An Update on Phytochemicals and Pharmacological Activities of the Genus Persicaria and Polygonum
Abstract
:1. Introduction
2. Pharmacological Uses and Phytochemical Composition of Persicaria and Polygonum Species
3. Pharmacological Activities of Persicaria and Polygonum Products: Different Type of Extracts and Compounds Responsible for the Bioactivities
3.1. Antimicrobial Activity
3.2. Antioxidant Activity
3.3. Analgesic and Anti-Inflammatory Activity
3.4. Antinociceptive Activity
3.5. Anticancer, Antitumoral and Cytotoxic Activity
3.6. Antiviral Activity
3.7. Antiparasitic Activity
3.8. Anti-Diabetic Activity
3.9. Antipyretic Activity
3.10. Hepatoprotective Activity
3.11. Neuropharmacological Activity
3.11.1. Anti-Alzheimer’s
3.11.2. Anti-Depressant and Sedative
3.11.3. Neuroprotective Activity
3.12. Diuretic Activity
3.13. Gastroprotective Activity
3.14. Other Activities
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Addressing Emerging Infectious Disease Threats: A Prevention Strategy for the United States (Executive Summary); GPO: Washington, DC, USA, 1994; Volume 43, pp. 1–18. [Google Scholar]
- Usha, P.T.A.; Jose, S.; Nisha, A.R. Antimicrobial Drug Resistance-A global concern. Vet. World. 2010, 3, 138–139. [Google Scholar]
- Lizcano González, M.C. Evaluación de la Actividad Antifúngica del Extracto de Tomillo (Thymus vulgaris) contra Botrys cinerea, Fusarium oxysporum y Sclerotinia sclerotiorum. Ph.D. Thesis, Pontificia Universidad Javeriana, Bogotá, Colombia, 2007. [Google Scholar]
- Freiesleben, S.; Jäger, A. Correlation between plant secondary metabolites and their antifungal mechanisms–A review. Med. Aromat. Plants 2014, 3, 1–6. [Google Scholar]
- Farnsworth, N.R.; Soejarto, D.D. Global importance of medicinal plants. In Conservation of Medicinal Plants; Akerele, O., Heywood, V., Synge, H., Eds.; Cambridge University Press: Cambridge, UK, 1991; Volume 1, pp. 25–51. [Google Scholar]
- Chanda, S.; Rakholiya, K. Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Méndez-Vilas, A., Ed.; Formatex Research Center: Badajoz, Spain, 2011; Volume 1, pp. 520–529. [Google Scholar]
- Derita, M.; Zacchino, S. Chemotaxonomic importance of sesquiterpenes and flavonoids in Argentinian species of Polygonum genus. J. Essent. Oil Res. 2011, 23, 11–14. [Google Scholar] [CrossRef]
- López, S.N.; Furlan, R.L.E.; Zacchino, S.A. Detection of antifungal compounds in Polygonum ferrugineum Wedd. extracts by bioassay-guided fractionation. Some evidences of their mode of action. J. Ethnopharmacol. 2011, 138, 633–636. [Google Scholar] [CrossRef]
- Saifuzzaman, M.; Shamim, M.S.J.; Mahaldar, K.; Ali, E.S.; Islam, M.A. Antinociceptive activity of the ethanolic extract of Persicaria acuminata Sach. J. Pharm. Res. 2013, 6, 753–755. [Google Scholar] [CrossRef]
- Derita, M.; Leiva, M.; Zacchino, S. Influence of plant part, season of collection and content of the main active constituent, on the antifungal properties of Polygonum acuminatum Kunth. J. Ethnopharmacol. 2009, 124, 377–383. [Google Scholar] [CrossRef]
- Derita, M.; Zacchino, S. Validation of the ethnopharmacological use of Polygonum persicaria for its antifungal properties. Nat. Prod. Commun. 2011, 6, 931–933. [Google Scholar] [CrossRef] [Green Version]
- Agüero, E. Plantas Medicinales Silvestres del Centro de Argentina: Guía para su Reconocimiento y uso Terapéutico; Ecoval Ediciones: Córdoba, Argentina, 2017; p. 443. [Google Scholar]
- Lahitte, H.B.; Hurrell, J.A.; Belgrano, M.J.; Jankowski, L.S.; Haloua, M.P.; Mehltreter, K. Plantas Medicinales Rioplatenses: Plantas Nativas y Naturalizadas Utilizadas en Medicina Popular en la Región del Delta del Paraná, Isla Martín García y Ribera Platense; L.O.L.A: Buenos Aires, Argentina, 1998; p. 240. [Google Scholar]
- Gupta, P.M. 270 Plantas Medicinales Iberoamericanas, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; Subprograma de Química Fina Farmacéutica: Bogotá, Colombia, 1994; p. 567. [Google Scholar]
- Baharum, S.N.; Bunawan, H.; Ghani, M.A.A.; Mustapha, W.A.W.; Noor, M.N. Analysis of the chemical composition of the essential oil of Polygonum minus Huds. using two-dimensional gas chromatography–time-of-flight mass spectrometry (GC–TOF MS). Molecules 2010, 15, 7006–7015. [Google Scholar] [CrossRef] [Green Version]
- Huda-Faujan, N.; Noriham, A.; Norrakiah, A.S.; Babji, A.S. Antioxidative activities of water extracts of some Malaysian herbs. ASEAN Food J. 2007, 14, 61–68. [Google Scholar]
- Sun, X.; Sneden, A.T. Neoflavonoids from Polygonum perfoliatum. Planta Med. 1999, 65, 671–673. [Google Scholar] [CrossRef]
- Sun, X.B.; Zhao, P.H.; Xu, Y.J.; Sun, L.M.; Cao, M.A.; Yuan, C.S. Chemical constituents from the roots of Polygonum bistorta. Chem. Nat. Compd. 2007, 43, 563–566. [Google Scholar] [CrossRef]
- Bouzada, M.L.; Fabri, R.L.; Nogueira, M.; Konno, T.U.; Duarte, G.G.; Scio, E. Antibacterial, cytotoxic and phytochemical screening of some traditional medicinal plants in Brazil. Pharm. Biol. 2009, 47, 44–52. [Google Scholar] [CrossRef]
- Wang, K.W.; Zhu, J.R.; Shen, L.Q. A new lignan with anti-tumour activity from Polygonum perfoliatum L. Nat. Prod. Res. 2013, 27, 568–573. [Google Scholar] [CrossRef] [PubMed]
- Maizura, M.; Aminah, A.; Wan Aida, W.M. Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. Int. Food Res. J. 2011, 18, 526–531. [Google Scholar]
- Takasaki, M.; Kuroki, S.; Kozuka, M.; Konoshima, T. New phenylpropanoid esters of sucrose from Polygonum lapathifolium. J. Nat. Prod. 2001, 64, 1305–1308. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, F.; Feng, Z.M.; Yang, Y.N.; Jiang, J.S.; Zhang, P.C. Bioactive phenylpropanoid esters of sucrose and anthraquinones from Polygonum cuspidatum. Fitoterapia 2020, 146, 104673. [Google Scholar] [CrossRef]
- Wang, K.J.; Zhang, Y.J.; Yang, C.R. Antioxidant phenolic compounds from rhizomes of Polygonum paleaceum. J. Ethnopharmacol. 2005, 96, 483–487. [Google Scholar] [CrossRef]
- Derita, M.; Montenegro, I.; Garibotto, F.; Enriz, R.; Fritis, M.C.; Zacchino, S. Structural requirements for the antifungal activities of natural drimane sesquiterpenes and analogues, supported by conformational and electronic studies. Molecules 2013, 18, 2029–2051. [Google Scholar] [CrossRef]
- Calderón, Á.I.; Romero, L.I.; Ortega-Barría, E.; Solís, P.N.; Zacchino, S.; Gimenez, A.; Pinzón, R.; Cáceres, A.; Tamayo, G.; Guerra, C.; et al. Screening of Latin American plants for antiparasitic activities against malaria, Chagas disease, and leishmaniasis. Pharm. Biol. 2010, 48, 545–553. [Google Scholar] [CrossRef]
- Mir, P.A.; Mohi-u-Din, R.; Dar, M.A.; Bader, G.N. Anti-inflammatory and anti-helminthic potential of methanolic and aqueous extract of Polygonum alpinum rhizomes. J. Drug Deliv. Ther. 2019, 9, 455–459. [Google Scholar] [CrossRef]
- Borchardt, J.R.; Wyse, D.L.; Sheaffer, C.C.; Kauppi, K.L.; Ehlke, N.J.; Biesboer, D.D.; Bey, R.F. Antimicrobial activity of native and naturalized plants of Minnesota and Wisconsin. J. Med. Plants Res. 2008, 2, 98–110. [Google Scholar] [CrossRef]
- Smolarz, H.D.; Budzianowski, J.; Bogucka-Kocka, A.; Kocki, J.; Mendyk, E. Flavonoid glucuronides with anti-leukaemic activity from Polygonum amphibium L. Phytochem. Anal. 2008, 19, 506–513. [Google Scholar] [CrossRef]
- Tantry, M.A.; Radwan, M.M.; Akbar, S.; Khan, I.A. 5,6-Dihydropyranobenzopyrone: A previously undetermined antioxidant isolated from Polygonum amplexicaule. Chin. J. Nat. Med. 2012, 10, 28–31. [Google Scholar] [CrossRef]
- Batool, S.; Gulfraz, M.; Naqvi, S.M.; Mirza, B.; Ahmad, M.S. Evaluation of antioxidant potential and HPLC based identification of phenolics in Polygonum amplexicaule extract and its fractions. Pak. J. Pharm. Sci. 2015, 28, 431–435. [Google Scholar]
- Xiang, M.; Su, H.; Hong, Z.; Yang, T.; Shu, G. Chemical composition of total flavonoids from Polygonum amplexicaule and their pro-apoptotic effect on hepatocellular carcinoma cells: Potential roles of suppressing STAT3 signaling. Food Chem. Toxicol. 2015, 80, 62–71. [Google Scholar] [CrossRef]
- Xiang, M.; Su, H.; Shu, G.; Wan, D.; He, F.; Loaec, M.; Ding, Y.; Li, J.; Dovat, S.; Yang, G.; et al. Amplexicaule A exerts anti-tumor effects by inducing apoptosis in human breast cancer. Oncotarget 2016, 7, 18521–18530. [Google Scholar] [CrossRef] [Green Version]
- Maqsood, F.; Ibrahim, T.; Farooqi, A.A.; Ahmad, M.S. Polygonum amplexicaule extract: An effective herbal cure to CCl. J. Rare Disord. Diagn. Ther. 2017, 3, 4. [Google Scholar] [CrossRef]
- Mazid, M.A.; Datta, B.K.; Nahar, L.; Bashar, S.A.M.; Bachar, S.C.; Sarker, S.D. Antinociceptive, anti-inflammatory and diuretic properties of Polygonum barbatum (L.) Hara var. barbata. Rev. Bras. Farmacogn. 2009, 19, 749–754. [Google Scholar] [CrossRef]
- Farooq, U.; Naz, S.; Shams, A.; Raza, Y.; Ahmed, A.; Rashid, U.; Sadiq, A. Isolation of dihydrobenzofuran derivatives from ethnomedicinal species Polygonum barbatum as anticancer compounds. Biol. Res. 2019, 52, 1. [Google Scholar] [CrossRef]
- Mazid, A.M.; Nahar, L.; Datta, B.K.; Bashar, K.S.; Sarker, S.D. Potential antitumor activity of two Polygonum species. Arch. Biol. Sci. 2011, 63, 465–468. [Google Scholar] [CrossRef]
- Kinger, H.K.; Gupta, M.K. Evaluation of anti-ulcer activity of Polygonum barbatum Linn. (whole plant). J. Biomed. Pharmac. Res. 2012, 1, 34–37. [Google Scholar]
- Munir, N.; Ijaz, W.; Altaf, I.; Naz, S. Evaluation of antifungal and antioxidant potential of two medicinal plants: Aconitum heterophyllum and Polygonum bistorta. Asian Pac. J. Trop. Biomed. 2014, 4, S639–S643. [Google Scholar] [CrossRef] [Green Version]
- Safavi, E.; Homayouni-Tabrizi, M.; Karimi, E.; Mohammad, G.R.K.S. Biosynthesis of zinc oxide nanoparticles using anjbar (root of Persicaria bistorta) extract and their cytotoxic effects on human breast cancer cell line (MCF-7). IET Nanobiotechnol. 2019, 13, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.S.H.; Zeng, J.; Ye, H.; Huang, X.; Lai, F. A study on the analgesic effect of Polygonum Bistorta L. n-butyl alcohol. J. Gannan Med. Coll. 2004, 1, 12–13. [Google Scholar]
- Intisar, A.; Zhang, L.; Luo, H.; Kiazolu, J.B.; Zhang, R.; Zhang, W. Anticancer constituents and cytotoxic activity of methanol-water extract of Polygonum bistorta L. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.H.; Weng, Y.P.; Lin, H.Y.; Tang, S.W.; Chen, C.J.; Liang, C.J.; Ku, C.Y.; Lin, J.Y. Aqueous extract of Polygonum bistorta modulates proteostasis by ROS-induced ER stress in human hepatoma cells. Sci. Rep. 2017, 7, 41437. [Google Scholar] [CrossRef] [Green Version]
- Pillai Manoharan, K.; Yang, D.; Hsu, A.; Tan Kwong Huat, B. Evaluation of Polygonum bistorta for anticancer potential using selected cancer cell lines. Med. Chem. 2007, 3, 121–126. [Google Scholar] [CrossRef]
- Kumar, M.D.; Deepmala, J.; Sangeeta, S. Antioxidant, antipyretic and choleretic activities of crude extract and active compound of Polygonum Bistorta (Linn.) in albino rats. Int. J. Pharm. Bio. Sci. 2012, 2, 25–31. [Google Scholar]
- Mittal, D.K.; Joshi, D. Evaluation of DNA damage by comet and mtt-assay in liver treated with Polygonum bistorta and tannic acid. Int. J. Pharm. Bio. Sci. 2012, 3, 375–382. [Google Scholar]
- Khushtar, M.; Ahmad, A.; Rahman, M.A. Gastroprotective effect of hydro-alcoholic extract of Polygonum bistorta Lin root in indomethacin-induced gastric ulcers in sprague dawley rats. Indian J. Pharm. Educ. Res. 2018, 52, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.G.; Zhang, L.J.; Sun, F.; Zhang, J.J.; Chen, A.Y.; Lan, Y.Y.; Dong, L. Antibacterial and anti-inflammatory effects of extracts and fractions from Polygonum capitatum. J. Ethnopharmacol. 2011, 134, 1006–1009. [Google Scholar] [CrossRef]
- Lai, S.M.; Sudhahar, D.; Anandarajagopal, K. Evaluation of antibacterial and antifungal activities of Persicaria chinensis leaves. Int. J. Pharm. Sci. Res. 2012, 3, 2825–2830. [Google Scholar] [CrossRef]
- Srividya, A.R.; Shalom, A.; Chandrasekhar, R.; Vijayan, P.; Vishnuvarthtan, V.J. Cytotoxic, antioxidant and antimicrobial activity of Polygonum chinensis Linn. Int. J. Pharm. Sci. Nanotechnol. 2012, 4, 1569–1574. [Google Scholar] [CrossRef]
- Zhang, H.W.; Wang, Y.; Du, X.W.; Ding, G.; Zou, Z.M. Chemical constituents of whole plant of Polygonum chinese L. var hispidum hook. f. Chin. Pharm. J. 2015, 50, 1012–1016. [Google Scholar]
