Noticeable Quantities of Functional Compounds and Antioxidant Activities Remain after Cooking of Colored Fleshed Potatoes Native from Southern Chile
Abstract
:1. Introduction
2. Results
2.1. Identification of Anthocyanins and Hydroxycinnamic Acids
2.2. Quantification of Anthocyanins and Hydroxycinnamic Acids
2.3. Total Phenols and Antioxidant Activity, before and after Processing
3. Discussion
4. Materials and Methods
4.1. Samples
4.2. Identification and Quantification of Anthocyanins and Hydroxycinnamic Acids
4.3. Determination of Antioxidant Activity
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Perez-Jimenez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the best richest dietary sources of polyphenols: An application of the Phenol-explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.; Aguilera, A.; Ercoli, S.; Parada, J.; Winterhalter, P.; Contreras, B.; Cornejo, P. Effect of the frying process on the composition of hydroxycinnamic acid derivatives and antioxidant activity in flesh colored potatoes. Food Chem. 2018, 268, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Ercoli, S.; Cartes, J.; Cornejo, P.; Tereucán, G.; Winterhalter, P.; Contreras, B.; Ruiz, A. Stability of phenolic compounds, antioxidant activity and colour parameters of a coloured extract obtained from coloured-flesh potatoes. LWT Food Sci. Technol. 2021, 136, 110370. [Google Scholar] [CrossRef]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Mardones, C.; Vergara, C.; Herlitz, E.; Vega, M.; Dorau, C.; Winterhalter, P.; von Baer, D. Polyphenols and antioxidant activity of calafate (Berberis microphylla) fruits and other native berries from Southern Chile. J. Agric. Food Chem. 2010, 58, 6081–6089. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
- Mannino, G.; Di Stefano, V.; Lauria, A.; Pitonzo, R.; Gentile, C. Vaccinium macrocarpon (Cranberry)-Based Dietary Supplements: Variation in Mass Uniformity, Proanthocyanidin Dosage and Anthocyanin Profile Demonstrates Quality Control Standard Needed. Nutrients 2020, 12, 992. [Google Scholar] [CrossRef] [Green Version]
- Escribano-Bailon, M.; Santos-Buelga, C.; Rivas-Gonzalo, J. Anthocyanins in cereals. J. Chromatogr. A 2004, 1054, 129–141. [Google Scholar] [CrossRef]
- Lachman, J.; Hamouz, K.; Orsak, M.; Pivec, V.; Hejtmankova, K.; Pazderu, K.; Dvorak, P.; Celp, J. Impact of selected factors—Cultivar, storage, cooking and baking on the content of anthocyanins in colored-flesh potatoes. Food Chem. 2012, 133, 1107–1116. [Google Scholar] [CrossRef]
- Wang, H.; Sun, S.; Zhou, Z.; Qiu, Z.; Ciu, X. Rapid analysis of anthocyanin and its structural modifications in fresh tomato fruit. Food Chem. 2020, 333, 127439. [Google Scholar] [CrossRef]
