Rational Construction of a Responsive Azo-Functionalized Porous Organic Framework for CO2 Sorption
Abstract
1. Introduction
2. Results
2.1. Structural Description
2.2. Gas Sorption Properties
3. Materials and Methods
3.1. Materials and General Methods
3.2. Synthesis of JJU-1
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yu, J.; Xie, L.H.; Li, J.R.; Ma, Y.; Seminario, J.M.; Balbuena, P.B. CO2 Capture and Separations Using MOFs: Computational and Experimental Studies. Chem. Rev. 2017, 117, 9674–9754. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Mandal, S.K. A Highly Stable Triazole-Functionalized Metal-Organic Framework Integrated with Exposed Metal Sites for Selective CO2 Capture and Conversion. Chem. Eur. J. 2020, 26, 2658–2665. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Sun, Q.; Gao, W.; Perman, J.A.; Sun, F.; Zhu, G.; Aguila, B.; Forrest, K.; Space, B.; Ma, S. A Stable Metal–Organic Framework Featuring a Local Buffer Environment for Carbon Dioxide Fixation. Angew. Chem. Int. Edit. 2018, 57, 4657–4662. [Google Scholar] [CrossRef] [PubMed]
- Pelech, I.; Sibera, D.; Staciwa, P.; Narkiewicz, U.; Cormia, R. Pressureless and Low-Pressure Synthesis of Microporous Carbon Spheres Applied to CO2 Adsorption. Molecules 2020, 25, 5328. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Perman, J.A.; Zhu, G.; Ma, S. Metal–Organic Frameworks for CO2 Chemical Transformations. Small 2016, 12, 6309–6324. [Google Scholar] [CrossRef]
- Demakov, P.A.; Volynkin, S.S.; Samsonenko, D.G.; Fedin, V.P.; Dybtsev, D.N. A Selenophene-Incorporated Metal–Organic Framework for Enhanced CO2 Uptake and Adsorption Selectivity. Molecules 2020, 25, 4396. [Google Scholar] [CrossRef]
- Tian, Y.Y.; Zhu, G.S. Porous Aromatic Frameworks (PAFs). Chem. Rev. 2020, 120, 8934–8986. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.-Y.; Li, H.-K.; Zhu, Q.-Q.; Yuan, R.; He, H. An Intriguing Electrochemical Impedance Aptasensor Based on a Porous Organic Framework Supported Silver Nanoparticles for Ultrasensitively Detecting Theophylline. Chin. Chem. Lett. 2021. [Google Scholar] [CrossRef]
- Tan, L.X.; Tan, B. Hypercrosslinked Porous Polymer Materials: Design, Synthesis, and Applications. Chem. Soc. Rev. 2017, 46, 3322–3356. [Google Scholar] [CrossRef]
- Han, Z.-Y.; Zhu, Q.-Q.; Zhang, H.-W.; Yuan, R.; He, H. A Porous Organic Framework Composite Embedded with Au Nanoparticles: An Ultrasensitive Electrochemical Aptasensor toward Detection of Oxytetracycline. J. Mater. Chem. C 2020, 8, 14075–14082. [Google Scholar] [CrossRef]
- Chen, P.; Sun, J.S.; Zhang, L.; Ma, W.Y.; Sun, F.X.; Zhu, G.S. Porous Aromatic Framework (PAF-1) as Hyperstable Platform for Enantioselective Organocatalysis. Sci. China Mater. 2019, 62, 194–202. [Google Scholar] [CrossRef]
- Cardoso, V.F.; Correia, D.M.; Ribeiro, C.; Fernandes, M.M.; Lanceros-Mendez, S. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications. Polymers 2018, 10, 161. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Jena, H.S.; Lecoeuvre, F.; Leus, K.; van der Voort, P. Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO2/CH4 Gas Separation. Molecules 2021, 26, 3670. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Suneesh, C.V. Post-Synthetic Modification of Fluorenone Based Hypercrosslinked Porous Copolymers for Carbon Dioxide Capture. J. Solid State Chem. 2021, 299, 122152. [Google Scholar] [CrossRef]
- Maya, E.M.; Valverde-Gonzalez, A.; Iglesias, M. Conversion of CO2 into Chloropropene Carbonate Catalyzed by Iron (II) Phthalocyanine Hypercrosslinked Porous Organic Polymer. Molecules 2020, 25, 4598. [Google Scholar] [CrossRef]
