Chemical Constituents of the Essential Oil from Ecuadorian Endemic Species Croton ferrugineus and Its Antimicrobial, Antioxidant and α-Glucosidase Inhibitory Activity
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Plant Material
4.3. Postharvest Treatments
4.4. Moisture Determination
4.5. Essential Oil Extraction
4.6. Determination of the Physical Properties of the Essential Oil
4.7. Identification of the Chemical Constituents of the Essential Oil
4.7.1. Quantitative Analysis
4.7.2. Qualitative Analysis
4.8. Evaluation of the Antimicrobial Activity
4.8.1. Antibacterial Activity
4.8.2. Antifungal Activity
4.9. Antioxidant Capacity
4.9.1. DPPH Radical Scavenging Activity
4.9.2. ABTS Radical Cation Scavenging Activity
4.10. Glucosidase Inhibition Activity
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- The Plant List. Available online: http://www.theplantlist.org (accessed on 3 February 2021).
- Encyclopædia Britannica. Euphorbiaceae: Plant family. Available online: https://www.britannica.com/plant/Euphorbiaceae (accessed on 12 January 2021).
- Martínez, G.M.; Jiménez, R.J.; Cruz, D.R.; Juárez, A.E.; García, R.; Cervantes, A.; Mejía, H.R. Los géneros de la familia Euphorbiaceae en México. An. Inst. Biol. Univ. Nac. Auton. Mex. 2002, 73. [Google Scholar] [CrossRef]
- Cabral, E. Core Eudicotiledóneas Clado Rosides: Biotaxonomia de Spermatófitas Diversidad Vegetal Facultad de Ciencias Exactas y Naturales y Agrimensura; Universidad Nacional del Nordeste: Corrientes, Argentina, 2010; p. 282. [Google Scholar]
- Van Ee, B.; Riina, R.; Berry, P.E. A revised infrageneric classification and molecular phylogeny of New World Croton (Euphorbiaceae). Taxon 2011, 60, 791–823. [Google Scholar] [CrossRef] [Green Version]
- León-Yánez, S.; Valencia, R.; Pitmam, N.; Endara, L.; Ulloa, C.; Navarrete, H. Libro Rojo de Plantas Endémicas del Ecuador. Available online: https://bioweb.bio/floraweb/librorojo/home (accessed on 12 January 2021).
- Abbasi, M.S.A.; Tahir, M.A. Ecological and Phytochemical Significance of Croton bonplandianum (Bail). Asian J. Res. Bot. 2020, 4, 26–32. [Google Scholar]
- Lima, S.G.D.; Citó, A.M.G.L.; Lopes, J.A.D.; Neto, J.M.M.; Chaves, M.H.; Silveira, E.R. Fixed and volatile constituents of genus croton plants: C. adenocalyx baill—Euphorbiaceae. Rev. Latinoam. Quim. 2010, 38, 133–144. [Google Scholar]
- De Araújo-Júnior, V.T.; da Silva, M.S.; Da-Cunha, E.V.L.; Agra, M.D.F.; De Athayde-Filho, P.F.; Vieira, I.J.C.; Braz-Filho, R.; Barbosa-Filho, J.M. Muscicapines, a new class of guaiane-type sesquiterpene alkaloids from Croton muscicapa. J. Braz. Chem. Soc. 2005, 16, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, F.W.; Bezerra, P.D.N.; De Oliveira, M.S.; Da Costa, W.A.; Ferreira, G.C.; De Carvalho, R.N. Bioactive Compounds and Biological Activity of Croton Species (Euphorbiaceae): An Overview. Curr. Bioact. Compd. 2020, 16, 383–393. [Google Scholar] [CrossRef]
- Govaerts, R. World Checklist of Croton ferrugineus Kunth. Facilitated by the Royal Botanic Gardens, Kew. Available online: http://wcsp.science.kew.org/ (accessed on 12 January 2021).
- Jørgesen, P.M.; León-Yáñez, S. Catalogue of the Vascular Plants of Ecuador; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999; p. 1181. [Google Scholar]
- Valdez Murillo, V.C. Actividad Antibacteriana y Antioxidante de los Extractos de Hibiscus escobariae Fryxell, Loxopterygium huasango R. Spruce y Croton ferrugineus Kunth. Bachelor’s Thesis, Universidad de Guayaquil, Guayaquil, Ecuador, 2019. [Google Scholar]
- Natural Sciences Institute Faculty of Science National University of Colombia. Scientific Collections OnLine COL000219951—Croton ferrugineus Kunth—Euphorbiaceae. Available online: http://www.biovirtual.unal.edu.co/en/ (accessed on 12 January 2021).