- Wu, Y.; Zhang, Z.; Chen, T.; Cheng, C.; Zhang, Z.; Zhou, H.; Luo, P. Comparison of two Polygonum chinense varieties used in Chinese cool tea in terms of chemical profiles and antioxidant/anti-inflammatory activities. Food Chem. 2020, 310, 125840. [Google Scholar] [CrossRef]
- Hossen, M.J.; Baek, K.S.; Kim, E.; Yang, W.S.; Jeong, D.; Kim, J.H.; Kweon, D.H.; Yoon, D.H.; Kim, T.W.; Kim, J.H.; et al. In vivo and in vitro anti-inflammatory activities of Persicaria chinensis methanolic extract targeting Src/Syk/NF-κB. J. Ethnopharmacol. 2015, 159, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Shen, X.; Ma, L.; Chen, R.; Yuan, Q.; Zheng, Y.; Li, C.; Peng, G. Phenolic compounds from Polygonum chinense induce growth inhibition and apoptosis of cervical cancer SiHa cells. BioMed Res. Int. 2020. [CrossRef]
- Tran, T.T.; Kim, M.; Jang, Y.; Lee, H.W.; Nguyen, H.T.; Nguyen, T.N.; Park, H.W.; Le Dang, Q.; Kim, J.C. Characterization and mechanisms of anti-influenza virus metabolites isolated from the Vietnamese medicinal plant Polygonum chinense. BMC Complement. Alter. Med. 2014, 17, 162. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.M.; Sudhahar, D.; Anandarajagopal, K. In vitro anthelmintic potential of Persicaria chinensis leaves. Int. J. Biol. Pharm. Res. 2012, 3, 400–404. [Google Scholar]
- Ismail, I.F.; Golbabapour, S.; Hassandarvish, P.; Hajrezaie, M.; Abdul Majid, N.; Kadir, F.A.; Al-Bayaty, F.; Awang, K.; Hazni, H.; Abdulla, M.A. Gastroprotective activity of Polygonum chinense aqueous leaf extract on ethanol-induced hemorrhagic mucosal lesions in rats. Evid. Based Complement. Alternat. Med. 2012, 2012, 1–9. [Google Scholar] [CrossRef]
- Youssef, A.M.M.; El-Swaify, Z.A.S. Anti-Tumour Effect of two Persicaria species seeds on colon and prostate cancers. Biomed. Pharmacol. J. 2018, 11, 635–644. [Google Scholar] [CrossRef]
- Zheoat, A.M.; Alenezi, S.; Elmahallawy, E.K.; Ungogo, M.A.; Alghamdi, A.H.; Watson, D.G.; Igoli, J.O.; Gray, A.I.; Koning, H.P.; Ferro, V.A. Antitrypanosomal and antileishmanial activity of chalcones and flavanones from Polygonum salicifolium. Pathogens 2021, 10, 175. [Google Scholar] [CrossRef] [PubMed]
- Brandão, G.C.; Kroon, E.G.; Duarte, M.G.R.; Braga, F.C.; de Souza Filho, J.D.; de Oliveira, A.B. Antimicrobial, antiviral and cytotoxic activity of extracts and constituents from Polygonum spectabile Mart. Phytomedicine 2010, 17, 926–929. [Google Scholar] [CrossRef]
- Rodrigues, D.F.; Maniscalco, D.A.; Silva, F.A.; Chiari, B.G.; Castelli, M.V.; Isaac, V.L.; Cicarelli, R.M.B.; Lopez, S.N. Trypanocidal activity of flavokawin B, a component of Polygonum ferrugineum Wedd. Planta Med. 2017, 83, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Jani, M.; Shah, S.; Prajapati, S. Antibacterial screening and qualitative phytochemical estimation of selected aquatic plants. Adv. Biol. Res. 2012, 6, 19–23. [Google Scholar] [CrossRef]
- Said, M.S.; Chinchansure, A.A.; Nawale, L.; Durge, A.; Wadhwani, A.; Kulkarni, S.S.; Sarkar, D.; Joshi, S.P. A new butenolide cinnamate and other biological active chemical constituents from Polygonum glabrum. Nat. Prod. Res. 2015, 29, 2080–2086. [Google Scholar] [CrossRef]
- Palani, R.; Karunakaran, D.; Rajesh, V.; Mathivanan, K.; Jayaraman, P. Analysis of antioxidant, antimicrobial activity and phytochemical potential of Cleistanthus collinus Roxb., Polygonum glabrum Wild. and Melia azedarch Linn. Asian J. Med. Pharm. Sci. 2014, 2, 149–159. [Google Scholar]
- Rajamanickam, M.; Rajamohan, S. Analgesic activity of flavonoids isolated from Persicaria glabra (wild). Adv. Tradit. Med. 2020, 20, 71–76. [Google Scholar] [CrossRef]
- Ali, A.M. Phytochemical and Pharmacological Studies of Selected Sudanese Medicinal Plants with Emphasis on Polygonum glabrum. Ph.D. Thesis, University of Khartoum, Khartoum, Sudan, 2003. [Google Scholar]
- Rahman, H.U.; Rehman, T.U.; Ali, A.; Shah, S.A.A.; Ismail, M. In vitro anti-leishmanial activity of Polygonum glabrum stem extract on Leishmania tropica (KWH23) Strain. J. Adv. Biol. Biotechnol. 2015, 3, 23–28. [Google Scholar] [CrossRef]
- Jamal, B.D.; Avinash, K.R.G.; Naganjenulu, R.; Jyothi, M.J.; Kalishwari, E.; Anvesh, M. Phytochemical screening and antipyretic activity of root stocks of Polygonum glabrum Willd in rats. Int. J. Pharmacother. 2011, 1, 1–4. [Google Scholar]
- Suneesha, Y.; Vinay Kumar, T. Evaluation of anti-alzheimer activity of ethanolic and methanolic extracts of Polygonum Glabrum against Aluminum chloride induced Alzheimer’s in experimental rats. Asian J. Pharm. Clin. Res. 2021, 4, 118–125. [Google Scholar]
- Nizar, K.; Sanghamitra, M.; Tiwary, M.P.; Singh, P.N.; Kumar, V. Antidepressant activity and brain neurotransmitters study of Polygonum glabrum Willd in rodents. J. Herb. Med. Toxicol. 2007, 1, 73–79. [Google Scholar]
- Duraipandiyan, V.; Indwar, F.; Ignacimuthu, S. Antimicrobial activity of confertifolin from Polygonum hydropiper. Pharm. Biol. 2010, 48, 187–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, M.F.; Das, R.; Khan, A.; Hossain, M.S.; Rahman, M. The determination of antibacterial and antifungal activities of Polygonum hydropiper (L.) root extract. Adv. Biol. Res. 2009, 3, 53–56. [Google Scholar]
- Lee, S.H.; Lee, J.R.; Lunde, C.S.; Kubo, I. In vitro antifungal susceptibilities of Candida albicans and other fungal pathogens to polygodial, a sesquiterpene dialdehyde. Planta Med. 1999, 65, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Shahid, M.; Ahmad, W.; Ullah, I.; Ahmad, A.; Syed, N.I.H. GC-MS analysis and gastroprotective evaluations of crude extracts, isolated saponins, and essential oil from Polygonum hydropiper L. Front. Chem. 2017, 5, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasir, A.; Khan, M.; Rehman, Z.; Khalil, A.A.K.; Farman, S.; Begum, N.; Irfan, M.; Sajjad, W.; Parveen, Z. Evaluation of alpha-amylase inhibitory, antioxidant, and antimicrobial potential and phytochemical contents of Polygonum hydropiper L. Plants 2020, 9, 852. [Google Scholar] [CrossRef] [PubMed]
- Hashim, N.H.N.; Abas, F.; Shaari, K.; Lajis, N.H. LC–DAD–ESIMS/MS characterization of antioxidant and anticholinesterase constituents present in the active fraction from Persicaria hydropiper. LWT-Food Sci. Technol. 2012, 46, 468–476. [Google Scholar] [CrossRef]
- Peng, Z.F.; Strack, D.; Baumert, A.; Subramaniam, R.; Goh, N.K.; Chia, T.F.; Tan, S.N.; Chia, L.S. Antioxidant flavonoids from leaves of Polygonum hydropiper L. Phytochemistry 2003, 62, 219–228. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Khan, M.A.; Ahmad, W.; Shah, M.R.; Imran, M.; Ahmad, S. Comparative chemical profiling, cholinesterase inhibitions and anti-radicals’ properties of essential oils from Polygonum hydropiper L: A Preliminary anti-Alzheimer’s study. Lipids Health Dis. 2015, 14, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yu, T.; Jang, H.J.; Byeon, S.E.; Song, S.Y.; Lee, B.H.; Rhee, M.H.; Kim, T.W.; Lee, J.; Hong, S.; et al. In vitro and in vivo anti-inflammatory activities of Polygonum hydropiper methanol extract. J. Ethnopharmacol. 2012, 139, 616–625. [Google Scholar] [CrossRef]
- Zhang, W.; Pan, Y.; Qu, S.; Wang, D.; Cheng, S.; Liu, X. Anti-inflammatory effects of an extract of Polygonum hydropiper stalks on 2, 4, 6-trinitrobenzenesulphonic acid-induced intestinal inflammation in rats by inhibiting the NF-κB pathway. Mediat. Inflamm. 2018, 2018. [Google Scholar] [CrossRef]
- Rahman, E.; Goni, S.A.; Rahman, M.T.; Ahmed, M. Antinociceptive activity of Polygonum hydropiper. Fitoterapia 2002, 73, 704–706. [Google Scholar] [CrossRef]
- Oany, A.R.; Hossain, M.U.; Islam, R.; Emran, A.A. A preliminary evaluation of cytotoxicity, antihyperglycemic and antinociceptive activity of Polygonum hydropiper L. ethanolic leaf extract. Clin. Phytosci. 2017, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, M.; Junaid, M.; Ullah, F.; Sadiq, A.; Subhan, F.; Khan, M.A.; Ahmad, W.; Ali, G.; Imran, M.; Ahmad, S. Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L. show high anti-angiogenic, anti-tumor, brine shrimp, and fibroblast NIH/3T3 cell line cytotoxicity. Front. Pharmacol. 2016, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayaz, M.; Sadiq, A.; Wadood, A.; Junaid, M.; Ullah, F.; Khan, N.Z. Cytotoxicity and molecular docking studies on phytosterols isolated from Polygonum hydropiper L. Steroids 2019, 141, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Raihan, M.O.; Khalequeuzzaman, M.; Brishti, A.; Tareq, S.M.; Hossain, A.; Rana, S. Anthelmintic and antiproliferative activity of aerial parts of Persicaria hydropiper. Der Pharm. Sin. 2012, 3, 104–110. [Google Scholar]
- Munira, S.; Sultana, F.; Mollika, S.; Nesa, L.; Ria, J.; Islam, M.M. Anti-neoplastic activities of Polygonum hydropiper Linn. against ehrlich ascites carcinoma in Swiss Albino mice. Adv. Biol. Res. 2013, 7, 9–14. [Google Scholar] [CrossRef]
- Xiao, H.; Rao Ravu, R.; Tekwani, B.L.; Li, W.; Liu, W.B.; Jacob, M.R.; Khan, S.I.; Cai, X.; Peng, C.Y.; Khan, I.A.; et al. Biological evaluation of phytoconstituents from Polygonum hydropiper. Nat. Prod. Res. 2017, 31, 2053–2057. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Subhan, F.; Ullah, F.; Sadiq, A.; Ahmad, S.; Imran, M.; Kamal, Z.; Hussain, S.; Shah, S.M. Heavy metals analysis, phytochemical, phytotoxic and anthelmintic investigations of crude methanolic extract, subsequent fractions and crude saponins from Polygonum hydropiper L. BMC Complement. Alter. Med. 2014, 14, 465. [Google Scholar] [CrossRef] [Green Version]
- Akhter, R.; Haque, M.A.; Bhuiyan, M.A.; Shahriar, M. In vivo Pharmacological investigation of leaf of Polygonum hydropiper (L.). Dhaka Univ. J. Pharm. Sci. 2013, 12, 165–169. [Google Scholar] [CrossRef]
- Ayaz, M.; Junaid, M.; Ullah, F.; Subhan, F.; Sadiq, A.; Ali, G.; Ovais, M.; Shahid, M.; Ahmad, A.; Wadood, A.; et al. Anti-Alzheimer’s studies on β-sitosterol isolated from Polygonum hydropiper L. Front. Pharmacol. 2017, 8, 697. [Google Scholar] [CrossRef] [Green Version]
- Sharif, S.; Shahriar, M.; Haque, M.A.; Chowdhury, Z.S.; Islam, M.R.; Bhuiyan, M.A. In-vitro antioxidant activities, anti-nociceptive and neuropharmacological activities of Polygonum hydropiper. J. Biol. Agric. Healthc. 2013, 3, 61–71. [Google Scholar]
- Devarajan, S.; Yahiro, E.; Uehara, Y.; Kuroda, R.; Hirano, Y.; Nagata, K.; Miura, S.; Saku, K.; Urata, H. Depressor effect of the young leaves of Polygonum hydropiper Linn. in high-salt induced hypertensive mice. Biomed. Pharmacother. 2018, 102, 1182–1187. [Google Scholar] [CrossRef] [PubMed]
- Shahed-Al-Mahmud, M.; Lina, S.M.M. Evaluation of sedative and anxiolytic activities of methanol extract of leaves of Persicaria hydropiper in mice. Clin. Phytosci. 2017, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Bussmann, R.W.; Glenn, A.; Sharon, D. Antibacterial activity of medicinal plants of Northern Peru–can traditional applications provide leads for modern science. Indian J. Tradit. Knowl. 2010, 9, 742–753. [Google Scholar]
- Braga, F.G.; Bouzada, M.L.M.; Fabri, R.L.; Matos, M.D.O.; Moreira, F.O.; Scio, E.; Coimbra, E.S. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J. Ethnopharmacol. 2007, 111, 396–402. [Google Scholar] [CrossRef]
- Hailemariam, A.; Feyera, M.; Deyou, T.; Abdissa, N. Antimicrobial Chalcones from the Seeds of Persicaria lapathifolia. Biochem. Pharmacol. 2018, 7, 2167-0501. [Google Scholar] [CrossRef]
- Kubinova, R.; Pořízková, R.; Bartl, T.; Navratilova, A.; Cížek, A.; Valentova, M. Biological activities of polyphenols from Polygonum lapathifolium. Bol. Latinoam. Caribe Plantas Med. Aromát. 2014, 13, 506–516. [Google Scholar]
- Saha, A.; Chowdhury, K.K.; Bachar, S.C.; Roy, S.C.; Kundu, J.K. Anti-inflammatory, analgesic and diuretic activity of Polygonum lanatum Roxb. Pak. J. Pharm. Sc. 2005, 18, 13–18. [Google Scholar]
- Smolarz, H.D.; Mendyk, E.; Bogucka-Kocka, A.; Kockic, J. Pinostrobin–an anti-leukemic flavonoid from Polygonum lapathifolium L. ssp. nodosum (Pers.) Dans. Z. Naturforsch. C 2006, 61, 64–68. [Google Scholar] [CrossRef] [Green Version]
- Takasaki, M.; Konoshima, T.; Kuroki, S.; Tokuda, H.; Nishino, H. Cancer chemopreventive activity of phenylpropanoid esters of sucrose, vanicoside B and lapathoside A, from Polygonum lapathifolium. Cancer Lett. 2001, 173, 133–138. [Google Scholar] [CrossRef]