- Xu, G.; Zhu, Y.; Xie, W.; Zhang, S.; Yao, C.; Xu, Y. Porous Cationic Covalent Triazine-Based Frameworks as Platforms for Efficient CO2 and Iodine Capture. Chem. Asian J. 2019, 14, 3259–3263. [Google Scholar] [CrossRef]
- Yu, H.; Xu, S.; Liu, Y.; Chen, H.; Li, H. A Porous Organic Poly(triphenylimidazole) Decorated with Palladium Nanoparticles for the Cyanation of Aryl Iodides. Chem. Asian J. 2018, 13, 2708–2713. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Gao, Y.C.; Zhang, C.; Liu, M.; Geng, T.M. The Effects of the Crosslinking Position and Degree of Conjugation in Perylene Tetraanhydride Bisimide Microporous Polymers on Fluorescence Sensing Performance. RSC Adv. 2020, 10, 5108–5115. [Google Scholar] [CrossRef]
- Wang, D.Y.; Wang, W.J.; Wang, R.; Xi, S.C.; Dong, B. A Fluorescent Covalent Triazine Framework Consisting of Donor-Acceptor Structure for Selective and Sensitive sensing of Fe3+. Eur. Polym. J. 2021, 147, 110297. [Google Scholar] [CrossRef]
- Feng, L.J.; Chen, Q.; Zhu, J.H.; Liu, D.P.; Zhao, Y.C.; Han, B.H. Adsorption Performance and Catalytic Activity of Porous Conjugated Polyporphyrins via Carbazole-Based Oxidative Coupling Polymerization. Polym. Chem. 2014, 5, 3081–3088. [Google Scholar] [CrossRef]
- Wu, Y.; Li, L.; Yang, W.; Feng, S.; Liu, H. Hybrid Nanoporous Polystyrene Derived from Cubic Octavinylsilsesquioxane and Commercial Polystyrene via the Friedel-Crafts Reaction. RSC Adv. 2015, 5, 12987–12993. [Google Scholar] [CrossRef]
- Yuan, R.; Yan, Z.; Shaga, A.; He, H. Design and Fabrication of an Electrochemical Sensing Platform Based on a Porous Organic Polymer for Ultrasensitive Ampicillin Detection. Sensor. Actuat. B Chem. 2021, 327, 128949. [Google Scholar] [CrossRef]
- Krusenbaum, A.; Graetz, S.; Bimmermann, S.; Hutsch, S.; Borchardt, L. The Mechanochemical Scholl Reaction as a Versatile Synthesis Tool for the Solvent-Free Generation of Microporous Polymers. RSC Adv. 2020, 10, 25509–25516. [Google Scholar] [CrossRef]
- Yuan, R.; He, H. Construction of an Electrochemical Aptasensor Based on a Carbazole-Bearing Porous Organic Polymer for Rapid and Ultrasensitive Detection of Penicillin. Appl. Surf. Sci. 2021, 563, 150307. [Google Scholar] [CrossRef]
- Qian, L.; Hong, H.; Han, M.; Xu, C.; Wang, S.; Guo, Z.; Yan, D. A Ketone-Functionalized Carbazolic Porous Organic Framework for Sensitive Fluorometric Determination of p-Nitroaniline. Microchim. Acta 2019, 186, 457. [Google Scholar] [CrossRef]
- Hao, S.; Liu, Y.; Shang, C.; Liang, Z.; Yu, J. CO2 Adsorption and Catalytic Application of Imidazole Ionic Liquid Functionalized Porous Organic Polymers. Polym. Chem. 2017, 8, 1833–1839. [Google Scholar] [CrossRef]
- Malacrida, C.; Lu, Y.; Dirnberger, K.; Gámez-Valenzuela, S.; Delgado, M.C.R.; Ludwigs, S. Towards Highly Conducting Bicarbazole Redox Polymer Films with Plateau-Like Conductivities. J. Mater. Chem. C 2020, 8, 15393–15405. [Google Scholar] [CrossRef]
- Yang, X.-L.; Hu, D.-Y.; Chen, Q.; Li, L.; Li, P.-X.; Ren, S.-B.; Bertuzzo, M.; Chen, K.; Han, D.-M.; Zhou, X.-H.; et al. A Pyrene-Cored Conjugated Microporous Polycarbazole for Sensitive and Selective Detection of Hazardous Explosives. Inorg. Chem. Commun. 2019, 107, 107453. [Google Scholar] [CrossRef]
- Qiao, S.; Du, Z.; Yang, R. Design and Synthesis of Novel Carbazole-Spacer-Carbazole Type Conjugated Microporous Networks for Gas Storage and Separation. J Mater. Chem. A 2014, 2, 1877–1885. [Google Scholar] [CrossRef]