- Molares, S.; González, S.B.; Ladio, A.; Agueda Castro, M. Etnobotánica, anatomía y caracterización físico-química del aceite esencial de Baccharis obovata Hook. et Arn. (Asteraceae: Astereae). Acta Bot. Bras. 2009, 23, 578–589. [Google Scholar] [CrossRef]
- de Araújo, A.C.J.; Freitas, P.R.; dos Santos Barbosa, C.R.; Muniz, D.F.; Esmeraldo Rocha, J.; Neto, J.B.; da Silva, M.M.C.; Moura, T.F.; Pereira, R.L.; Ribeiro-Filho, J.; et al. Essential Oil of Croton ceanothifolius Baill. Potentiates the Effect of Antibiotics against Multiresistant Bacteria. Antibiotics 2020, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Pinho-Da-Silva, L.; Mendes-Maia, P.V.; Teófilo, T.M.D.N.G.; Barbosa, R.; Ceccatto, V.M.; Coelho-De-Souza, A.N.; Cruz, J.S.; Leal-Cardoso, J.H. Trans-Caryophyllene, a Natural Sesquiterpene, Causes Tracheal Smooth Muscle Relaxation through Blockade of Voltage-Dependent Ca2+ Channels. Molecules 2012, 17, 11965–11977. [Google Scholar] [CrossRef]
- Soares, D.C.; Portella, N.A.; Ramos, M.F.D.S.; Siani, A.C.; Saraiva, E.M. Trans-β-Caryophyllene: An Effective Antileishmanial Compound Found in Commercial Copaiba Oil (Copaifera spp.). Evid.-Based Complement. Altern. Med. 2013, 2013, 761323. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Zhang, R.; Weng, Y.; Qin, Q.; Zhang, X.; Liu, A.; Lin, N. Myrcene enhances the cardioprotective effect through matrix remodelling in an experimental model of heart failure. Arch. Med. Sci. 2020, 16. [Google Scholar] [CrossRef]
- Stević, T.; Tomaši, O.; Kostić, M.; Stanković, S.; Soković, M.; Nikčević, S.; Ristić, M. Proceedings from the Third Conference on Medicinal and Aromatic Plants of Southeast European Countries; Biological activity of Linalool: Belgrade, Serbia, 2006; pp. 102–107. [Google Scholar]
- Şahin, F.; Güllüce, M.; Daferera, D.; Sökmen, A.; Sökmen, M.; Polissiou, M.; Agar, G.; Ozer, H. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 2004, 15, 549–557. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.K.; Ezzat, M.O.; Majid, A.S.A.; Majid, A.M.S.A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Araújo, F.M.; Dantas, M.C.; e Silva, L.S.; Aona, L.; Tavares, I.F.; de Souza-Neta, L.C. Antibacterial activity and chemical composition of the essential oil of Croton heliotropiifolius Kunth from Amargosa, Bahia, Brazil. Ind. Crops Prod. 2017, 105, 203–206. [Google Scholar] [CrossRef]
- De Araújo, L.G.; Veras, G.; Alves, J.V.D.O.; De Veras, B.O.; Da Silva, M.V.; Rodrigues, J.F.B.; Fook, M.V.L.; Amoah, S.K.S.; Torres, M.C.D.M. Chemodiversity and Antibacterial Activity of the Essential Oil of Leaves of Croton argyrophyllus. Chem. Biodivers. 2020, 17, e2000575. [Google Scholar] [CrossRef]
- Morais, S.; Cossolosso, D.; Silva, A.; De Moraes, M.; Teixeira, M.; Campello, C.; Bonilla, O.; De Paula, V.; Vila-Nova, N. Essential Oils from Croton Species: Chemical Composition, in vitro and in silico Antileishmanial Evaluation, Antioxidant and Cytotoxicity Activities. J. Braz. Chem. Soc. 2019, 30, 2404–2412. [Google Scholar] [CrossRef]
- Rossi, D.; Guerrini, A.; Maietti, S.; Bruni, R.; Paganetto, G.; Poli, F.; Scalvenzi, L.; Radice, M.; Saro, K.; Sacchetti, G. Chemical fingerprinting and bioactivity of Amazonian Ecuador Croton lechleri Müll. Arg. (Euphorbiaceae) stem bark essential oil: A new functional food ingredient? Food Chem. 2011, 126, 837–848. [Google Scholar] [CrossRef]
- Jelassi, A.; Hassine, M.; Hlila, M.B.; Ben Jannet, H. Chemical Composition, Antioxidant Properties, α-Glucosidase Inhibitory, and Antimicrobial Activity of Essential Oils from Acacia mollissima and Acacia cyclops Cultivated in Tunisia. Chem. Biodivers. 2017, 14, e1700252. [Google Scholar] [CrossRef]
- Bensouici, C.; Boudiar, T.; Kashi, I.; Bouhedjar, K.; Boumechhour, A.; Khattabi, L.; Larguet, H. Chemical characterization, antioxidant, anticholinesterase and alpha-glucosidase potentials of essential oil of Rosmarinus tournefortii de noé. J. Food Meas. Charact. 2020, 14, 632–639. [Google Scholar] [CrossRef]
- Morocho, V.; Sarango, D.; Cruz-Erazo, C.; Cumbicus, N.; Cartuche, L.; Suárez, A.I. Chemical Constituents of Croton thurifer Kunth as α-Glucosidase Inhibitors. Rec. Nat. Prod. 2019, 14, 31–41. [Google Scholar] [CrossRef]
- Valarezo, E.; Ojeda-Riascos, S.; Cartuche, L.; Andrade-González, N.; González-Sánchez, I.; Meneses, M.A. Extraction and Study of the Essential Oil of Copal (Dacryodes peruviana), an Amazonian Fruit with the Highest Yield Worldwide. Plants 2020, 9, 1658. [Google Scholar] [CrossRef]
- Association Française de Normalization (AFNOR). Huiles Essentielles. Tome 1, Échantillonnage et Méthodes d’analyse; Paris-La Défense; AFNOR: Paris, France, 2000; p. 471. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; p. 804. [Google Scholar]
- NIST. NIST Chemistry WebBook. Available online: http://webbook.nist.gov (accessed on 19 May 2020).