- Bulbul, L.; Sushanta, S.M.; Uddin, M.J.; Tanni, S. Phytochemical and pharmacological evaluations of Polygonum lapathifolium stem extract for anthelmintic and antiemetic activity. Int. Curr. Pharm. J. 2013, 2, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Dzoyem, J.P.; Nkuete, A.H.; Kuete, V.; Tala, M.F.; Wabo, H.K.; Guru, S.K.; Rajput, V.S.; Sharma, A.; Tane, P.; Khan, I.A.; et al. Cytotoxicity and antimicrobial activity of the methanol extract and compounds from Polygonum limbatum. Planta Med. 2012, 78, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Kuete, V.; Nkuete, A.H.; Mbaveng, A.T.; Wiench, B.; Wabo, H.K.; Tane, P.; Efferth, T. Cytotoxicity and modes of action of 4′-hydroxy-2′, 6′-dimethoxychalcone and other flavonoids toward drug-sensitive and multidrug-resistant cancer cell lines. Phytomedicine 2014, 21, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Smolarz, H.D.; Kosikowska, U.; Baraniak, B.; Malm, A.; Persona, A. Lipophilicity, antifungal and antioxidant properties of persilben. Acta Pol. Pharm. 2005, 62, 457–460. [Google Scholar] [CrossRef]
- Hussain, F.; Ahmad, B.; Hameed, I.; Dastagir, G.; Sanaullah, P.; Azam, S. Antibacterial, antifungal and insecticidal activities of some selected medicinal plants of Polygonaceae. Afr. J. Biotechnol. 2010, 9, 5032–5036. [Google Scholar]
- Jovanović, M.; Morić, I.; Nikolić, B.; Pavić, A.; Svirčev, E.; Šenerović, L.; Mitić-Ćulafić, D. Anti-virulence potential and in vivo toxicity of Persicaria maculosa and Bistorta officinalis extracts. Molecules 2020, 25, 1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quesada-Romero, L.; Fernández-Galleguillos, C.; Bergmann, J.; Amorós, M.E.; Jiménez-Aspee, F.; González, A.; Simirgiotis, M.; Rossini, C. Phenolic fingerprinting, antioxidant, and deterrent potentials of Persicaria maculosa Extracts. Molecules 2020, 25, 3054. [Google Scholar] [CrossRef] [PubMed]
- Hussein, S.R.; Mohamed, A.A. Antioxidant activity and phenolic profiling of two Egyptian medicinal herbs Polygonum salicifolium Brouss ex Wild and Polygonum senegalense Meisn. Ann. Univ. Oradea Fasc. Biol. 2013, 20, 59–63. [Google Scholar]
- Lajter, I.; Vasas, A.; Orvos, P.; Bánsághi, S.; Tálosi, L.; Jakab, G.; Béni, Z.; Háda, V.; Forgo, P.; Hohmann, J. Inhibition of G protein-activated inwardly rectifying K+ channels by extracts of Polygonum persicaria and isolation of new flavonoids from the chloroform extract of the herb. Planta Med. 2013, 79, 1736–1741. [Google Scholar] [CrossRef]
- Hassim, N.; Markom, M.; Anuar, N.; Baharum, S.N. Solvent selection in extraction of essential oil and bioactive compounds from Polygonum minus. J. Appl. Sci. 2014, 14, 1440–1444. [Google Scholar] [CrossRef] [Green Version]
- Uyub, A.M.; Nwachukwu, I.N.; Azlan, A.A.; Fariza, S.S. In-vitro antibacterial activity and cytotoxicity of selected medicinal plant extracts from Penang Island Malaysia on metronidazole-resistant-Helicobacter pylori and some pathogenic bacteria. Ethnobot. Res. Appl. 2010, 8, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, M.A.; Zulkifli, R.M.; Hassan, W.N.; Shariff, A.H.M.; Malek, N.Á.; Zakaria, Z.; Ahmad, F. Antibacterial properties of Persicaria minor (Huds.) ethanolic and aqueous-ethanolic leaf extracts. J. Appl. Pharm. Sci. 2015, 5, 50–56. [Google Scholar] [CrossRef]
- Ahmad, R.; Baharum, S.N.; Bunawan, H.; Lee, M.; Mohd Noor, N.; Rohani, E.R.; Zin, N.M. Volatile profiling of aromatic traditional medicinal plant, Polygonum minus in different tissues and its biological activities. Molecules 2014, 19, 19220–19242. [Google Scholar] [CrossRef] [Green Version]
- Qader, S.W.; Abdulla, M.A.; Chua, L.S.; Najim, N.; Zain, M.M.; Hamdan, S. Antioxidant, total phenolic content and cytotoxicity evaluation of selected Malaysian plants. Molecules 2011, 16, 3433–3443. [Google Scholar] [CrossRef] [PubMed]
- George, A.; Chinnappan, S.; Chintamaneni, M.; Kotak, V.; Choudhary, Y.; Kueper, T.; Radhakrishnan, A.K. Anti-inflammatory effects of Polygonum minus (Huds) extract (Lineminus™) in in-vitro enzyme assays and carrageenan induced paw edema. BMC Complement. Alter. Med. 2014, 14, 335. [Google Scholar] [CrossRef] [Green Version]
- Rohin, M.A.K.; Abd Hadi, N.; Ridzwan, N. Different polarity Extracts of Polygonum minus towards cytotoxic activities against colon cancer cell lines (HT-29, HCT-116, CT-26). J. Pharm. Res. Int. 2020, 32, 168–180. [Google Scholar] [CrossRef]
- Ahmad, R.; Sahidin, I.; Taher, M.; Low, C.; Noor, N.M.; Sillapachaiyaporn, C.; Chuchawankul, S.; Sarachana, T.; Tencomnao, T.; Iskandar, F.; et al. Polygonumins A, a newly isolated compound from the stem of Polygonum minus Huds with potential medicinal activities. Sci. Rep. 2018, 8, 4202. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, J.A.; Ismaili, N.H.; Ahmadi, F.B.; Lajisi, N.H. Antiviral and cytotoxic activities of some plants used in Malaysian indigenous medicine. Pertanika J. Trop. Agric. Sci. 1996, 19, 129–136. [Google Scholar]
- Christapher, P.V.; Joe, L.S.; Tian, M.; Mohan, T.S.B.; Parasuraman, S.; Al-Suede, F.S.R.; Murugaiyah, V. Evaluation of methanol extract of Polygonum minus Huds. leaves for its hepatoprotective activity. Malays. J. Microbiol. 2016, 12, 345–352. [Google Scholar]
- Basha, D.J.; Joy, J.M.; Kumar, A.S.; Kumar Reddy, G.A.; Dalith, M.D. Hepatoprotective activity of root stocks of Polygonum glabrum Willd. Family Polygonaceae. Int. J. Phytopharm. Res. 2011, 2, 22–29. [Google Scholar]
- George, A.; Ng, C.P.; O’Callaghan, M.; Jensen, G.S.; Wong, H.J. In vitro and ex-vivo cellular antioxidant protection and cognitive enhancing effects of an extract of Polygonum minus Huds (Lineminus™) demonstrated in a Barnes Maze animal model for memory and learning. BMC Complement. Alter. Med. 2014, 14, 161. [Google Scholar] [CrossRef] [Green Version]
- Wasman, S.Q.; Mahmood, A.A.; Salehhuddin, H.; Zahra, A.A.; Salmah, I. Cytoprotective activities of Polygonum minus aqueous leaf extract on ethanol-induced gastric ulcer in rats. J. Med. Plants Res. 2010, 4, 2658–2665. [Google Scholar] [CrossRef]
- Qader, S.W.; Abdulla, M.A.; Chua, L.S.; Sirat, H.M.; Hamdan, S. Pharmacological mechanisms underlying gastroprotective activities of the fractions obtained from Polygonum minus in Sprague Dawley rats. Int. J. Mol. Sci. 2012, 13, 1481–1496. [Google Scholar] [CrossRef] [PubMed]
- George, A.; Chinnappan, S.; Choudhary, Y.; Bommu, P.; Sridhar, M. Immunomodulatory activity of an aqueous extract of Polygonum minus Huds on Swiss albino mice using carbon clearance assay. Asian Pac. J. Trop. Dis. 2014, 4, 398–400. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, X.; Jiang, X.; Ma, Z.; Xiao, J. Determination of taxifolin in Polygonum orientale and study on its antioxidant activity. J. Food Compos. Anal. 2009, 22, 154–157. [Google Scholar] [CrossRef]
- Ansari, P.; Uddin, M.J.; Rahman, M.M.; Abdullah-Al-Mamun, M.; Islam, M.R.; Ali, M.H.; Reza, A.A. Anti-inflammatory, anti-diarrheal, thrombolytic and cytotoxic activities of an ornamental medicinal plant: Persicaria orientalis. J. Basic Clin. Physiol. Pharm. 2017, 28, 51–58. [Google Scholar] [CrossRef]
- Gou, K.J.; Zeng, R.; Dong, Y.; Hu, Q.Q.; Hu, H.W.Y.; Maffucci, K.G.; Dou, Q.L.; Yang, Q.B.; Qin, X.H.; Qu, Y. Anti-inflammatory and analgesic effects of Polygonum orientale L. extracts. Front. Pharm. 2017, 8, 562. [Google Scholar] [CrossRef]
- Tong, M.M.; Zhang, Y.Y.; Chu, Z.Y.; Zhai, Y.J. Research on antumor effect in vitro of flowers of Polygonum orientale L. Chinese J. Ethnomed. Ethnopharm. 2013, 24, 7–8. [Google Scholar]
- Xie, Z.T.; Tian, L.Q. Study on antitumor activity in vitro of Polygonum orientale L. total extraction and its chemical fractions. Zhong Yi Xue Bao 2012, 27, 1550–1551. [Google Scholar]
- Nigam, V. Antihyperglycaemic activity on flower of Polygonum orientale Linn. using steptozotocin induced diabetic mice model. Int. J. Pharm. Teach. Pract. 2013, 4, 759–764. [Google Scholar]
- Chiu, Y.J.; Chou, S.C.; Chiu, C.S.; Kao, C.P.; Wu, K.C.; Chen, C.J.; Tsai, J.C.; Peng, W.H. Hepatoprotective effect of the ethanol extract of Polygonum orientale on carbon tetrachloride-induced acute liver injury in mice. J. Food Drug Anal. 2018, 26, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Bai, J.; Hu, M.; Xu, Y.; Zhao, S.; Sun, Y.; Wang, B.; Hu, J.; Li, Y. Drug interaction study of flavonoids toward OATP1B1 and their 3D structure activity relationship analysis for predicting hepatoprotective effects. Toxicology 2020, 437, 152445. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.; Feng, Z.; Li, Q.; Qi, Z.; Zhang, Y. Inhibition of ROS-mediated activation Src-MAPK/AKT signaling by orientin alleviates H2O2-induced apoptosis in PC12 cells. Drug Des. Devel. Ther. 2018, 12, 3973–3984. [Google Scholar] [CrossRef] [Green Version]
- Do, N.H.; Le, T.M.; Nguyen, C.D.; Ha, A.C. Optimization of total flavonoid content of ethanolic extract of Persicaria pulchra (Bl.) Soják for the inhibition of α-glucosidase enzyme. Fine Chem. Technol. 2020, 15, 39–50. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Van Vo, G.; Tran, H.; Ho, H.T.C. Hepatoprotective effect of isolated constituent from Polygonum tomentosum against carbon tetrachloride induced toxicity. Sci. Technol. Dev. J. 2012, 15, 78–86. [Google Scholar] [CrossRef]
- Alves, T.M.D.A.; Ribeiro, F.L.; Kloos, H.; Zani, C.L. Polygodial, the fungitoxic component from the Brazilian medicinal plant Polygonum punctatum. Mem. Inst. Oswaldo Cruz 2001, 96, 831–833. [Google Scholar] [CrossRef] [Green Version]
- Penna, C.; Marino, S.; Vivot, E.; Cruañes, M.C.; Muñoz, J.D.D.; Cruañes, J.; Ferraro, G.; Martino, V. Antimicrobial activity of Argentine plants used in the treatment of infectious diseases. Isolation of active compounds from Sebastiania brasiliensis. J. Ethnopharmacol. 2001, 77, 37–40. [Google Scholar] [CrossRef]
- Lopez, A.; Hudson, J.B.; Towers, G.H.N. Antiviral and antimicrobial activities of Colombian medicinal plants. J. Ethnopharmacol. 2001, 77, 189–196. [Google Scholar] [CrossRef]
- Gilabert, M.; Cartagena, E.; Escobar, G.; Bardón, A.; Arena, M. Volatile terpenoids from water pepper (Polygonum punctatum) against Pseudomonas aeruginosa and Staphylococcus aureus virulence strategies. Glob. J. Agric. Innov. Res. Dev. 2014, 1, 3–10. [Google Scholar] [CrossRef]
- Oliveira-Simoes, C.M.; Ribeiro-do-Vale, R.M.; Poli, A.; Nicolau, M.; Zanin, M. Pharmacological investigation on Polygonum punctatum Elliott (= P. acre HBK) extracts. J. Pharm. 1989, 44, 275–284. [Google Scholar]
- Kott, V.; Barbini, L.; Cruanes, M.; de D Munoz, J.; Vivot, E.; Cruañes, J.; Martino, V.; Ferraro, G.; Cavallaro, L.; Campos, R. Antiviral activity in Argentine medicinal plants. J. Ethnopharmacol. 1998, 64, 79–84. [Google Scholar] [CrossRef]
- Sahidin, I.; Bahrun, A.; Taufik, M.; Mahatva Yodha, A.W.; Sabandar, C.W.; Imran, I.; Kadidae, L.O.; Darmawan, A.; Widodo, H.; Diantini, A. Chemical constituents of Persicaria sagittata (L.) H. Gross: Antioxidant activity and chemotaxonomy significance. Jundishapur J. Nat. Pharm. Prod. 2020, 15, e64788. [Google Scholar] [CrossRef]
- Kenanda, E.O.; Omosa, L.K. Semi-Synthetic Pyrazoline Derivatives from Polygonum senegalense Chalcones and their Anti-Microbial Activities. Pharmacog. Commn. 2017, 7, 53–60. [Google Scholar] [CrossRef] [Green Version]
- Bothon, F.T.; Debiton, E.; Avlessi, F.; Forestier, C.; Teulade, J.C.; Sohounhloue, D.K. In vitro biological effects of two anti-diabetic medicinal plants used in Benin as folk medicine. BMC Complement. Altern. Med. 2013, 13, 51. [Google Scholar] [CrossRef]
- Mazid, M.A.; Datta, B.K.; Bachar, S.C.; Bashar, S.K.; Nahar, L.; Sarker, S.D. Analgesic and anti-inflammatory activities of Polygonum stagninum. Pharm. Biol. 2010, 48, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, K.; Koya-Miyata, S.; Kohno, K.; Ushio, S.; Fukuda, S. Antimicrobial activity of Polygonum tinctorium Lour: Extract against oral pathogenic bacteria. J. Nat. Med. 2006, 60, 121–125. [Google Scholar] [CrossRef]
- Kataoka, M.; Hirata, K.; Kunikata, T.; Ushio, S.; Iwaki, K.; Ohashi, K.; Ikeda, M.; Kurimoto, M. Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. J. Gastroenterol. 2001, 36, 5–9. [Google Scholar] [CrossRef]
- Tokuyama-Nakai, S.; Kimura, H.; Ishihara, T.; Jisaka, M.; Yokota, K. In Vitro anti-inflammatory and antioxidant activities of 3,5,4′-trihydroxy-6,7-methylenedioxyflavone-O-glycosides and their aglycone from leaves of Polygonum tinctorium Lour. Appl. Biochem. Biotechnol. 2018, 184, 414–431. [Google Scholar] [CrossRef]