- Coskun, A.; Banaszak, M.; Astumian, R.D.; Stoddart, J.F.; Grzybowski, B.A. Great Expectations: Can Artificial Molecular Machines Deliver on Their Promise? Chem. Soc. Rev. 2012, 41, 19–30. [Google Scholar] [CrossRef]
- Hazra, A.; Bonakala, S.; Adalikwu, S.A.; Balasubramanian, S.; Maji, T.K. Fluorocarbon-Functionalized Superhydrophobic Metal–Organic Framework: Enhanced CO2 Uptake via Photoinduced Postsynthetic Modification. Inorg. Chem. 2021, 60, 3823–3833. [Google Scholar] [CrossRef] [PubMed]
- Cobo, I.; Li, M.; Sumerlin, B.S.; Perrier, S. Smart Hybrid Materials by Conjugation of Responsive Polymers to Biomacromolecules. Nat. Mater. 2015, 14, 143–159. [Google Scholar] [CrossRef]
- Aznar, E.; Oroval, M.; Pascual, L.; Murguia, J.R.; Martinez-Manez, R.; Sancenon, F. Gated Materials for on-Command Release of Guest Molecules. Chem. Rev. 2016, 116, 561–718. [Google Scholar] [CrossRef]
- Zakrzewski, J.J.; Heczko, M.; Jankowski, R.; Chorazy, S. Reversible Humidity-Driven Transformation of a Bimetallic {EuCo} Molecular Material: Structural, Sorption, and Photoluminescence Studies. Molecules 2021, 26, 1102. [Google Scholar] [CrossRef]
- Vassalini, I.; Alessandri, I. Switchable Stimuli-Responsive Heterogeneous Catalysis. Catalysts 2018, 8, 569. [Google Scholar] [CrossRef]
- Geng, J.S.; Liu, K.; Liang, Y.Y.; Yu, J.P.; Hu, K.Q.; Yuan, L.H.; Feng, W.; Chai, Z.F.; Mei, L.; Shi, W.Q. An Azobenzene-Modified Photoresponsive Thorium–Organic Framework: Monitoring and Quantitative Analysis of Reversible trans–cis Photoisomerization. Inorg. Chem. 2021, 60, 8519–8529. [Google Scholar] [CrossRef] [PubMed]
- Bandara, H.M.D.; Burdette, S.C. Photoisomerization in Different Classes of Azobenzene. Chem. Soc. Rev. 2012, 41, 1809–1825. [Google Scholar] [CrossRef]
- Bera, R.; Ansari, M.; Alam, A.; Das, N. Triptycene, Phenolic-OH, and Azo-Functionalized Porous Organic Polymers: Efficient and Selective CO2 Capture. ACS Appl. Polym. Mater. 2019, 1, 959–968. [Google Scholar] [CrossRef]
- Cheng, L.; Jiang, Y.; Qi, S.-C.; Liu, W.; Shan, S.-F.; Tan, P.; Liu, X.-Q.; Sun, L.-B. Controllable Adsorption of CO2 on Smart Adsorbents: An Interplay between Amines and Photoresponsive Molecules. Chem. Mater. 2018, 30, 3429–3437. [Google Scholar] [CrossRef]
- Huang, R.; Hill, M.R.; Babarao, R.; Medhekar, N.V. CO2 Adsorption in Azobenzene Functionalized Stimuli Responsive Metal–Organic Frameworks. J. Phys. Chem. C 2016, 120, 16658–16667. [Google Scholar] [CrossRef]
- Yuan, R.; Ren, H.; He, H.; Jiang, L.; Zhu, G. Targeted Synthesis of Porous Aromatic Frameworks with Stimuli-Responsive Adsorption Properties. Sci. China Mater. 2015, 58, 38–43. [Google Scholar] [CrossRef][Green Version]
- Maity, D.K.; Dey, A.; Ghosh, S.; Halder, A.; Ray, P.P.; Ghoshal, D. Set of Multifunctional Azo Functionalized Semiconducting Cd(II)-MOFs Showing Photoswitching Property and Selective CO2 Adsorption. Inorg. Chem. 2018, 57, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.T.; Kshirsagar, A.R.; Eddin, A.C.; Lin, L.-C.; Poloni, R. Tuning Gas Adsorption by Metal Node Blocking in Photoresponsive Metal–Organic Frameworks. Chem. Eur. J. 2018, 24, 15167–15172. [Google Scholar] [CrossRef]
- Jiang, Y.; Tan, P.; Qi, S.C.; Liu, X.Q.; Yan, J.H.; Fan, F.; Sun, L.B. Metal–Organic Frameworks with Target-Specific Active Sites Switched by Photoresponsive Motifs: Efficient Adsorbents for Tailorable CO2 Capture. Angew. Chem. Int. Edit. 2019, 58, 6600–6604. [Google Scholar] [CrossRef]
- Yuan, R.; Sun, H.; Yan, Z.; He, H. Rational Design and Synthesis of a Task-Specific Porous Organic Framework Featured Azobenzene as a Photoresponsive Low-Energy CO2 Adsorbent. J. Solid State Chem. 2021, 297, 122049. [Google Scholar] [CrossRef]