- Valarezo, E.; Merino, G.; Cruz-Erazo, C.; Cartuche, L. Study of the essential oil from native amazonian species of Ecuador Piper lineatum, presence of apiole and safrole. Nat. Volatiles Essent. Oils 2020, 7, 14–25. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Valarezo, E.; Rivera, J.; Coronel, E.; Barzallo, M.; Calva, J.; Cartuche, L.; Meneses, M. Study of Volatile Secondary Metabolites Present in Piper carpunya Leaves and in the Traditional Ecuadorian Beverage Guaviduca. Plants 2021, 10, 338. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
No. | RT | Compound | RI | RIref | C. ferrugineus EO | Type | CF | MM (Da) | |
---|---|---|---|---|---|---|---|---|---|
% | SD | ||||||||
1 | 9.92 | α-Thujene | 925 | 924 | 0.35 | 0.14 | ALM | C10H16 | 136.13 |
2 | 10.27 | α-Pinene | 933 | 932 | 2.31 | 0.24 | ALM | C10H16 | 136.13 |
3 | 11.82 | Sabinene | 968 | 969 | 0.39 | 0.10 | ALM | C10H16 | 136.13 |
4 | 12.04 | β-Pinene | 973 | 974 | 0.40 | 0.21 | ALM | C10H16 | 136.13 |
5 | 12.74 | Myrcene | 989 | 988 | 11.47 | 1.56 | ALM | C10H16 | 136.13 |
6 | 13.35 | α-Phellandrene | 1003 | 1002 | 0.86 | 0.48 | ALM | C10H16 | 136.13 |
7 | 13.71 | 1,4-Cineole | 1011 | 1012 | 0.35 | 0.01 | OXM | C10H18O | 154.14 |
8 | 14.06 | ρ-Cymene | 1019 | 1020 | 2.22 | 0.56 | ARM | C10H14 | 134.10 |
9,10 | 14.29 | Limonene + β-Phellandrene 1 | 1024 | 1024 | 14.88 | 1.27 | ALM | C10H16 | 136.13 |
11 | 15.12 | (E)-β-Ocimene | 1043 | 1044 | 2.73 | 0.14 | ALM | C10H16 | 136.13 |
12 | 15.61 | γ-Terpinene | 1054 | 1054 | 1.59 | 0.37 | ALM | C10H16 | 136.13 |
13 | 17.33 | Linalool | 1093 | 1095 | 7.34 | 0.72 | OXM | C10H18O | 154.14 |
14 | 19.47 | Camphor | 1141 | 1141 | 0.58 | 0.06 | OXM | C10H16O | 152.12 |
15 | 21.61 | Isoamyl tiglate | 1190 | 1191 | 1.56 | 0.63 | OXM | C10H18O2 | 170.13 |
16 | 26.02 | 2-Undecanone | 1290 | 1293 | 3.52 | 0.49 | OTC | C11H22O | 170.17 |
17 | 28.37 | α-Terpinyl acetate | 1343 | 1346 | 0.41 | 0.11 | OTC | C12H20O2 | 196.14 |
18 | 29.63 | α-Ylangene | 1372 | 1373 | 0.42 | 0.08 | ALS | C15H24 | 204.19 |
19 | 30.12 | trans-Myrtanol acetate | 1383 | 1385 | 1.37 | 0.22 | OTC | C12H20O2 | 196.14 |
20 | 31.53 | trans-Caryophyllene | 1415 | 1417 | 20.47 | 1.25 | ALS | C15H24 | 204.19 |
21 | 32.33 | γ-Elemene | 1433 | 1434 | 0.62 | 0.28 | ALS | C15H24 | 204.19 |
22 | 32.54 | Aromadendrene | 1438 | 1439 | 1.28 | 0.89 | ALS | C15H24 | 204.19 |
23 | 33.08 | α-Humulene | 1450 | 1452 | 5.49 | 0.38 | ALS | C15H24 | 204.19 |
24 | 33.56 | 9-epi-(E)-Caryophyllene | 1461 | 1464 | 0.54 | 0.07 | ALS | C15H24 | 204.19 |
25 | 34.31 | Germacrene D | 1478 | 1480 | 7.60 | 0.60 | ALS | C15H24 | 204.19 |
26 | 35.10 | Bicyclogermacrene | 1496 | 1500 | 3.28 | 0.22 | ALS | C15H24 | 204.19 |