- Kim, S.J.; Jang, T.W.; Kim, D.W.; Park, J.H. Study on antioxidant and anti-inflammatory activities of Persicaria tinctoria. Korea J. Herbol. 2015, 30, 17–24. [Google Scholar] [CrossRef]
- Heo, B.G.; Park, Y.J.; Park, Y.S.; Bae, J.H.; Cho, J.Y.; Park, K.; Jastrzebski, Z.; Gorinstein, S. Anticancer and antioxidant effects of extracts from different parts of indigo plant. Ind. Crops Prod. 2014, 56, 9–16. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D.C.; Baek, H.Y.; Lee, K.D.; Kim, Y.C.; Oh, H. Anti-neuroinflammatory effects of tryptanthrin from Polygonum tinctorium Lour. in lipopolysaccharide-stimulated BV2 microglial cells. Arch. Pharm. Res. 2018, 41, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Kimoto, T.; Hino, K.; Koya-Miyata, S.; Yamamoto, Y.; Takeuchi, M.; Nishizaki, Y.; Micallef, M.J.; Ushio, S.; Iwaki, K.; Ikeda, M.; et al. Cell differentiation and apoptosis of monocytic and promyelocytic leukemia cells (U-937 and HL-60) by tryptanthrin, an active ingredient of Polygonum tinctorium Lour. Pathol. Int. 2001, 51, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Tatefuji, T.; Aga, M.; Kunikata, T.; Ikeda, M.; Kurimoto, M. Antiviral effect of Polygonum tinctorium Lour. extracts on virus-infected cells. Nat. Med. 1999, 53, 297–301. [Google Scholar]
- Zhong, Y.; Yoshinaka, Y.; Takeda, T.; Shimizu, N.; Yoshizaki, S.; Inagaki, Y.; Matsuda, S.; Honda, G.; Fujii, N.; Yamamoto, N. Highly potent anti-HIV-1 activity isolated from fermented Polygonum tinctorium Aiton. Antiviral Res. 2005, 66, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Tokuyama, S.; Ishihara, T.; Ogawa, S.; Yokota, K. Identification of new flavonol O-glycosides from indigo (Polygonum tinctorium Lour) leaves and their inhibitory activity against 3-hydroxy-3-methylglutaryl-CoA reductase. J. Pharm. Biomed. Anal. 2015, 108, 102–112. [Google Scholar] [CrossRef]
- Cheng, H.W.; Lee, K.C.; Cheah, K.P.; Chang, M.L.; Lin, C.W.; Li, J.S.; Yu, W.Y.; Liu, E.T.; Hu, C.M. Polygonum viviparum L. inhibits the lipopolysaccharide-induced inflammatory response in RAW264. 7 macrophages through haem oxygenase-1 induction and activation of the Nrf2 pathway. J. Sci. Food Agric. 2013, 93, 491–497. [Google Scholar] [CrossRef]
- Ceylan, S.; Cetin, S.; Camadan, Y.; Saral, O.; Ozsen, O.; Tutus, A. Antibacterial and antioxidant activities of traditional medicinal plants from the Erzurum region of Turkey. Iran. J. Med. Sci. 2019, 188, 1303–1309. [Google Scholar] [CrossRef]
- Salama, H.M.; Marraiki, N. Antimicrobial activity and phytochemical analyses of Polygonum aviculare L. (Polygonaceae), naturally growing in Egypt. Saudi J. Biol. Sci. 2010, 17, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Ravipati, A.S.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Bartlett, J.; Smith, P.; de la Cruz, M.; Monteiro, M.C.; Melguizo, A.; et al. Anti-fungal and anti-bacterial activities of ethanol extracts of selected traditional Chinese medicinal herbs. Asian Pac. J. Trop. Med. 2013, 6, 673–681. [Google Scholar] [CrossRef] [Green Version]
- Hsu, C.Y. Antioxidant activity of extract from Polygonum aviculare L. Biol. Res. 2006, 39, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habibi, R.M.; Mohammadi, R.A.; Delazar, A.; Halabian, R.; Soleimani, R.J.; Mehdipour, A.; Bagheri, M.; Jahanian-Najafabadi, A. Effects of Polygonum aviculare herbal extract on proliferation and apoptotic gene expression of MCF-7. J. Ethnopharmacol. 2011, 19, 326–331. [Google Scholar]
- Mohammad, R.; Hossein, B.; Davood, F.; Farnaz, T.; Ali, F.; Yusef, R. The apoptotic and cytotoxic effects of Polygonum avicular extract on Hela-S cervical cancer cell line. Afr. J. Biochem. Res. 2011, 5, 373–378. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, L.; Lin, X.; Hu, X.; Wang, L. Phenolic profiles and screening of potential α-glucosidase inhibitors from Polygonum aviculare L. leaves using ultra-filtration combined with HPLC-ESI-qTOF-MS/MS and molecular docking analysis. Ind. Crops Prod. 2020, 154, 112,673. [Google Scholar] [CrossRef]
- Won, J.B.; Ma, C.J. Neuroprotective activities of some medicinal plants against glutamate-induced neurotoxicity in primary cultures of rat cortical cells. Nat. Prod. Sci. 2009, 15, 125–129. [Google Scholar]
- Zhang, F.X.; Xu, R.S. Juglanin ameliorates LPS-induced neuroinflammation in animal models of Parkinson’s disease and cell culture via inactivating TLR4/NF-κB pathway. Biomed. Pharmacother. 2018, 97, 1011–1019. [Google Scholar] [CrossRef]
- Park, S.H.; Jang, S.; Son, E.; Lee, S.W.; Park, S.D.; Sung, Y.Y.; Kim, H.K. Polygonum aviculare L. extract reduces fatigue by inhibiting neuroinflammation in restraint-stressed mice. Phytomedicine 2018, 42, 180–189. [Google Scholar] [CrossRef]
- El-Kader, A.; Adel, M.; Nafady, A.M.; Ahmed, A.S.; Ibraheim, Z.Z. Antioxidant, hepatoprotective and antimicrobial activities of the aerial parts of Polygonum bellardii All. Bull. Pharm. Sci. Assiut. 2012, 35, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Kader, A.M.; El-Readi, M.Z.; Ahmed, A.S.; Nafady, A.M.; Wink, M.; Ibraheim, Z.Z. Polyphenols from aerial parts of Polygonum bellardii and their biological activities. Pharm. Biol. 2013, 51, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Eruygur, N.; Ucar, E.; Ataş, M.; Ergul, M.; Ergul, M.; Sozmen, F. Determination of biological activity of Tragopogon porrifolius and Polygonum cognatum consumed intensively by people in Sivas. Toxicol. Rep. 2020, 7, 59–66. [Google Scholar] [CrossRef]
- Pekdemir, M.E.; Pekdemir, S.; İnci, Ş.; Kırbağ, S.; Çiftci, M. Thermal, magnetic properties and antimicrobial effects of magnetic iron oxide nanoparticles treated with Polygonum cognatum. Iran. J. Sci. Technol. 2021. [CrossRef]
- Mahmoudi, M.; Boughalleb, F.; Mabrouk, M.; Tlili, N.; Potter, D.; Abdellaoui, R.; Nasri, N. Chemical analysis of the antioxidants from the aerial parts of wild Polygonum equisetiforme from Tunisia. Food Biosci. 2019, 29, 24–29. [Google Scholar] [CrossRef]
- El-Toumy, S.A.H.; Salib, J.Y.; Shafik, N.H.; Elkarim, A.S.A.; Salama, A.; Omara, E.A.A.; Micky, J. Evaluation of hepatoprotective activity of Polygonum equisetiforme methanolic extract. J. Appl. Pharm. Sci. 2019, 9, 54–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.F.; Hu, Y.; Lin, Y.; Huang, F.; Zhang, M. Anti-inflammatory activities of ethyl acetate extract of Polygonum jucundum and its phytochemical study. J. Med. Plants Res. 2012, 6, 1505–1511. [Google Scholar] [CrossRef]
- Jovanović, M.; Srdić-Rajić, T.; Svirčev, E.; Jasnić, N.; Nikolić, B.; Bojić, S.; Stević, T.; Knežević-Vukčević, J.; Mitić-Ćulafić, D. Evaluation of anticancer and antimicrobial activities of the Polygonum maritimum ethanol extract. Arch. Biol. Sci. 2018, 70, 665–673. [Google Scholar] [CrossRef] [Green Version]
- El-Haci, I.A.; Bekkara, F.A.; Mazari, W.; Hassani, F.; Didi, M.A. Screening of biological activities of Polygonum maritimum L. from Algerian coast. Asian Pac. J. Trop. Biomed. 2013, 3, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, M.J.; Matkowski, A.; Ślusarczyk, S.; Magne, C.; Poleze, T.; Pereira, C.; Custodio, L. Sea knotgrass (Polygonum maritimum L.) as a potential source of innovative industrial products for skincare applications. Ind. Crops Prod. 2019, 128, 391–398. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Custódio, L.; Lopes, A.; Oliveira, M.; Neng, N.R.; Nogueira, J.M.; Martins, A.; Rauter, A.P.; Varela, J.; Barreira, L. Unlocking the in vitro anti-inflammatory and antidiabetic potential of Polygonum maritimum. Pharm. Biol. 2017, 55, 1348–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, M.J.; Varela, J.; Barreira, L.; Custódio, L. Antioxidant and neuroprotective potential of two halophytes from the Algarve coast. Planta Med. 2014, 80, P2Y16. [Google Scholar] [CrossRef]
- Goswami, P.; Islam, R.; Khongmalai, E.; Sarkar, B.R.; Sen, S.; Choudhury, A.; Dey, B.K. Pharmacognostical, phytochemical and anthelmintic activity of Polygonum muricatum. J. Appl. Pharm. Res. 2018, 6, 7–12. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Wu, Y.; Tian, Z. Anti-inflammatory effects and mechanism of Polygonum paleaceum Wall. extracts. Pharm. Clin. Chin. Mater. Med. 2002, 2, 18–20. [Google Scholar]
- Kim, S.Y.; Won, D.H.; Park, S.N. Antibacterial activity and component analysis of Persicaria perfoliata extracts. Microbiol. Biotechnol. Lett. 2010, 38, 278–282. [Google Scholar]
- Fu, Y.; He, X.; Li, J.; Liu, X. Chemical composition Analysis and Antibacterial effect of Polygonum perfoliatum. Prog. Vet. Med. 2008, 9, 45–49. [Google Scholar]
- Huang, X.; Jiang, L.; Wang, S.; Jiang, X.; Huang, D. Antibacterial activity research of medical plants of Persicaria perfoliata. J. Mod. Med. Health 2013, 29, 3041–3042. [Google Scholar]
- Fan, D.; Zhou, X.; Zhao, C.; Chen, H.; Zhao, Y.; Gong, X. Anti-inflammatory, antiviral and quantitative study of quercetin-3-O-β-D-glucuronide in Polygonum perfoliatum L. Fitoterapia 2011, 82, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Zhang, R.S. Research on anti-tumor effect of Polygonum perfoliatum L. in vitro and in vivo. Chin. Arch. Tradit. Chin. Med. 2013, 31, 2019–2021. [Google Scholar]
- Li, Q.; Fu, X.; Ge, X.; Tao, F.; Huang, P.; Ge, M.; Jin, H. Antitumor effects and related mechanisms of ethyl acetate extracts of Polygonum perfoliatum L. Front. Oncol. 2019, 9, 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.G.; Wei, F.; Liu, Q.; Chen, L.J.; Liu, Y.Y.; Luo, F.; Xiong, H.R.; Yang, Z.Q. The flavonoid from Polygonum perfoliatum L. inhibits herpes simplex virus 1 infection. Acta Virol. 2014, 58, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q. Preliminary Study on Anti-HBV and Hepatoprotective Activity of Polygonum perfoliatum. Ph.D. Thesis, Academy of Military Medical Sciences, Beijing, China, 2009. [Google Scholar]
- Xu, L.; Huang, G.; Guo, X.; Zhou, Q.; He, S. Total flavonoids, extracted from Polygonum knotweed L, exert beneficial hepatoprotection against liver injury. J. Cell. Biochem. 2019, 120, 12677–12683. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Waheed, A.; Tariq, R.; Zaman, M.; Tahir, M.J. Anti-fibrotic effects of Polygonum plebeium r. br. in CCl4-induced hepatic damage and fibrosis in rats. Biomed. Res. Ther. 2018, 5, 2223–2234. [Google Scholar] [CrossRef]
- Mazid, A.; Datta, B.K.; Nahar, L.; Rashid, A.; Bachar, S.C.; Bashar, S.K.; Sarker, S.D. Analgesic and diuretic properties of α-santalone from Polygonum flaccidum. Phytother. Res. 2010, 24, 1084–1087. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Kwon, B.M.; Baek, N.I.; Kim, S.H.; Lee, J.H.; Park, H.W.; Kim, J.S.; Moon, M.K.; Kim, D.K.; Kim, D.K. Anti-proliferation effects of isorhamnetin isolated from Persicaria thunbergii on cancer cell lines. Nat. Prod. Sci. 2006, 12, 214–216. [Google Scholar]
- Khan, H.; Saeed, M.; Khan, M.A.; Dar, A.; Khan, I. The antinociceptive activity of Polygonatum verticillatum rhizomes in pain models. J. Ethnopharmacol. 2010, 127, 521–527. [Google Scholar] [CrossRef]
- Amin, M.N.; Majumder, M.S.; Moghal, M.M.R.; Banik, S.; Kar, A.; Hossain, M.M. Anthelmintic and cytotoxic activities of two medicinal plants: Polygonum viscosum and Aphanamixis polystachya growing in Bangladesh. J. Sci. Res. 2014, 6, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Datta, B.; Datta, S.; Khan, T.; Kundu, J.; Rashid, M.; Nahar, L.; Sarker, S. Anti-cholinergic, cytotoxic and anti-HIV-1 activities of sesquiterpenes and a flavonoid glycoside from the aerial parts of Polygonum viscosum. Pharm. Biol. 2004, 42, 18–23. [Google Scholar] [CrossRef]
- Datta, B.K.; Datta, S.K.; Chowdhury, M.M.; Khan, T.H.; Kundu, J.K.; Rashid, M.A.; Nahar, L.; Sarker, S.D. Analgesic, antiinflammatory and CNS depressant activities of sesquiterpenes and a flavonoid glycoside from Polygonum viscosum. Pharmazie 2004, 59, 222–225. [Google Scholar] [CrossRef] [PubMed]
Species | Origin/Distribution | Pharmacological Activity | Ref. |
---|---|---|---|
Persicaria genus | |||
Persicaria acuminata (Kunth) M.Gómez | From Mexico to South America | Antifungal; Antinociceptive; Anti-malarial | [9,25,26] |
Persicaria alpina (All.) H.Gross | Native to Europe and temperate Asia | Anti-inflammatory; Anti-helminthic | [27] |