- Blando, F.; Berland, H.; Maiorano, G.; Durante, M.; Mazzucato, A.; Picarella, M.E.; Nicoletto, I.; Gerardi, C.; Mita, G.; Andersen, O.A. Nutraceutical Characterization of Anthocyanin-Rich Fruits Produced by “Sun Black” Tomato Line. Front. Nutr. 2019, 6, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rytel, E.; Nems, A.; Peksa, A.; Kita, A.; Miedzianka, J.; Tajner-Czopek, A.; Kucharzka, A.Z.; Sokol- Letowska, A.; Hamouz, K. Discolouration of raw and cooked coloured fleshed potatoes differing in anthocyanins and polyphenols content. Int. J. Food Sci. 2019, 54, 92–101. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, W.S.; Bae, J.Y.; Kang, S.Y.; Yang, M.H.; Lee, S.; Lee, H.S.; Kwak, S.S.; Ahn, M.J. Variations in the carotenoid and anthocyanin contents of Korean cultural varieties and home- processed sweet potatoes. J. Food Compos. Anal. 2015, 41, 188–193. [Google Scholar] [CrossRef]
- Hejtmankova, K.; Kotikova, Z.; Hamouz, K.; Pivec, V.; Vacek, J.; Lachman, J. Influence of flesh colour, year and growing area on carotenoid and anthocyanin content in potato tubers. J. Food Compos. Anal. 2013, 32, 20–27. [Google Scholar] [CrossRef]
- Burgos, G.; Amoros, W.; Muñoa, L.; Soza, P.; Cayhulla, E.; Sanchez, C.; Diaz, C.; Bonierbale, M. Total phenolic, total anthocyanins and phenolic acid concentrations and antioxidant activity of purple fleshed potatoes as affected by boiling. J. Food Compos. Anal. 2013, 30, 6–12. [Google Scholar] [CrossRef]
- Kita, A.; Bakowska-Barczak, A.; Hamouz, K.; Kulakowska, K.; Lisinska, G. The effect of frying on anthocyanin stability and antioxidant activity of crisps from red- and purple- fleshed potatoes (Solanum tuberosum L.). J. Food Compos. Anal. 2013, 32, 169–175. [Google Scholar] [CrossRef]
- Bontempo, P.; De Masi, L.; Carafa, V.; Rigano, D.; Scisciola, L.; Iside, C.; Grassi, R.; Molinari, A.M.; Aversano, R.; Nebbioso, A.; et al. Anticancer activities of anthocyanin extract from genotyped Solanum tuberosum L. “Vitelotte”. J. Funct. Foods 2015, 19, 584–593. [Google Scholar] [CrossRef] [Green Version]
- Charepalli, V.; Reddivarib, L.; Radhakrishnana, S.; Vaddea, R.; Agarwald, J. Anthocyanin-containing purple fleshed potatoes suppress colon tumorogenesis via elimination of colon cancer stem cells. J. Nutr. Biochem. 2015, 26, 1641–1649. [Google Scholar] [CrossRef]
- De Masi, L.; Bontempo, P.; Rigano, D.; Stiuso, P.; Carafa, V.; Nebbioso, A.; Piacente, S.; Montoro, P.; Aversano, R.; D’Amelia, V.; et al. Comparative phytochemical characterization, genetic profile, and antiproliferative activity of polyphenolic-rich extracts from pigmented tubers of different Solanum tuberosum varieties. Molecules 2020, 25, 233. [Google Scholar] [CrossRef] [Green Version]
- Jokioja, J.; Lindeborg, K.M.; Kortesniemi, M.; Nuora, A.; Heinonen, J.; Sainio, T.; Viitanen, M.; Kallio, H.; Yang, B. Anthocyanin-rich extract from purple potatoes decreases postprandial glycemic response and affects inflammation markers in healthy men. Food Chem. 2020, 310, 125797. [Google Scholar] [CrossRef]
- Zhi, Q.; Lei, L.; Li, F.; Zhao, J.; Yin, R.; Ming, J. The anthocyanin extracts from purple-fleshed sweet potato exhibited antiphotoaging effects on ultraviolent B-irradiated BALB/c-nu mouse skin. J. Funct. Foods 2020, 64, 103640. [Google Scholar] [CrossRef]
- Summer, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burmeister, A.; Bondiek, S.; Apel, L.; Kuhne, C.; Hillebrand, S.; Fleischmann, P. Comparison of carotenoid and anthocyanin profiles of raw and boiled Solanum tuberosum and Solanum phureja tubers. J. Food Compos. Anal. 2011, 24, 865–872. [Google Scholar] [CrossRef]