27 | 35.83 | γ-Cadinene | 1513 | 1513 | 0.47 | 0.07 | ALS | C15H24 | 204.19 |
28 | 36.11 | β-Sesquiphellandrene | 1519 | 1521 | 1.32 | 0.17 | ALS | C15H24 | 204.19 |
29 | 36.20 | δ-Cadinene | 1521 | 1522 | 1.19 | 0.11 | ALS | C15H24 | 204.19 |
30 | 37.79 | Germacrene B | 1557 | 1559 | 0.83 | 0.12 | ALS | C15H24 | 204.19 |
31 | 38.58 | Spathulenol | 1575 | 1577 | 1.07 | 0.13 | OXS | C15H24O | 220.18 |
32 | 38.81 | Caryophyllene oxide | 1580 | 1582 | 0.79 | 0.19 | OXS | C15H24O | 220.18 |
33 | 41.45 | epi-α-Cadinol | 1640 | 1638 | 0.77 | 0.13 | OXS | C15H26O | 222.20 |
34 | 41.89 | 4-α-hydroxy-Dihydro agarofuran | 1650 | 1651 | 0.72 | 0.19 | OXS | C15H26O2 | 238.19 |
35 | 43.29 | α-Bisabolol | 1682 | 1685 | 0.77 | 0.20 | OXS | C15H26O | 222.20 |
Aliphatic monoterpene hydrocarbons (ALM) | 34.98 | ||||||||
Aromatic monoterpene hydrocarbons (ARM) | 2.22 | ||||||||
Oxygenated monoterpenes (OXM) | 9.83 | ||||||||
Aliphatic sesquiterpene hydrocarbons (ALS) | 43.50 | ||||||||
Oxygenated sesquiterpene (OXS) | 4.13 | ||||||||
Other compounds (OTC) | 5.30 | ||||||||
Total identified | 99.95 |
Microorganism | Essential Oil (µg/mL) | Positive Control a (µg/mL) |
---|---|---|
Gram-negative bacteria | ||
Escherichia coli (ATCC 43888) | >2500 | 1.56 |
Gram-positive bacteria | ||
Enterococcus faecalis (ATCC 19433) | >2500 | 1.95 |
Micrococcus luteus (10240) | 2000 | 0.39 |
Staphylococcus aureus (ATCC 25923) | >2500 | 0.39 |
Dermatophyte fungi | ||
Cándida albicans (ATCC 10231) | 1000 | 0.13 |
Sample | ABTS | DPPH | α-Glucosidase |
---|---|---|---|
SC50 * (μg/mL) | IC50 * (μg/mL) | ||
Essential oil | 901 ± 20 | >1000 | 146 ± 20 |
Trolox | 420 ± 20 | 840 ± 30 | – |
Acarbose | – | – | 70 ± 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valarezo, E.; Gaona-Granda, G.; Morocho, V.; Cartuche, L.; Calva, J.; Meneses, M.A. Chemical Constituents of the Essential Oil from Ecuadorian Endemic Species Croton ferrugineus and Its Antimicrobial, Antioxidant and α-Glucosidase Inhibitory Activity. Molecules 2021, 26, 4608. https://doi.org/10.3390/molecules26154608
Valarezo E, Gaona-Granda G, Morocho V, Cartuche L, Calva J, Meneses MA. Chemical Constituents of the Essential Oil from Ecuadorian Endemic Species Croton ferrugineus and Its Antimicrobial, Antioxidant and α-Glucosidase Inhibitory Activity. Molecules. 2021; 26(15):4608. https://doi.org/10.3390/molecules26154608
Chicago/Turabian StyleValarezo, Eduardo, Génesis Gaona-Granda, Vladimir Morocho, Luis Cartuche, James Calva, and Miguel Angel Meneses. 2021. "Chemical Constituents of the Essential Oil from Ecuadorian Endemic Species Croton ferrugineus and Its Antimicrobial, Antioxidant and α-Glucosidase Inhibitory Activity" Molecules 26, no. 15: 4608. https://doi.org/10.3390/molecules26154608