Persicaria amphibia (L.) Delarbre | Native to Europe, Asia, North America, and parts of Africa | Antifungal; Antibacterial; Anti-cancer | [28,29] |
Persicaria amplexicaulis (D.Don) Ronse Decr. | Native to China, the Himalayas and Pakistan | Antioxidant; Anti-cancer; Hepatoprotective | [30,31,32,33,34] |
Persicaria barbata (L.) H.Hara | Native to Southeast Asia | Anti-inflammatory; Antinociceptive; Anti-cancer; Diuretic; Gastroprotective | [35,36,37,38] |
Persicaria bistorta (L.) Samp | Native to Europe and Central and West Asia | Antioxidant; Anti-inflammatory; Anti-cancer; Antipyretic; Hepatoprotective; Gastroprotective | [39,40,41,42,43,44,45,46,47] |
Persicaria capitata (Buch.Ham. ex D.Don) H.Gross | Native to China, India, Nepal, Malaysia, Thailand, Vietnam and Sri Lanka | Antibacterial; Anti-inflammatory | [48] |
Persicaria chinensis (L.) H. Gross | Native to South Asian regions with sub-tropical and warm climate | Antifungal; Antibacterial; Antioxidant; Anti-inflammatory; Anti-cancer; Antiviral; Anti-helminthic; Gastroprotective | [49,50,51,52,53,54,55,56,57] |
Persicaria decipiens (R.Br.) K.L.Wilson | Native to Australia | Anti-cancer | [58,59] |
Persicaria ferruginea (Wedd.) Soják | Native to temperate climates of South America countries | Antifungal; Antibacterial; Antiviral; Anti-trypanocide | [8,26,60,61] |
Persicaria glabra (Willd.) M.Gómez | Native to North America and Eurasia | Antibacterial; Antioxidant; Anti-inflammatory; Anti-cancer; Antiviral; Anti-malarial; Anti-leishmanial; Antipyretic; Hepatoprotective; Neuropharmacological | [62,63,64,65,66,67,68,69,70] |
Persicaria hydropiper (L.) Delarbe | Distributed in the northern hemisphere | Antifungal; Antibacterial; Antioxidant; Anti-inflammatory; Antinociceptive; Anti-cancer; Anti-trypanocide; Anti-helminthic; Anti-diabetic; Antipyretic; Neuropharmacological; Gastroprotective | [71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93] |
Persicaria hydropiperoides (Michx.) Small | Native to America, from Canada to Argentina and Chile (introduced in Europe) | Antifungal; Antibacterial; Anti-leishmanial | [19,73,94,95] |
Persicaria lapathifolia (L.) Delarbre | Native to Europe and Asia (introduced in America) | Antifungal; Antibacterial; Antioxidant; Anti-inflammatory; Anti-cancer; Antiviral; Anti-helminthic; Anti-diabetic; Diuretic | [96,97,98,99,100,101] |
Persicaria limbata (Meisn.) H.Hara | Distributed in the southwest of Africa, Egypt and tropical Asia | Anti-cancer | [102,103] |
Persicaria maculosa Gray | Native to Europe and Asia (introduced in North America) | Antifungal; Antibacterial; Antioxidant; Neuropharmacological | [11,104,105,106,107,108,109] |
Persicaria minor (Huds.) Opiz | Native to Europe (introduced in Australia and America) | Antibacterial; Antioxidant; Anti-inflammatory; Anti-cancer; Antiviral; Hepatoprotective; Neuropharmacological; Gastroprotective | [110,111,112,113,114,115,116,117,118,119,120,121,122,123,124] |
Persicaria orientalis (L.) Spach | Native to India (naturalized in America) | Antioxidant; Anti-inflammatory; Anti-cancer; Anti-diabetic; Hepatoprotective; Neuropharmacological | [125,126,127,128,129,130,131,132,133] |
Persicaria pulchra (Blume) Soják | Distributed in India and Africa | Hepatoprotective | [134,135] |
Persicaria punctata (Elliott) Small | Native to America (from Canada to Argentina and Chile) | Antifungal; Antibacterial; Anti-inflammatory; Antiviral | [136,137,138,139,140,141] |
Persicaria sagittata (L.) H.Gross | Distributed in southeastern North America | Antioxidant | [142] |
Persicaria senegalensis (Meisn.) Soják | Distributed in south-central Africa | Antifungal; Antibacterial; Antioxidant; Anti-cancer; Anti-diabetic | [58,108,143,144] |
Persicaria stagnina (Buch.Ham. ex Meisn.) Qaiser | Distributed in Pakistan, India, Bangladesh and Myanmar | Anti-inflammatory; Anti-cancer | [37,145] |
Persicaria tinctoria (Aiton) H.Gross | Native to Southeast Asia | Antibacterial; Antioxidant; Anti-inflammatory; Anti-cancer; Antiviral | [146,147,148,149,150,151,152,153,154,155] |
Persicaria vivipara (L.) Ronse Decr. | Distributed in the High Arctic | Anti-inflammatory | [156] |
Polygonum genus | |||
Polygonum arenastrum Boreau | Distributed in Europe, North Africa, Southwest Asia and North America | Antifungal | [157] |
Polygonum aviculare L. | Native to Europe; It is distributed all over the world | Antifungal; Antibacterial; Antioxidant; Anti-cancer; Anti-diabetic; Neuropharmacological | [158,159,160,161,162,163,164,165,166] |
Polygonum bellardii All. | Distributed in central-northern Europe, North Africa and Southwest Asia | Antifungal; Antibacterial; Antioxidant; Anti-inflammatory; Anti-cancer | [167,168] |
Polygonum cognatum Meisn. | Distributed from central Asia to occidental Asia | Antifungal; Antibacterial; Antioxidant; Anti-cancer; Anti-diabetic | [169,170] |
Polygonum equisetiforme Sm. | Distributed in southern Europe, North Africa and Southwest Asia | Antioxidant; Hepatoprotective | [171,172] |
Polygonum jucundum Meisn. | Distributed in the Chinese provinces | Anti-inflammatory | [173] |
Polygonum maritimum L. | Native to Europe. It is distributed in North Africa, Southwest Asia and North America | Antifungal; Antibacterial; Antioxidant; Anti-inflammatory; Anti-diabetic; Neuropharmacological | [174,175,176,177,178] |
Polygonum muricatum Meisn. | Distributed in India, Malaysia and Nepal | Anti-helminthic | [179] |
Polygonum paleaceum Wall. | Distributed in China and India | Antioxidant; Anti-inflammatory | [24,180] |
Polygonum perfoliatum L. | Native to East Asia (China, Japan, Indonesia, Malaysia, Nepal, Korea and Philippines) | Antibacterial; Anti-inflammatory; Anti-cancer; Antiviral; Hepatoprotective | [20,181,182,183,184,185,186,187,188,189] |
Polygonum plebeium R.Br. | Native to Madagascar, South Asia and New Zealand (introduced in United States and Australia) | Hepatoprotective | [190] |
Polygonum pubescens Blume | Native to central-south Asia | Anti-inflammatory; Diuretic | [191] |
Polygonum thunbergii Siebold & Zucc. | Native to Southeast Asia (China, India, Japan, Korea and Taiwan) | Anti-cancer | [192] |
Polygonum verticillatum Biroli ex Colla | Antinociceptive | [193] | |
Polygonum viscosum Buch.Ham. ex D. Don | Native to Nepal and widely distributed in Bangladesh, northeast India, Japan and China | Anti-cancer; Antiviral; Anti-helminthic; Neuropharmacological | [194,195,196] |
Species | Extract/Isolated Compounds | Part Use | Pathogen | Growth Inhibition (mm or %)/MIC/IC50 | Standard Drug | Ref. |
---|---|---|---|---|---|---|
P. acuminata | Polygodial (isolated from DCM extract) | L | Candida albicans and Cryptococcus neoformans | MIC 3.9–62.5 μg/mL | Amphotericin B (MIC 0.25–0.78 μg/mL) | [25] |
Polygodial, isopolygodial and drimenol (isolated from DCM extract) | Microsporum gypseum, Trichophyton rubrum and T. mentagrophytes | MIC 62.5 μg/mL | Amphotericin B (MIC 0.075–0.12 μg/mL) | |||
P. amphibia | Aqueous and EtOH | F, L | Staphylococcus aureus | 11–14 mm | Chloramphenicol (inhibition of 27 mm) | [28] |
P. capitata | Aqueous and EtOH (tannin-enriched and flavonoid-enriched fractions) | WP | S. aureus, Escherichia coli, Neisseria gonorrhoeae, Klebsiella pneumoniae and Proteus mirabilis | MIC 0.0022–1.37 mg/mL (Aqueous extract); 0.375–15 mg/mL (other fractions) | Ciprofloxacin (MIC 0.125–0.625 μg/mL) | [48] |
Aqueous and EtOH (gallic acid, triterpenoid and steroid-enriched fractions) | N. gonorrhoeae | MIC 0.375–4 mg/mL | ||||
P. chinensis | MeOH, aqueous, Chl and petroleum ether extract | L | C. albicans and C. krusei | 7–18.67 mm | Fluconazole, 30µg/disc (19.67–20.33 mm) | [49] |
K. pneumoniae, Bacillus cereus, Streptococcus viridians, Corynebacterium diphtheriae, Enterobacter aerogenes. Pseudomonas aeruginosa and Corynebacterium diphtheriae | 7.33–22.33 mm | Amoxicillin, 10 µg/disc (13–30.67 mm) | ||||
MeOH, aqueous, Chl and petroleum ether extract | WP | C. albicans, T. rubrum, Aspergillus niger, A. flavus and Cryptococcus neoformans | 11–21 mm (MIC 250–500 µg/mL) | Amphotericin B (22–28 mm, MIC 30 µg/mL) | [50] | |
K. pneumoniae, P. aeruginosa, Bacillus coagulans, B. subtilis, B. megaterium, B. aerogenes, Lactobacillus leichmanii and Salmonella typhi | 12–15 mm (MIC 250–500 µg/mL) | Tetracycline (25–38 mm, MIC 15.5–31.5 µg/mL) | ||||
P. ferruginea | Cardamonin (isolated from DCM extract) | AP | Epidermophyton floccosum | MIC 6.2 µg/mL | Amphotericin B (MIC 0.4–0.75 µg/mL); Terbinafine (MIC 0.004–0.04 µg/mL) | [8] |
Crude MeOH extract, sub-extracts (n-Hex and DCM) and Pashanone isolated from DCM extract | E. floccosum, M. gypseum, T. mentagrophytes and T. rubrum | MIC 25–125 µg/mL | ||||
Pashanone (isolated from DCM) | C. albicans, C. neoformans and Saccharomyces cerevisiae | MIC 25–50 µg/mL | ||||
P. glabra | MeOH and EtOAc extracts | WP | B. subtilis and Proteus vulgaris | 4–7 mm (MIC of 0.5–1 mg/mL) | [62] | |
2-methoxy-5-oxo-2,5-dihydrofuran-3-yl (2E)-(−)-3-phenylprop-2-enoate, 3-hydroxy-5-methoxystilbene and (-)-pinocembrin (isolated from MeOH extract) | AP | Mycobacterium tuberculosis | IC50 values of 2.27, 3.33 and 1.21 μg/mL, respectively | [63] | ||
P. hydropiper | Confertifolin (isolated from essential oils) | L | E. floccosum and Curvularia lunata | MIC 7.81 μg/mL | For fungi: Ketoconazole (MIC < 12.5 μg/mL); for bacteria: Streptomycin (MIC 25 μg/mL) | [71] |
Enterococcus faecalis | MIC 31.25 μg/mL | |||||
Drimenol (isolated from essential oils) | T. mentagrophytes, T. rubrum, T. simii and A. niger | MIC < 12.5 μg/mL | [72] | |||
Chl extract | R | A. niger, A. flavus, A. fumigatus and T. rubrum | 17–20 mm | |||
B. subtilis, B. megaterium, S. aureus, E. aerogenes, E. coli, P. aeruginosa, S. typhi and Shigella sonnei | 22–25 mm (MIC 16–64 µg/mL) | Kanamycin, 30 µg/disc (32.7–35 mm, MIC 2–8 µg/mL) | ||||
Polygodial | Sp | C. albicans, C. krusei, C. neoformans, S. cerevisiae, T. mentagrophytes, T. rubrum and Penicillium marneffei | MIC 0.39–6.25 µg/mL | Amphotericin B (MICs 0.2–1.56 µg/mL). | [73] | |
Crude MeOH extract and its fractions (saponins, chloroform and ethyl acetate sub-extract) | WP | Proteus mirabilis | 20–30 mm (MIC 25–40.5 μg/mL) | Ceftriaxone (35 mm, MIC 10 μg/mL) | [74] | |
Acetone and EtOH extracts | L, St | K. pneumoniae, Haemophilus influenzae, Morganella morganii | 10–19 mm | Ampicillin 10 µg (17–20 mm) | [75] | |
P. hydropiperoides | Polygodial (isolated from MeOH extract) | F, Sp | C. albicans, C. krusei, C. neoformans, C. utilis, S. cerevisiae, T. mentagrophytes, T. rubrum, P. marneffei and P. chrysogenum | MIC 0.78–12.5 µg/mL | Amphotericin B (MIC 0.2–1.56 µg/mL) | [73] |
EtOH extract | L | S. aureus | 9 mm | [94] | ||
Triterpenoids, tannins and flavonoids (isolated from MeOH extract) | F, L | Salmonella typhimurium | 16–19 mm | Thymol | [19] | |
P. lapathifolia | Pinostrobin chalcone and Pashanone (isolated from crude extract) | S | Trichoderma sp., Fusarium sp., Aspergillus sp. and Penicillium sp. | 10–22 mm | Clotrimazole (15–23 mm) | [96] |
E. coli | 12–18 mm | Gentamycin (17–19 mm) | ||||
Flavokawin and Pashanone (isolated from crude extract) | S. aureus | 9–13 mm | ||||
P. maculosa | DCM extract and isolated compounds (polygodial, isopolygodial and pinostrobin) | AP | M. gypseum, T. rubrum and T. mentagrophytes | MIC 7.8–62.5 μg/mL | Ketoconazole (MIC 0.02–0.25 μg/mL) and Amphotericin (MIC 0.07–0.5 μg/mL) | [11] |
Polygodial (isolated from DCM extract | C. albicans, C. neoformans and S. cerevisiae, | MIC 15.6–500 μg/mL | ||||
Persilben | WP | Trychophyton sp. | MIC 125–250 mg/L | [104] | ||
MeOH extract | L | E. coli | 100% | Ampicillin, 1 mg/mL | [105] | |
S. typhi and P. aeruginosa | 42–49% | |||||
Quinic, gallic and chlorogenic acid and quercetin 3-O-β-d-glucopyranoside (isolated from EtOH extract) | AP | P. aeruginosa and Salmonella enterica | Inhibition of biofilm formation of 50% | Dimethyl sulfoxide 0.1% (DMSO) | [106] | |
Pyocyanin production (toxin secreted by P. aeruginosa) | 47% | |||||
P. minor | MeOH and EtOH extracts (50 and 70%) | L | E. coli, B. subtilis and S. aureus | 11.9–16.2 mm | [110] | |
MeOH, Chl and petroleum ether extracts | Helicobacter pylori | 12.3–15.5 mm | [111] | |||
Aqueous-EtOH (30%) and aqueous (100%) extracts | E, faecalis, E. coli and S. aureus | 16.45–19.5 mm (concentration of 200 mg/mL) | Penicillin (20.7–25.5 mm at concentration of 10 mg/mL) | [112] | ||