- Giusti, M.; Polit, M.F.; Ayvaz, H.; Tay, D.; Manrique, I. Characterization and quantitation of anthocyanins and other phenolics in native Andean potatoes. J. Agric. Food Chem. 2014, 62, 4408–4416. [Google Scholar] [CrossRef]
- Eichhorn, S.; Winterhalter, P. Anthocyanins from pigmented potato (Solanum tuberosum L.) varieties. Food Res. Int. 2005, 38, 943–948. [Google Scholar] [CrossRef]
- Mulinacci, N.; Ieri, F.; Giaccherini, C.; Innocenti, M.; Andrenelli, L.; Canova, G.; Saracchi, M.; Casiragui, M.C. Effect of cooking in the anthocyanin, phenolic acids, glycoalkaloids, and resistance starch content in two pigmented cultivars of Solanum tuberosum L. J. Agric. Food Chem. 2008, 56, 11830–11837. [Google Scholar] [CrossRef]
- Makori, S.I.; Mu, T.H.; Sun, H.N. Total polyphenol content, antioxidant activity, and individual phenolic composition of different edible parts of 4 sweet potato cultivars. Nat. Prod. Commun. 2020, 15, 1–12. [Google Scholar] [CrossRef]
- Samaniego, I.; Espin, S.; Cuesta, X.; Arias, V.; Rubio, A.; Llerena, W.; Angos, I.; Carrillo, W. Analysis of environmental conditions effect in the phytochemical composition of potato (Solanun tuberosum) cultivars. Plants 2020, 9, 815. [Google Scholar] [CrossRef]
- Gaudino, E.C.; Colletti, A.; Grillo, G.; Tabasso, S.; Cravotto, G. Emerging processing technologies for the recovery of valuable bioactive compounds from potato peels. Foods 2020, 9, 1598. [Google Scholar] [CrossRef]
- Navarre, D.A.; Brown, C.R.; Sathuvally, V.R. Potato vitamins, mineral and phytonutrientsfrom a plant biology perspective. Am. Potato J. 2019, 96, 111–126. [Google Scholar] [CrossRef]
- Sharma, R.J.; Gupta, R.; Singh, S.; Bansal, A.K.; Singh, I.P. Stability of anthocyanins and anthocyanidins enriched extracts, and formulations of fruit pulp of Eugenia jambolana (jamun). Food Chem. 2016, 190, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Zhong, Q. The improved thermal stability of anthocyanins at pH 5.0 by gum Arabic. LWT Food Sci.Technol. 2015, 64, 706–712. [Google Scholar] [CrossRef]
- Sui, X.; Dong, X.; Zhou, W. Combined effect of pH and high temperature on the stability and antioxidant capacity of two anthocyanins in aqueous solution. Food Chem. 2014, 163, 163–170. [Google Scholar] [CrossRef]
- Cartier, A.; Woods, J.; Sismour, E.; Allen, J.; Ford, E.; Githinji, L.; Xu, Y. Physiochemical, nutritional and antioxidant properties of fourteen Virginia-grown sweet potato varieties. Food Meas. 2017, 11, 1333–1341. [Google Scholar] [CrossRef]
- Narwojsz, A.; Borowska, E.J.; Polak-Sliwinska, M.; Danowska-Oziewicz, M. Effect of Different Methods of Thermal Treatment on Starch and Bioactive Compounds of Potato. Plant Foods Hum. Nutr. 2020, 75, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, Ø.M.; Opheim, S.; Aksnes, D.W.; Frøystein, N.A. Structure of petanin, an acylated anthocyanin isolated from Solanum tuberosum, using homo- and hetero-nuclear two-dimensional nuclear magnetic resonance techniques. Phytochem. Anal. 1991, 2, 230–236. [Google Scholar] [CrossRef]
