10 ± 1 | 5 ± 1 |
1-L | 0 | 11 ± 1 | 7 ± 2 | 7 ± 1 | 11 ± 2 | 5 ± 1 |
2-D | 0 | 8 ± 2 | 12 ± 2 | 8 ± 2 | 13 ± 2 | 12 ± 1 |
2-L | 0 | 10 ± 2 | 11 ± 1 | 7 ± 2 | 17 ± 2 | 13 ± 1 |
3 | 0 | 7 ± 2 | 13 ± 1 | 8 ± 2 | 13 ± 1 | 13 ± 1 |
4 | 0 | 10 ± 1 | 11 ± 2 | 0 | 13 ± 2 | 0 |
5 | 0 | 19 ± 3 | 4 ± 1 | 11 ± 1 | 5 ± 1 | 12 ± 2 |
6 | 0 | 16 ± 1 | 15 ± 2 | 8 ± 2 | 11 ± 1 | 7 ± 1 |
7 | 0 | 10 ± 2 | 12 ± 1 | 16 ± 1 | 13 ± 2 | 5 ± 1 |
8 | 0 | 4 ± 1 | 9 ± 1 | 0 | 6 ± 2 | 5 ± 1 |
9 | 0 | 11 ± 1 | 5 ± 1 | 0 | 0 | 0 |
10 | 0 | 11 ± 3 | 12 ± 2 | 14 ± 1 | 10 ± 1 | 0 |
11 | 0 | 16 ± 1 | 1 ± 1 | 11 ± 3 | 17 ± 3 | 0 |
12 | 0 | 11 ± 3 | 7 ± 3 | 20 ± 1 | 13 ± 2 | 5 ± 1 |
13 | 0 | 17 ± 1 | 6 ± 1 | 0 | 13 ± 2 | 5 ± 1 |
14 | 0 | 11 ± 2 | 7 ± 1 | 0 | 11 ± 1 | 0 |
15 | 0 | 11 ± 2 | 5 ± 1 | 11 ± 2 | 4 ± 1 | 0 |
16 | 0 | 19 ± 1 | 26 ± 1 | 16 ± 2 | 13 ± 1 | 10 ± 1 |
17 | 0 | 17 ± 2 | 15 ± 2 | 0 | 0 | 5 ± 2 |
18 | 0 | 4 ± 1 | 3 ± 1 | 20 ± 1 | 26 ± 1 | 5 ± 1 |
19 | 20 ± 2 | 4 ± 1 | 11 ± 2 | 0 | 20 ± 2 | 10 ± 2 |
20 | 0 | 17 ± 2 | 11 ± 2 | 0 | 20 ± 1 | 0 |
21 | 0 | 7 ± 1 | 12 ± 2 | 0 | 11 ± 2 | 5 ± 1 |
22 | 0 | 16 ± 2 | 15 ± 2 | 5 ± 1 | 8 ± 1 | 0 |
23 | 0 | 10 ± 2 | 9 ± 1 | 0 | 12 ± 2 | 5 ± 1 |
24 | 0 | 11 ± 1 | 15 ± 2 | 0 | 22 ± 1 | 0 |
azoxystrobin c | 81 ± 2 | 100 | 100 | 75 ± 2 | 80 ± 1 | 85 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Wang, T.; Zhou, Y.; Shi, L.; Lu, A.; Wang, Z. Discovery of Cysteine and Its Derivatives as Novel Antiviral and Antifungal Agents. Molecules 2021, 26, 383. https://doi.org/10.3390/molecules26020383
Yang S, Wang T, Zhou Y, Shi L, Lu A, Wang Z. Discovery of Cysteine and Its Derivatives as Novel Antiviral and Antifungal Agents. Molecules. 2021; 26(2):383. https://doi.org/10.3390/molecules26020383
Chicago/Turabian StyleYang, Shan, Tienan Wang, Yanan Zhou, Li Shi, Aidang Lu, and Ziwen Wang. 2021. "Discovery of Cysteine and Its Derivatives as Novel Antiviral and Antifungal Agents" Molecules 26, no. 2: 383. https://doi.org/10.3390/molecules26020383
APA StyleYang, S., Wang, T., Zhou, Y., Shi, L., Lu, A., & Wang, Z. (2021). Discovery of Cysteine and Its Derivatives as Novel Antiviral and Antifungal Agents. Molecules, 26(2), 383. https://doi.org/10.3390/molecules26020383