Hex, DCM and MeOH extracts | B. cereus | 12.5–14.5 mm (MIC of 1.25–2.5 mg/mL) | Ampicillin (17.5 mm; MIC of 0.1 mg/mL) | [113] | ||
P. punctata | Polygodial (isolated from DCM extract) and DCM extract | AP | C. albicans, A. niger and Mucor sp. | [136,137] | ||
B. subtilis, S. aureus and Micrococcus luteus | ||||||
MeOH extract | E. faecalis, S. aureus, B. subtilis and Mycobacterium phlei | [138] | ||||
Isotadeonal and ethyl ether extract | P. aeruginosa and S. aureus | 75% (concentration of 100 µg/mL) | [139] | |||
P. senegalensis | Pyrazolines derivates of chalcones | AP | C. krusei, C. neoformans, S. aureus and C. glabrata, | IC50 7.56–13.74 µg/mL | Amphotericin B (IC50 0.37–1.38 µg/mL) and Ciprofloxacin (IC50 0.09 µg/mL) | [143] |
Hydroalcoholic (50%) extract | L | E. faecalis, B. subtilis and S. aureus | MIC 1.25–5 mg/mL | [144] | ||
P. tinctoria | Extract and tryptanthrin isolated from this extract | L | Streptococcus mutans, S. sobrinus, Porphyromonas gingivalis, Campylobacter rectus, Prevotella intermedia and Actinobacillus actinomycetemcomitans | MIC 1.74–3.48 µg/mL (for extract) and 6.25–25 ug/mL (for tryptanthrin) | [146] | |
Kaempferol (isolated from leaves extract) | S. mutans, S. sobrinus, P. gingivalis and P. intermedia | MIC 25–50 µg/mL | ||||
Tryptanthrin | WP | H. pylori | Inhibited 100% colony formation (dose of 10 µg/mL) | Amoxicillin, clarithromycin and omeprazole | [147] | |
P. arenastrum | MeOH extract | L, St | C. albicans | MIC 250 μg/mL | Chloramphenicol (MIC 0.156–1.25 μg/mL), amphotericin B and ketoconazole (MIC 0.04–0.31 μg/mL) | [157] |
C. krusei | MIC 62.5–15.63 μg/mL | |||||
P. aviculare | Chl extract | St | A. niger, A. flavus and A. fumigatus | 14–18 mm (MIC 1–5 mg/mL) | Cotrimoxazole antibiotic, 10 mg/g (18–34 mm) | [158] |
E. coli, P, mirabilis, P. aeruginosa, S. typhi, S. aureus and B. subtilis | 24–28 mm (MIC 8–15 mg/mL) | |||||
EtOH extract | AP | P. aeruginosa, S. aureus and Acinetobacter baumannii | 74–100% (at a concentration 1 mg/mL) | [159] | ||
P. bellardii | MeOH and EtOAc extracts, n-Hex, Chl and n-But fractions | AP | C. albicans | 11–20 mm (MIC 1–25 mg/mL) | Nystatin antibiotics, 25 µg/disc | [167] |
S. aureus, B. subtilis, E. coli and P. aeruginosa | 11–30 mm (MIC 1–5 mg/mL) | Cefotax, 15–30 ug/disc | ||||
P. cognatum | EtOH extract | L | C. albicans | MIC 2.5 mg/mL | [169] | |
S. aureus, P. aeruginosa and E. coli | MIC 0.156–0.625 mg/mL | |||||
WP | K. pneumoniae, S. aureus, E. coli, B. megatarium, C. albicans | 8–10 mm | Ceftriaxone and Nystatin 30 µg/disk (10–11 mm) | [170] | ||
P. maritimum | Phenolic compounds (isolated from EtOH extract) | AP | Penicillium sp., Aspergillus sp., Alternaria alternata and Fusarium semitectum | 19–34% (concentration of 1–5 mg/mL) | [174] | |
Crude extract | B. cereus, B. subtilis, S. aureus, A. baumannii, E. faecalis, P. mirabilis and Citrobacter freundii | MIC 0.12–4.02 mg/mL | [175] | |||
E. coli and P. aeruginosa | MIC 16.08–64.35 mg/mL | |||||
P. perfoliatum | EtOAc fraction | AP | S. aureus and Cutibacterium acnes | MIC of 0.25%, | Quercetin (MIC of 0.06–0.3%) and methyl paraben (MIC 0.13–0.25%) | [181] |
Water extract | S. aureus, E. coli, Streptococcus sp., Salmonella sp. and Pasteurella sp. | 0.56–21.86 mm (MIC 0.031–0.063 mg/mL) | [182] | |||
EtOH (75%) | S. aureus, B. subtilis and P. aeruginosa | MIC 5–10 mg/mL | [183] |
Species | Extract/Isolated Compounds | Part Used | Summarized Bioactivity | Ref. |
---|---|---|---|---|
P. equisetiforme | MeOH extract | Sh | DPPH scavenging activity from 12 to 51 mM TRE/g DW. EC50 of reducing power = 68–210 μg/mL. This capacity was attributed to different compounds such as quinic acid, gallic acid, (+ )-catechin, epicatechin, quercetin-3-O-β-d-galactoside, quercetin-3-O-α-l-rhamnoside and cirsiliol. | [171] |
P. glabra | Flavonoids, phenols, tannins, terpenoids and reducing sugars (isolated from MeOH extract) | L | DPPH free radicals with inhibitory concentration (IC50) of 79.81 μg/mL. | [64] |
P. lapathifolia | Isoquercitrin, hyperoside, quercitrin and taxifolin, gallic acid (isolated from MeOH extract) | AP | At a dose of 5 μM, compounds showed higher antioxidant activity than the standard quercetin (TEAC value of 1.16 μM for compounds and 1.1 μM for standard quercetin). Gallic acid was the most potent scavenger of hydroxyl radicals (inhibition of 70.8%) compared to the standards quercetin and Superoxide Dismutase (SOD) (inhibition of 66.2 and 77.2%, respectively). | [97] |
P. tinctoria | Flavonol O-glycosides with TMF as an aglycone | AP, S, Sp | DPPH scavenging activity from 500 µmol/g DW, (AP), 100 µmol/g DW (Sp) and 50 µmol/g DW (S). | [148] |
EtOAc fraction | St | Displayed high antioxidant activity (IC₅₀ 7.17 µg/mL) with respect to L-ascorbic acid (IC₅₀ 5.5 µg/mL). | [149] | |
MeOH extract | L, F | ABTS radical scavenging of 99.12 and 96.35 M TE/g DW (L and F, respectively). CUPRAC values of 78.37 and 86.22 M TE/g DW (L and F, respectively). | [150] | |
P. aviculare | Lyophilized EtOH extract | WP | DPPH and FRAP inhibition greater than 75% at a concentration of 50 µg/mL. NBT greater than 90% at a concentration of 5 µg/mL. Extract showed it can protect DNA in hydroxyl-radical-induced DNA strand scission assays. | [160] |
P. cognatum | EtOH extract | L | DPPH radical scavenging maximum of 18% and ABTS radical scavenging of 70%. Positive control BHT (DPPH and ABTS scavenging of 80%). | [169] |
P. maculosa | EtOH extract | AP | SC50 (concentration that scavenges the free radicals by 50%) of 12.5 µg/mL. FRAP value of 1.6 mmol TE/g extract. | [107] |
Persilben | AP | A 2.7 µM solution of persilben induced neutralization of DPPH radical by 40% (increase in content of persilben did not cause further reduction of DPPH). | [104] | |
MeOH extract | AP | DPPH = 93.02% and FRAP = 7.3 mg/g. Standard BHT = 86.5%. | [108] | |
P. senegalensis | MeOH extract | AP | DPPH = 68.13% and FRAP = 6.2 mg/g. Standard BHT = 86.5%. | [108] |
Hydroalcoholic (50%) extract | L | IC50 value for DPPH radical scavenging activities = 6.8 μg/mL. Positive control: L-ascorbic acid (IC50 value 1.25 μg/mL). | [144] | |
P. bistorta | MeOH and EtOH extracts | R | IC50 value of 49.20 µg/mL (MeOH) and 61.14 µg/mL (EtOH). | [39] |
MeOH extract and zinc oxide nanoparticles (ZnO-NPs) | R | MeOH extract showed higher DPPH and diammonium salt radical scavenging activity. Moreover, ZnO-NPs synthesized from root can inhibit the ABTS radicals, with IC50 value of 40 µg/mL and a dose-dependent activity. | [40] | |
P. amplexicaulis | Nine known compounds and a previously undetermined one (5, 6-dihydropyranobenzopyrone), amplexicine and gallic acid (isolated from EtOH extract) | AP | IC50 values of 10.2 µmol/L (5, 6-dihydropyranobenzopyrone), 12.2 µmol/L (amplexicine) and 14.4 µmol/L (gallic acid). | [30] |
Crude MeOH extract and their fractions (But, EtOH, EtOAc and aqueous) | Sh, L, Rh | All fractions and parts of plant displayed antioxidant activity (IC50 between 1.03 and 58.2 μg/mL), but leaf crude MeOH and EtOAc fraction were the most effective for radical scavenging activity DPPH, with IC50 = 1.03 and 3.1µg/mL, respectively. | [31] | |
P. chinensis | MeOH extract | WP, St, L | Potent antioxidant activity respect to the standard L-ascorbic acid and Rutin: IC50 from DPPH of 7.03–19.13 µg/mL. IC50 from lipid peroxidation of 16.32–25.31 µg/mL. IC50 from hydrogen peroxide method of 28.12–60.01 µg/mL. | [50] |
EtOAc fraction | AP | ORAC value of 0.965 μmol Trolox/mg. | [51] | |
P. chinense var. chinense and P. chinense var. hispidum | Aqueous extract | Exhibited moderate antioxidant activity, with IC50 values from 180.87 to 255.69 μg/mL (from chinense variety) and 182.96 to 250.84 μg/mL (from hispidum variety). Gallic acid, chlorogenic acid, ellagic acid, quercitrin and brevifolin carboxylic acid isolated from these species could explain the antioxidant ability. | [52] | |
P. minor | MeOH extract | L | DPPH inhibition of 80.3% and FRAP value of 377 µMol Fe (II) g−1. | [110] |
Aqueous and EtOH extracts | L | DPPH radical scavenging of 81.88 and 89.5% and FRAP value of 849.33 and 11,220 mmol/g, from aqueous and EtOH extracts, respectively. Authors have hypothesized that high levels of phenolic compounds (TPC 55.5–207 mg/g) may be the reason for the high antioxidant activity of this species. | [114] | |
P. bellardii | EtOAc extract and isolated compounds | AP | EtOAc extract showed at DPPH inhibition between 29.9 to 82.5%. Gallic acid and quercetin showed a minimum inhibition of 42.0–43.1% and maximum inhibition of 97.1–100%, values closely related to the reference’s L-ascorbic acid and quercetin (45–99.6%). | [167] |
P. hydropiper | EtOAc fraction | L | Strongly inhibited free radicals with an IC50 value of 13.3 mg/mL. | [76] |
Flavonoids belonging to the quercetin family | L | TEAC values of 3.46–6.14. | [77] | |
Essential oil | L, F | Significantly DPPH free radical scavenging, ABTS and H2O2, with IC50 values of 20, 180 and 45 μg/mL (for essential oil obtained from leaves) and 200, 60 and 50 μg/mL (for essential oil obtained from flowers), respectively. | [78] | |
P. paleaceum | Crude extract, EtOAc and But fractions | Rh | A good capacity on DPPH, with SC50 values of 16.72 µg/mL (crude extract), 10.64 µg/mL (EtOAc fraction) and 30.65 µg/mL (But fraction). Gallic acid, caffeic acid derivatives and procyanidin are the main compounds that play an important role for the antioxidant activity of this plant. | [24] |
P. sagittata | Gallic acid, methyl gallate, vanicoside A, quercetin, protocatechuic acid and vanicoside B (isolated from acetone extract) | St | Gallic acid showed the most potent DPPH scavenging activity (IC50 8.88 µM), followed by methyl gallate, vanicoside A, quercetin, protocatechuic acid and vanicoside B, with IC50 values of 15.37, 26.82, 29.18, 32.38 and 35.06 µM, respectively. Positive control: L-ascorbic acid (IC50 = 30.49 µM). | [142] |
P. maritimum | Acetone extract | AP | High O2 radical dot scavenging (RSA of O2) (IC50 = 40.4 μg/mL) and a moderate total antioxidant capacity and anti-lipid peroxidation (IC50 of 647 and 784 μg/mL). | [176] |
MeOH extract | L | IC50 from DPPH of 26 µg/mL, IC50 from FRAP of 48 µg/mL and IC50 from CCA of 770 µg/mL. Benzoic acid, phloroglucinol, phytol and linolenic acid were identified as possible compounds responsible for these bioactivities. | [177] | |
Crude extracts | AP | Good antioxidant scavenging effects on DPPH radical (7.71 µg/mL). Positive controls: BHA, L-ascorbic acid and quercetin (DPPH 2.59–2.61 µg/mL). | [175] | |
P. orientalis | Taxifolin | L, S | Inhibitory effect on DPPH radical of 100% at a concentration of 7.5 µmol/L and the IC50 value for taxifolin was 4.11 mmol/L. | [125] |
Species | Extract/Isolated Compounds | Part Used | Summarized Bioactivity | Ref. |
---|---|---|---|---|
P. chinensis | MeOH extract | AP | At a concentration of 300 μg/mL, extract significantly inhibited regulation of nitric oxide (NO) at 72% in RAW264.7 cells and prostaglandin (PGE2) production was strongly suppressed up to 53%. These authors tested a murine HCl/EtOH-induced gastric ulcer model to evaluate the anti-inflammatory activity in vivo and found that the extract exhibited a significant anti-gastric activity, compared with the standard anti-ulcer ranitidine (40 mg/kg). | [53] |
P. chinensis var. hispidum | Aqueous extract | AP | Ellagic acid and quercitrin inhibited the development of xylene-induced ear edema, with significant inhibition at a dose of 400 mg/kg. | [52] |
P. alpina | MeOH extract | Rh | HRBC (Human Red Blood Cell) membrane stabilization method and percentage of inhibition protein denaturation method were used for tested in vitro anti-inflammatory activity of MeOH and aqueous extracts which showed a good anti-inflammatory ability, with a membrane stabilizing activity of 81.29% and an inhibition of protein denaturation of 72.70%, compared to the standard Indomethacin (95.56 and 88.26%, respectively). | [27] |
P. hydropiper | MeOH extract | L | Extract blocked the production of NO, PGE2 and tumour necrosis factor on RAW264.7 cells and peritoneal macrophages. | [79] |