- Parada, J.; Valenzuela, T.; Gomez, F.; Tereucan, G.; García, S.; Cornejo, P.; Winterhalter, P.; Ruiz, A. Effect of fertilization and arbuscular mycorrhizal fungal inoculation on antioxidant profiles and activities in Fragaria ananassa fruit. J. Sci. Food Agric. 2019, 99, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Pastrana-Bonilla, E.; Akoh, C.; Sellapan, S.; Krewer, G. Phenolic content and antioxidant capacity of muscadine grapes. J. Agric. Food Chem. 2003, 51, 5497–5503. [Google Scholar] [CrossRef]
Peak | tR (min) | Identity Assignment | λ (nm) | M+ | Product Ions |
---|---|---|---|---|---|
1 | 13.48 | pelargonidin-3-caffeoylrutinoside | 500, 420 (sh), 326, 275 | 741.2 | 271.1, 579.1, 433.1 |
2 | 18.69 | pelargonidin-3-rutinoside | 504, 430 (sh), 320 (sh), 275 | 579.1 | 271.3, 433.1 |
3 | 21.93 | pelargonidin-3-caffeoylrutinoside-5-glucoside | 509, 430 (sh), 314, 289 | 903.2 | 271.2, 741.2, 433.1 |
4 | 22.92 | cyanidin-3-p-coumaroylrutinoside-5-glucoside | 521, 311, 292, 281 | 903.4 | 449.2, 287 |
5 | 23.29 | petunidin-3-p-coumaroylrutinoside-5-glucoside | 530, 306, 279 | 933.2 | 771.2, 479.0, 317.0 |
6 | 24.64 | pelargonidin-3-p-coumaroylrutinoside-5-glucoside | 504, 425 (sh), 313, 286 | 887.3 | 271.3, 725.2, 433.1 |
7 | 24.67 | petunidin-3-feruloylrutinoside-5-glucoside | 531, 326, 298, 279 | 963.3 | 479.0, 317.0 |
8 | 25.67 | peonidin-3-p-coumaroylrutinoside-5-glucoside | 521, 311, 293, 280 | 917.2 | 755.3, 463.2, 301.2 |
9 | 26.12 | pelargonidin-3-feruloylrutinoside-5-glucoside | 504, 420 (sh), 323, 286 | 917.3 | 271.1 755.2, 433.1 |
10 | 27.25 | malvidin-3-p-coumaroylrutinoside-5-glucoside | 520, 323, 290, 280 | 947.4 | |
11 | 28.16 | pelargonidin-3-p-coumaroylrutinoside-5-formylglucoside | 504, 314, 286 | 915.1 | 725.5, 461.3, 271.1 |
TEAC (µmol g−1 Trolox Equivalents) | Total Phenols (g kg−1) | |||||
---|---|---|---|---|---|---|
Sample | Fresh | Cooked | Fresh | Cooked | ||
CB2011.104 | 8.35 ± 0.42 a | 8.07 ± 0.40 a | * | 2.42 ± 0.05 a | 2.34 ± 0.05 a | * |
CB2011.119 | 2.15 ± 0.11 ghij | 4.65 ± 0.23 bc | * | 0.65 ± 0.01 kl | 0.99 ± 0.02 e | * |
CB2011.189 | 1.08 ± 0.05 klmn | 3.31 ± 0.17 def | * | 0.85 ± 0.02 lm | 0.71 ± 0.01 fg | NS |
CB2011.247 | 1.37 ± 0.07 kln | 3.41 ± 0.17 def | * | 1.19 ± 0.02 i | 0.73 ± 0.01 f | * |
CB2011.569 | 1.98 ± 0.10 jkl | 3.09 ± 0.15 efg | * | 0.79 ± 0.02 no | 0.45 ± 0.01 jk | * |
CB2011.616 | 3.48 ± 0.17 hij | 3.13 ± 0.16 efg | * | 1.00 ± 0.02 klm | 0.62 ± 0.01 gh | * |
CB2012.096 | 2.54 ± 0.13 hij | 3.97 ± 0.20 cde | NS | 1.46 ± 0.03 ij | 0.33 ± 0.01 lm | * |
CB2012.196 | 4.91 ± 0.25 defgh | 3.32 ± 0.17 def | * | 1.38 ± 0.03 g | 1.13 ± 0.02 d | * |
CB2011.211 | 3.91 ± 0.20 defg | 4.48 ± 0.22 bc | NS | 1.55 ± 0.03 n | 0.94 ± 0.02 e | * |
BWF | 0.85 ± 0.04 grs | 1.01 ± 0.05 jk | NS | 0.61 ± 0.01 no | 0.55 ± 0.01 hi | NS |
pirate | 1.12 ± 0.06 opqr | 1.45 ± 0.07 hij | NS | 0.64 ± 0.01 no | 0.50 ± 0.01 ijk | * |
VR808 | 0.54 ± 0.03 rs | 1.06 ± 0.05 jk | NS | 0.21 ± 0.00 v | 0.21 ± 0.00 n | NS |
CR2002.8 | 2.60 ± 0.13 klmn | 2.20 ± 0.11 ghi | NS | 0.79 ± 0.02 n | 0.48 ± 0.01 ijk | * |
CB2011.280 | 2.85 ± 0.14 ijk | 2.85 ± 0.14 fg | NS | 1.23 ± 0.02 n | 1.02 ± 0.02 e | * |