- Li, S.; Prasetya, N.; Ladewig, B.P. Investigation of Azo-COP-2 as a Photoresponsive Low-Energy CO2 Adsorbent and Porous Filler in Mixed Matrix Membranes for CO2/N2 Separation. Ind. Eng. Chem. Res. 2019, 58, 9959–9969. [Google Scholar] [CrossRef]
- Yuan, R.; Yan, Z.; Shaga, A.; He, H. Solvent-Free Mechanochemical Synthesis of a Carbazole-Based Porous Organic Polymer with High CO2 Capture and Separation. J. Solid State Chem. 2020, 287, 121327. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Xing, G.; Yan, T.; Das, S.; Ye, L.; Ye, K. Charged Porous Organic Frameworks Bearing Heteroatoms with Enhanced Isosteric Enthalpies of Gas Adsorption. RSC Adv. 2018, 8, 20434–20439. [Google Scholar] [CrossRef]
- Wang, M.; Wang, S.; Song, X.; Liang, Z.; Su, X. Photo-Responsive Oxidase Mimic of Conjugated Microporous Polymer for Constructing a pH-Sensitive Fluorescent Sensor for Bio-Enzyme Sensing. Sensor. Actuat. B Chem. 2020, 316, 128157. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Liu, Y.; Meng, X.; Ye, Y.; Song, X.; Liang, Z. Novel D-π-A Conjugated Microporous Polymer as Visible Light-Driven Oxidase Mimic for Efficient Colorimetric Detection of Glutathione. Sensor. Actuat. B Chem. 2021, 326, 128808. [Google Scholar] [CrossRef]
- Li, S.; Zhao, W.; Li, H.; Fang, Q. A Photoresponsive Azobenzene-functionalized Covalent Organic Framework. Chem. J. Chin. Univ. 2020, 41, 1384–1390. [Google Scholar]
- Bujak, K.; Nocon, K.; Jankowski, A.; Wolinska-Grabczyk, A.; Schab-Balcerzak, E.; Janeczek, H.; Konieczkowska, J. Azopolymers with Imide Structures as Light-Switchable Membranes in Controlled Gas Separation. Eur. Polym. J. 2019, 118, 186–194. [Google Scholar] [CrossRef]
- Kanj, A.B.; Mueller, K.; Heinke, L. Stimuli-Responsive Metal–Organic Frameworks with Photoswitchable Azobenzene Side Groups. Macromol. Rapid Commun. 2018, 39, 1700239. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.D.; Praveen, V.K.; Ajayaghosh, A. Photoresponsive Metal–Organic Materials: Exploiting the Azobenzene Switch. Mater. Horiz. 2014, 1, 572–576. [Google Scholar] [CrossRef]
Samples | SABET a [m2 g–1] | SALangmuir b [m2 g–1] | VTotal c [cm3 g–1] | VMicro d [cm3 g–1] | CO2 Uptake [cm3 g–1] | Qst CO2 (kJ mol–1) | |
---|---|---|---|---|---|---|---|
273 K | 298 K | ||||||
Initial | 467 | 530 | 0.31 | 0.15 | 45.3 | 26.3 | 27.1 |
UV 5 h | 469 | 532 | 0.34 | 0.17 | 40.1 | 23.2 | 33.1 |
JJU-1 | CO2 Uptake (273 K, 1 bar), [cm3 g−1] |
---|---|
Initial | 45.3 |
1st UV | 40.1 |
1st Heat | 45.0 |
2nd UV | 39.3 |
2nd Heat | 43.1 |
3rd UV | 38.7 |
3rd Heat | 43.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, R.; Sun, H.; He, H. Rational Construction of a Responsive Azo-Functionalized Porous Organic Framework for CO2 Sorption. Molecules 2021, 26, 4993. https://doi.org/10.3390/molecules26164993
Yuan R, Sun H, He H. Rational Construction of a Responsive Azo-Functionalized Porous Organic Framework for CO2 Sorption. Molecules. 2021; 26(16):4993. https://doi.org/10.3390/molecules26164993
Chicago/Turabian StyleYuan, Rongrong, Hao Sun, and Hongming He. 2021. "Rational Construction of a Responsive Azo-Functionalized Porous Organic Framework for CO2 Sorption" Molecules 26, no. 16: 4993. https://doi.org/10.3390/molecules26164993
APA StyleYuan, R., Sun, H., & He, H. (2021). Rational Construction of a Responsive Azo-Functionalized Porous Organic Framework for CO2 Sorption. Molecules, 26(16), 4993. https://doi.org/10.3390/molecules26164993