Aqueous extract | Sta | Extract attenuated the weight and length ratio of the colon, ameliorated the activity of MPO and the GSH content and regulated Cox-2, TNF-α and IL-1β levels in rats with TNBS-induced intestinal inflammation. | [80] | |
P. pubescens | α-Santalone (isolated from MeOH extract) | AP | The compound showed the most potent analgesic activity at a dose of 40 mg/kg b.w. (body weight), with an inhibition of acetic-acid-induced writhing response of 48.9%, compared to 62.2% for standard aminopyrine. | [191] |
P. lapathifolium var. lanatum | Hex and MeOH extracts | WP | Anti-inflammatory activity: extracts inhibited carrageenan induced inflammation in rat paw at 41.09% (Hex) and 30.15% (MeOH), with a dose of 300 mg/kg b.w. Standard drug: phenylbutazone (42.15% inhibition; at a dose of 100 mg/kg b.w.). Analgesic activity: MeOH extract showed the highest inhibition of acetic acid-induced writhing reflex (62.29%; dose of 300 mg/kg b.w.), Standard drug: aminopyrine (69.94%). | [98] |
P. bellardi | MeOH extract, their fractions (EtOAc and But) and isolated compounds (quercetin/its derivatives and myricetin/its derivatives) | AP | But extract was the most inhibitor of 5-lipoxygenase (5-LOX) (IC50 14.20 mg/mL), followed by EtOAc extract, MeOH extract, myricetin and quercetin (23.16, 24, 34.25 and 43.81 mg/mL, respectively). In addition, EtOAc and But extracts, myricetin and its glycosylated derivatives showed a significant inhibition of PGE2 release (15.23–42.81%). | [168] |
P. orientalis | MeOH extract | L | At dose-dependent, extract exhibited a moderate inhibition percentage of haemolysis (50.37%). Positive control: hydrocortisone (inhibition of 86.56%). Extract showed a good percentage of inhibition protein denaturation (79.22%). Positive control: diclofenac Na (inhibition of 86.85%). | [126] |
EtOAc and ethyl ether extracts | St, L | All doses tested (3.75, 5 and 7.5 g/kg) of the two extracts showed anti-inflammatory and analgesic activity, significantly inhibiting ear edema and significantly decreasing writhing in mice. | [127] | |
P. stagnina | Hex, EtOAc and MeOH extracts | AP | The most potent analgesic activity was observed with the EtOAc extract (writhing inhibition of 50.3% at a dose of 400 mg/kg b.w.), while Hex extract showed the highest levels of anti-inflammatory activity (carrageenan-induced edema inhibition of 60.1% at a dose of 200 mg/kg b.w.), a much better effect than that of the conventional anti-inflammatory agent phenylbutazone (maximum 38.3% after 4 h). | [145] |
P. maritimum | MeOH and DCM extracts | L | Extracts showed significant inhibition of NO production by LPS-stimulated RAW 264.7, at a concentration of 100 µg/mL. β-sitosterol, stigmasterol, 1-octacosanol and linolenic acid were identified as the possible compounds responsible for these bioactivities. | [177] |
Acetone extract | AP | Extract showed a potent ability to reduce NO production on LPS-stimulated RAW 264.7 macrophages (IC50 of 22.0 μg/mL). Positive control: L-NAME (IC50 of 27.6 μg/mL). | [176] | |
P. jucundum | EtOH extract | AP | Extract inhibited inflammatory reactions that cause instant irritation of the mouse ear, significantly inhibiting inflammatory mediators such as RAW264.7 cells (amurine macrophage cell line), production of NO, tumour necrosis factor TNF-α and IL-6 production in a dose-dependent manner. Flavonoids and sesquiterpene lactones may be responsible for the anti-inflammatory effect. | [173] |
P. minor | Aqueous and EtOH extracts | AP | At a dose of 30 µg/mL, EtOH extract inhibited the activities of lipoxygenase and cyclooxygenase-1, while the aqueous extract completely reduced paw edema induced by λ-carrageenan at doses of 100 or 300 mg/kg b.w. | [115] |
P. punctata | Decoction and EtOH-water extract | WP | Exhibited anti-inflammatory activity against the carrageenan-induced pedal edema/Gastric intubation in vivo. | [140] |
P. tinctoria | Tryptanthrin (isolated from EtOH extract) | L | Compound significantly inhibited the protein expression of iNOS and COX-2, suppressed the activation of p38 MAPK pathway and inhibited the TLR4 and MyD88 protein expression in LPS-stimulated BV2 microglial cells. | [151] |
Polyphenolic fraction | L | Reduced NO synthesis in murine RAW264 macrophage cells stimulated with LPS, which showed a good analgesic activity. | [148] | |
Extracts | St | Exhibited protective effects of DNA damage against oxidative stress and anti-inflammatory effects by its capacity for NO suppression in LPS-induced RAW264.7 cells. | [149] | |
P. barbata | Petroleum ether extract | AP | Inhibition of 39.3% paw edema after 2 h at a dose of 400 mg/kg b.w. (inhibitory ability slightly higher than that of the conventional anti-inflammatory agent phenylbutazone, 38.3% after 4 h). | [35] |
P. vivipara | 2-propanol extract | Exhibited anti-inflammatory activity against LPS-induced inflammation in RAW264.7 macrophages (IC50 = 270 µg/mL) by inhibiting NO, prostaglandin, interleukin and tumour necrosis factor (TNF)-α release at similar levels as positive control. | [156] | |
P. bistorta | But extract | Extract exhibited analgesic effect, as it could reduce the writhing times of the mice induced by acetic acid and raised the threshold of pain induced by hot and electric stimulation. | [41] | |
P. paleaceum | Extracts | Extracts reduced malondialdehyde (MDA) content in inflamed paws, inhibited NO synthase and β-NAG activities and significantly reduced the content of NO, IL-1β and TNFα in exudates. | [180] | |
P. glabra | Quercetin and quercetin glycosides | L | Compounds showed maximum effect at 90 min with latency time of 18.78 and 15.07 min, respectively (at doses of 200 mg/kg); the chemically induced writhing tests (for the evaluation of peripheral analgesic activity) showed maximum inhibition of writhing = 74.18% (quercetin) and 61.73% (quercetin glycosides) at a dose of 200 mg/kg in comparison with aspirin (dose of 50 mg/kg; inhibition of writhing = 78.41%). | [65] |
P. capitata | Aqueous and EtOH extracts | WP | Significant inhibition of edema in animal models (76.19% and 71.13%, respectively) at a dose of 0.30 g/kg. | [48] |
P. perfoliatum | Quercetin-3-O-β-d-glucuronide | At a concentration of 8 mg/kg, compound suppressed ear edema induced by dimethyl benzene and peritoneal permeability induced by acetic acid in mice (45.96 and 40.10%, respectively), showing higher inhibition percentage respect to aspirin (24.62 and 34.38%, concentration 100 mg/kg). | [184] |
Species | Extract/Isolated Compounds | Part Use | Cell Line | Summarized Bioactivity | Ref. |
---|---|---|---|---|---|
P. amphibia | Flavonoid glucosides: quercetin 3-O-β-d-glucopyranoside and quercetin-3-O-α-rhamnosyl-(1-2)-β-glucoside (isolated from butanoic fraction) | AP | Jurkat | EC50 1.2 and 0.12 µM. | [29] |
HL60 | EC50 0.98 and 0.01 µM. | ||||
P. amplexicaulis | Flavonoids (isolated from EtOH extract) | Rz | HepG2, Huh-7, H22, SMMC-7721 | At a dose-time dependence: reduced cell viability, induced cell apoptosis and increased expression of SHP-1 (tyrosine phosphatase catalysing STAT3 dephosphorylation protein). | [32] |
Amplexicaule A (isolated from EtOH extract) | MCF-7 and MDA-MB-435 | At a concentration of 150 mg/kg: suppressed tumour mass in 0.6–0.7 g (respect to positive control Capecitabine 10 mg/kg, 0.5–0.6 g), induced apoptosis in cancer cells, increased caspase-3, -8, -9 and PARP (enzymes and proteins that catalyse apoptosis) levels and suppressed MCL-1 and BCL-2 expression. | [33] | ||
P. barbata | Methyl (2S,3S)-2-(3,4-dimethoxyphenyl)-4-((E)-3-ethoxy-3-oxoprop-1-en-1-yl)-7-methoxy-2,3 dihydrobenzo-furan-3-carboxylate (1) and (E)-3-((2S,3S)-2-(3,4-dimethoxyphenyl)-7-methoxy-3-(methoxy carbonyl)-2,3-dihydrobenzofuran-4-yl) acrylic acid (2) (isolated from EtOAc fraction) | WP | CAL-27 and NCI H460 | IC50 of 48.52 and 53.24 µM (for 1) and 86.95 and 93.34 µM (for 2). Standard drugs: 5-Fluorouracil, IC50 97.76 µM (for CAL-27) and Cisplatin, IC50 19 µM (for NCI H460). Compound 1 induced apoptosis in CAL-27 cell line after 24 to 48 h treatment. | [36] |
Petroleum ether extract | AP | Potato disc assay | Moderate activity, with inhibition of tumour growth of 57.1% at a concentration of 400 µg/disc and IC50 value of 290 µg/disc.Positive control: vincristine sulphate 3.125 µg/disc, 100% inhibition tumour). | [37] | |
P. bistorta | Gallic acid, protocatechuic acid, syringic acid, catechol, syringol, 4-methyl catechol, myristic acid (isolated from MeOH-water extracts) | Rz | HCCLM3 | Cell viability < 30% (at a dose of 200 µg/mL) and GI50 values between 86.5 to 126.8 µg/mL. | [42] |
Aqueous extract | WP | Hep3B | Inhibited autophagosome and proteasome activity, resulting in restriction of cell motility and apoptosis induction in Hep3B cells. | [43] | |
Zinc oxide nanoparticles (ZnO-NPs) (synthesized using P. bistorta extract) | R | MCF-7 | Effective dose-dependent activity, with a percentage of cells viability < 10% (at a concentration of 125 µg/mL). | [40] | |
n-Hex and Chl fractions and its sub-fractions | Rz | P338, HepG2, J82, HL60, MCF7, LL2 | Fractions were effective against all cell lines, but showed the highest cytotoxicity against P338, HL60 and LL2 (IC50 < 10–62.4 µg/mL). Sub-fractions showed cytotoxicity against all cell lines, with IC50 values between < 10–91.2 μg/mL. | [44] | |
P. chinensis | Corilagin and ellagic acid | WP | SiHa | Effective dose-dependent activity, with cell inhibition of 59 and 81% (at a concentration of 100 µM) and IC50 values of 21.5 and 28.7 µM, respectively. | [54] |
P. decipiens | Phenolic acids and flavonoids (isolated from MeOH extract) | L, S | CaCo-2, PC3 | IC50 = 0.5–1.1 µg/mL. | [58] |
P. glabra | (-)-pinocembrin (isolated from MeOH extract) | AP | THP-1, A549, PANC-1, HeLa, MCF7 | IC50 values between 1.88 to 11.00 mg/mL. | [63] |
P. hydropiper | MeOH extract and its fractions (saponins, Chl and EtOAc) | WP | Potato disc anti-tumour assay | Assays were performed on Agrobacterium tumefaciens containing tumour-inducing plasmid. Tumour inhibitions between 80 to 90% (at a dose of 1000 µg/mL) and IC50 values between 18.39 and 342.53 µg/mL. | [83] |
β-sitosterol and stigmasterol (isolated from Chl and EtOAc fractions) | AP | NIH/3T3, HeLa, MCF-7 | Effective dose-dependent activity, with percentage of cytotoxicity between 67.05 and 87.5% and IC50 of 170–425 µg/mL (for β-sitosterol) and 60–170 µg/mL (for stigmasterol). | [84] | |
MeOH extract | AP | EAC | Cell growth inhibition of 84.54% (at a concentration of 50 mg/kg/day) and improved at a 68% the survival of mice. | [85] | |
L | Significantly decreased tumour volume, packed cell volume and viable tumour cell and increased non-viable tumour cell. At a dose of 100 mg/kg, the median survival time (MST) was 37.21, respect to reference bleomycin (46.60). | [86] | |||
P. lapathifolia | Pinostrobin (isolated from petroleum ether extract) | AP | Jurkat and HL60 | Dose-dependent effects, with a percentage of apoptotic cells > 70% (at a dose of 1 µM) and a percentage of necrotic cells > 80% (at a dose of 10 µM). | [99] |
Vanicoside B and lapathoside A (extracted with MeOH) | EBV-EA | Carcinogenesis was induced by 7,12-dimethylbenz[a]anthracene (DMBA, as initiator), (E)-methyl-2-[(E)-hydroxyamino]-5-nitro-6-methoxy-3-hexenamide (NOR-1) and 12-O-tetradecanoylphorbol-13-acetate (TPA) as a promoter. The number of papillomas per mouse were reduced at 3.4 and 2.6 after 15 weeks compared to the control (DMBA + TPA, 9.1 papillomas per mouse). In the NOR-1 + TPA treatment, vanicoside B reduced the number of papillomas from 7.2 (control) to 3. | [100] | ||
P. limbata | Cardamomin and 2′,4′-dihydroxy-3′,6′-dimethoxychalcone (isolated from MeOH extract) | AP | MCF-7, THP-1, PC-3, HeLa | Proliferation inhibition > 50%. The best activity was observed against THP-1 cell line, with IC50 < 4 µg/mL. | [102] |
Flavonoids | L | CCRF-CEM, MDA-MB-231-pcDNA3, HCT116, U87MG, HepG2 | The flavonoid 4-hydroxy-2,6-dimethoxychalcone, showed the best activity against all cell lines, with IC50 values of 9.37, 19.58, 6.8, 35.25 and 58.63 µM. The flavonoids cardamomin and 2,4-dihydroxy-3,6-dimethoxychalcone were effective against CCRF-CEM cell line (IC50 of 8.59 and 10.67 µM, respectively). | [103] | |