CB2011.273 | 3.17 ± 0.16 fghi | 4.12 ± 0.21 cd | NS | 1.92 ± 0.04 d | 1.30 ± 0.03 c | * |
CB2011.098 | 4.60 ± 0.23 cd | 5.80 ± 0.29 b | * | 1.81 ± 0.04 c | 1.70 ± 0.03 b | NS |
CB2011.253 | 4.63 ± 0.23 fghi | 3.94 ± 0.20 cde | * | 1.59 ± 0.03 f | 1.31 ± 0.03 c | * |
CB2012.076 | 1.90 ± 0.09 mnopqr | 1.18 ± 0.06 j | * | 0.69 ± 0.01 no | 0.51 ± 0.01 ij | * |
TR2012.078 | 5.19 ± 0.26 c | 5.27 ± 0.26 b | NS | 1.68 ± 0.03 f | 1.02 ± 0.02 e | * |
CB2012.176 | 3.94 ± 0.20 efgh | 3.51 ± 0.18 def | * | 0.92 ± 0.02 ij | 0.93 ± 0.02 e | NS |
CB2012.347 | 0.45 ± 0.02 s | nd k | * | 0.27 ± 0.01 v | 0.26 ± 0.01 mn | NS |
TY2012.365 | 1.93 ± 0.10 mnopqr | 1.23 ± 0.06 ij | * | 0.40 ± 0.01 q | 0.29 ± 0.01 mn | * |
CB2011.122 | 4.14 ± 0.21 efgh | 3.87 ± 0.19 cde | NS | 1.12 ± 0.02 n | 1.14 ± 0.02 d | NS |
CB2011.375 | 2.04 ± 0.10 lmnopq | 1.57 ± 0.08 hij | * | 0.63 ± 0.01 o | 0.49 ± 0.01 ijk | * |
CB2011.568 | 3.18 ± 0.16 klmno | 1.09 ± 0.05 j | * | 1.22 ± 0.02 jl | 0.50 ± 0.01 ijk | * |
CB2012.028 | 2.18 ± 0.11 klmnop | 1.84 ± 0.09 hij | NS | 0.54 ± 0.01 p | 0.31 ± 0.01 m | * |
CB2012.063 | 1.31 ± 0.07 nopqr | 1.72 ± 0.09 hij | NS | 0.48 ± 0.01 p | 0.41 ± 0.01 kl | NS |
CB2012.128 | 0.72 ± 0.04 nopqr | 2.31 ± 0.12 gh | * | 0.78 ± 0.02 m | 0.70 ± 0.01 fg | NS |
CB2012.208 | 6.76 ± 0.34 b | 7.80 ± 0.39 a | NS | 2.23 ± 0.04 b | 1.78 ± 0.04 b | * |
CB2012.253 | 3.51 ± 0.10 def | 3.54 ± 0.23 def | NS | 1.96 ± 0.04 g | 0.58 ± 0.01 hi | * |
CB2012.350 | 1.11 ± 0.06 grs | 1.00 ± 0.05 jk | NS | 0.45 ± 0.01 pq | 0.32 ± 0.01 lm | * |
CB2012.361 | 5.39 ± 0.27 cde | 3.69 ± 0.18 cdef | * | 1.97 ± 0.04 e | 0.98 ± 0.02 e | * |
CR2012.363 | 1.38 ± 0.07 pgr | 1.06 ± 0.05 jk | * | 0.48 ± 0.01 pq | 0.29 ± 0.01 mn | * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ercoli, S.; Parada, J.; Bustamante, L.; Hermosín-Gutiérrez, I.; Contreras, B.; Cornejo, P.; Ruiz, A. Noticeable Quantities of Functional Compounds and Antioxidant Activities Remain after Cooking of Colored Fleshed Potatoes Native from Southern Chile. Molecules 2021, 26, 314. https://doi.org/10.3390/molecules26020314
Ercoli S, Parada J, Bustamante L, Hermosín-Gutiérrez I, Contreras B, Cornejo P, Ruiz A. Noticeable Quantities of Functional Compounds and Antioxidant Activities Remain after Cooking of Colored Fleshed Potatoes Native from Southern Chile. Molecules. 2021; 26(2):314. https://doi.org/10.3390/molecules26020314
Chicago/Turabian StyleErcoli, Stefano, José Parada, Luis Bustamante, Isidro Hermosín-Gutiérrez, Boris Contreras, Pablo Cornejo, and Antonieta Ruiz. 2021. "Noticeable Quantities of Functional Compounds and Antioxidant Activities Remain after Cooking of Colored Fleshed Potatoes Native from Southern Chile" Molecules 26, no. 2: 314. https://doi.org/10.3390/molecules26020314
APA StyleErcoli, S., Parada, J., Bustamante, L., Hermosín-Gutiérrez, I., Contreras, B., Cornejo, P., & Ruiz, A. (2021). Noticeable Quantities of Functional Compounds and Antioxidant Activities Remain after Cooking of Colored Fleshed Potatoes Native from Southern Chile. Molecules, 26(2), 314. https://doi.org/10.3390/molecules26020314