P. minor | EtOAc (100%), aqueous-EtOH (50%), MeOH (100%), EtOH (70%) extracts and aqueous solution (100%) | L | HT-29, HCT-116, CT-26 | EtOAc extract (100%) showed the highest cytotoxic effect against HCT-116 and CT-26 and Aq-EtOH extract (50%) was the most effective against HT-29 cell line (IC50 of 7.0 and 24.0 µg/mL, respectively). Aq solution (100%), MeOH (100%) and EtOH (70%) extracts showed moderate activity, with IC50 of 34.0–78.0 µg/mL (HT-29), 13.0–33.0 µg/mL (HCT-116) and 20.0–29.0 µg/mL (CT-25), respectively. IC50 values for standard agent Doxorubicin: 0.63 (HT-29), 0.46 (HCT-116) and 0.14 µg/mL (CT-26). | [116] |
Polygonumins A (extracted with MeOH) | St | K562, MCF7, HCT116 | Good activity compared to the positive control Doxorubicine (IC50 = 2.25–3.24 and 0.52–2.97 µg/mL, respectively). | [117] | |
P. orientalis | EtOAc and n-But extracts | F | HeLa, SMMC-7721 | Proliferation inhibition about 40–60% at doses between 50 to 450 µg/mL and after 48 h. | [128] |
EtOAc and Acetone extracts | Fr | 95D | IC50 values = 199.1 mg/L (for EtOAc extract) and 261.2 mg/L (for acetone extract). | [129] | |
P. senegalensis | Phenolic acids and flavonoids (isolated from MeOH) | L, S | CaCo-2, PC3 | IC50 1.5–3.5 µg/mL. | [58] |
P. stagnina | EtOAc and n-Hex extracts | AP | Potato assay disc | Moderate activity, with inhibition of tumour growth between 50 to 78.6% at a concentration of 200–400 µg/disc and IC50 values = 180 and 200 µg/disc (for EtOAc and n-Hex extracts, respectively). Positive control: vincristine sulphate 3.125 µg/disc, 100% inhibition tumour). | [37] |
P. tinctoria | MeOH and EtOH extracts | F, L, St, S | HEK 293, HCT-116, HeLa, Hep3B, MCF-7, SNU-1066, SNU-601 | EtOH extract from flowers was the most effective against all cell lines, except for MCF-7 and SNU-601, with survival rate of cancer cells = 5.10–25.27%. Leaves’ MeOH extract showed a good activity against HCT-116, HeLa, Hep3B and SNU-1066 (survival cancer cells = 6.89–26.47%); stems’ MeOH extract was effective against Hep3B and SNU-1066 (survival cancer cells = 26.94–29.28%); and seeds’ MeOH extract showed a good activity against HEK 293, HeLa, Hep3B and SNU-601 (survival cancer cells = 22.89–29.85%). | [150] |
Tryptanthrin (isolated from EtOAc extract) | L | U-937, HL-60 | Compound showed 100% of cytocidal effects on both cell lines (at a concentration of 6.3 mg/mL) and inhibited DNA synthesis at dose-dependency. | [152] | |
P. aviculare | MeOH extract | AP | MCF-7 | The extract induced cytotoxicity in MCF-7 cell line, with a 99% of cell death at the concentration of 400 ng/µl after 24 hrs. | [161] |
Hela-S | Showed cytotoxic effect at IC50 values between 0.27 and 0.41 mg/mL and caused complete apoptosis at 24 h of treatment. | [162] | |||
P. bellardii | MeOH, EtOAc and n-But extracts and isolated compounds (gallic acid, quercetin/its derivatives and myricetin/its derivatives) | AP | HeLa, MCF-7, HepG-2 | At a concentration between 130 and 170 µg/mL, all extracts and fractions inhibited cell viability at 20% of all cell lines tested. n-But extract was the most potent against three cell lines (IC50 = 15.26, 50.66 and 30.09 µg/mL, respectively); MeOH and EtOAc extracts showed a good activity against HeLa cells (IC50 = 48.6 and 44.14 µg/mL, respectively); and quercetin derivatives and myricetin and its derivatives were effective against HepG-2 (IC50 between 41.03 to 70.77 µg/mL). | [168] |
P. cognatum | EtOH extract | L | MDA-MB-231 | MDA-MB-231 cell viability < 50% and IC50 = 0.053 mg/mL. | [169] |
P. perfoliatum | 8-oxo-pinoresinol (isolated from MeOH extract) | T | Bcap-37, SMMC-7721, K562, RKO, PC3 | IC50 values from 8.32 to 30.1 µg/mL (positive control Mitomycin, IC50 values from 1.75 to 6.24 µg/mL). | [20] |
EtOAc extract | AP | Smur180, SGC-7901, Colo320, PC-3, HL60 | Smur180 inhibition cells = 58.46% (at a dose of 200 mg/kg) and inhibited the growth and proliferation of other cell lines, with IC50 < 50 µg/mL. | [185] | |
AP | PANC-1, PC-3, SGC-7901, BT-325, HepG2, A549, Hela | Inhibition cell lines = 70.1–90% and IC50 values between 20.6 to 40.7 µg/mL. Furthermore, the extract arrested cells at G2 phase, increased the proliferation of T and B lymphocytes, promoted the activities of NK and cytotoxic T lymphocytes (CTLs) and induced cell apoptosis. | [186] | ||
P. thunbergii | Isorhamnetin | AP | NIH3T3, SW620 | The compound decreased the percentage of cell proliferation with IC50 values of 4.1 µg/mL (for NIH3T3) and 22.4 µg/mL (for SW620). | [192] |
P. viscosum | MeOH crude extract | B | Brine shrimp lethality test | The extract showed a good cytotoxic ability respect to the standard Vincristine sulphate (IC50 = 6.34 and 0.825 µg/mL, respectively). | [194] |
Quercetin 3-O-(6-feruloyl)-β-d-galactopyranoside | WP | OVCAR-3 | IC50 = 13.33 µg/mL. Authors considered that this effect could be attributed to the presence of moieties such as quercetin, galactosyl and principally feruloyl in this compound. | [195] |
Species | Extract/Isolated Compounds | Part Use | Pathogen | Summarized Bioactivity | Ref. |
---|---|---|---|---|---|
P. chinensis | MeOH, But and EtOAc extracts. | WP | H3N2-HK, H1N1-PR8, Lee | EC50 = 18.3–38.4 µg/mL (for H3N2) and 45.9–70.1 µg/mL (for H1N1and Lee). | [55] |
Ellagic acid, methyl gallate and caffeic acid (isolated from EtOAc extract) | Significantly inhibited viral replication (EC50 = 14.7–81.1 µg/mL) by suppressing virus replication in cells. | ||||
P. ferruginea | EtOH extract | AP | HHV-1, DEN-2, VACV-WR | EC50 values = 21.1, 24.6 and 34.2 µg/mL, respectively. | [60] |
P. glabra | 2-methoxy-5-oxo-2,5-dihydrofuran-3-yl (2E)-(−)-3-phenylprop-2-enoate (isolated from MeOH extract) | AP | HIV-1VB59, HIV-1UG070 | IC50 values = 15.68–22.43 mg/mL. | [63] |
P. lapathifolia | Lapathoside A and D, vanicoside B and hydropiperoside (isolated from MeOH extract) | AP | EBV-EA | Inhibition of activation on EBV-EA higher than 85, 60 and 30%. | [100] |
P. minor | Polygonumins A | St | HIV-1 | Inhibition of HIV-1 protease = 56.51% (positive control Pepstatin A, inhibition = 81.48%). The authors considered that the phenyl propanoid glycoside moiety present in Polygonumins A, may be the responsible for the anti-HIV protease activity. | [117] |
EtOH extract | L | HSV-1, VSV | MIC values = 0.01 and 0.02 mg/mL (for HSV-1 and VSV, respectively). | [118] | |
P. punctata | Aqueous extract | AP | HSV-1, RSV | ED50 values = 169.7 and 120 µg/mL (for HSV-1 and RSV, respectively) | [141] |
MeOH | WP | HSV-1 | At a MIC of 20 µg/mL, the extract caused the complete virus inactivation. | [138] | |
P. tinctoria | MeOH and EtOAc extracts | WP | H1N1-PR8, HSV-1, VV, MCMV, VSV | IC50 values between 1.25 and 16.6 µg/mL (for MeOH extract) and 0.63 to 50 µg/mL (for EtOAc extract). | [153] |
Aqueous extract | L | HIV-1 | Inhibition of HIV-1 (IIIB) infection at EC50 value of 0.5 µg/mL. | [154] | |
P. perfoliatum | Quercetin-3-O-β-d-glucuronide | WP | influenza A virus | Inhibition of 27.94%, at a concentration of 6 mg/kg (reference drug Ribavirin, inhibition of 23.97%). | [184] |
Flavonoids (extracted with MeOH and n-Hex) | L | HSV-1 | At a concentration of 62.5 µg/mL, flavonoids reduced more than 80% the number of plaques in infected cultures, in the same way as the control ACV. At a dose of 30 mg/kg/day, the survival and mean survival time (MST) of mice induced with encephalitis HSV-1 were 80% and 19.0 days, respectively, higher values compared with the control ACV (survival of 70% and MST = 18.5 days). | [187] | |
Gallic acyl groups (isolated from n-But and water extracts) | WP | HBV | Inhibition up to 74% secretion of antigen (HBeAg). | [188] | |
P. viscosum | Quercetin 3-O-(6-feruloyl)-β-d-galactopyranoside and viscoazulone | WP | HIV-1 | Reverse transcriptase inhibitory activity with IC50 values of 33.13 and 25.61 mg/mL (for quercetin and viscoazulone, respectively). | [195] |
Species | Extract/Isolated Compounds | Part Use | Pathogen | Summarized Bioactivity | Ref. |
---|---|---|---|---|---|
Anti-malarial | |||||
P. acuminata | MeOH extract | L | P. falciparum | IC50 = 8 µg/mL | [26] |
P. glabra | EtOH extract | L | Plasmodium sp. | IC50 = 6.6 µg/mL | [66] |
Anti-trypanocide | |||||
P. decipiens | 2,4-dimethoxy-6-hydroxychalcone (chalcone 1) and 2,5-dimethoxy-4,6-dihydroxychalcone (chalcone 2) | AP | T. brucei T. congolense | EC50 = 1.8–8.8 µM (for chalcone 1) and 13.9–34 µM (for chalcone 2). Positive controls: Diminazene (EC50 = 0.15–1.43 µM) and Pentamidine (EC50 = 0.0034–0.72 µM). | [59] |
P. ferruginea | n-Hex, DCM and EtOAc extracts | AP | T. cruzi T. brucei | IC50 values = 8.6–10.5 µg/mL (for Hex and dichloromethane extracts) and 50–90 µg/mL (for EtOAc extract). Positive controls: Pentamidine (IC50 = 6.4 and 2.2 µg/mL) and Benznidazole (IC50 = 34.7 and 54.1 µg/mL). | [61] |
2′-hydroxy-4′,6′-dimethoxychalcone, flavokawin B (1), 2′,6′-dihydroxy-3′,4′-dimethoxychalcone, pashanone (2) and (2′,4′- dihydroxy-6′-methoxychalcone, cardamonin or alpinetin chalcone (3) (isolated from Hex extract) | Compounds 1, 2 and 3 were effective against T. cruzi (IC50 between 9.5 and 32.3 µM). Against T. brucei, only compound 1 was active, with IC50 = 6.2 (for strain 427) and 4.8 µM (for strain 29–13). | ||||
MeOH extract | T. cruzi | IC50 = 37 µg/mL. | [26] | ||
P. hydropiper | Cardamomin, vanicoside F, ketopinoresinol, isorhamnetin and pinosylvin (isolated from DCM soluble portion) | WP | T. brucei | IC50 = 0.49–0.8 µg/mL (for cardamomin) and 0.49–7.77 µg/mL (for other compounds). Positive control: α-difluoromethylornithine (DFMO), IC50 = 3.02 µg/mL. | [87] |
Anti-leishmanial | |||||
P. glabra | Aqueous extract | WP | Leishmania tropica | At a minimal concentration tested (0.05 µg/mL), extract showed a 4.23% parasite mortality, while using a concentration of 50 µg/mL, the mortality raised up to 68.1%. | [67] |
P. hydropiperoides | MeOH extract | F | Leishmania amazonensis | IC50 = 73 µg/mL. | [95] |
Anthelmintic | |||||
P. alpina | MeOH extract | Rz | Earthworms | Earthworms’ death times = 71.4 min at a concentration of 100 mg/mL (standard Albendazole, death time = 56.6 min). | [27] |
P. chinensis | Aqueous and MeOH extracts | L | Pheretima posthuma | Inhibition and death at 5.83 and 16.5 min (for Aqueous extract), respectively, and at 9.25 and 19.67 min (for MeOH extract), respectively, at a dose = 100 mg/mL. Standard drug: Albendazole (inhibition and death at 5.33 and 6.92 min). | [56] |
P. hydropiper | MeOH extract | AP | P. posthuma | At the extract concentration of 50 mg/mL, the time of paralysis and death of earthworms were 12.44 and 18.19 min. Positive control: Piperazine citrate, 10 mg/mL (time of paralysis and death = 24 and 38 min, respectively). | [85] |
Saponins, Chl and n-But (fractionated from MeOH extract) | WP | P. posthuma | Paralysis time between 8 and 11 min and death time between 50 and 66.33 min at a concentration of 10 mg/mL. | [88] | |
P. lapathifolia | MeOH extract | St | P. posthuma | At a concentration of 60 mg/mL, the times taken for paralysis and death were 9 and 23.66 min, respectively. Standard drug: Piperazine citrate, 10 mg/mL (time taken for paralysis and death = 9.33 and 36 min, respectively). | [101] |
P. muricatum | EtOH extract | L | Earthworms | At a concentration of 100 mg/mL, the paralysis and death times were 35 and 43 min, respectively. Standard drug: Albendazole (paralysis and death time = 20 and 30 min, respectively). Phytochemical analysis identified various constituents such as alkaloids, carbohydrates, glycosides, phytosterols, phenolic compounds, tannins, saponins, proteins and amino acids. | [179] |
P. viscosum | MeOH extract | [194] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seimandi, G.; Álvarez, N.; Stegmayer, M.I.; Fernández, L.; Ruiz, V.; Favaro, M.A.; Derita, M. An Update on Phytochemicals and Pharmacological Activities of the Genus Persicaria and Polygonum. Molecules 2021, 26, 5956. https://doi.org/10.3390/molecules26195956
Seimandi G, Álvarez N, Stegmayer MI, Fernández L, Ruiz V, Favaro MA, Derita M. An Update on Phytochemicals and Pharmacological Activities of the Genus Persicaria and Polygonum. Molecules. 2021; 26(19):5956. https://doi.org/10.3390/molecules26195956
Chicago/Turabian StyleSeimandi, Gisela, Norma Álvarez, María Inés Stegmayer, Laura Fernández, Verónica Ruiz, María Alejandra Favaro, and Marcos Derita. 2021. "An Update on Phytochemicals and Pharmacological Activities of the Genus Persicaria and Polygonum" Molecules 26, no. 19: 5956. https://doi.org/10.3390/molecules26195956