Lignin Quantification of Papyri by TGA—Not a Good Idea
Abstract
:1. Introduction
2. Results and Discussion
2.1. Re-Evaluation of TGA—Literature Values and Comparison to Reference Materials
2.2. Comparison to Other Methods of Lignin Determination (Klason-Lignin and ABSL)
2.3. General Discussion of Lignin Abundance in Papyrus Pith by Microscopic/Staining Analysis
3. Conclusions and Outlook
4. Materials and Methods
4.1. Materials
4.2. “Milled Wood” Lignin (MWL) Isolation from Papyrus Pith
4.3. Lignin Content Determination by Acetyl Bromide Derivatization and UV-Detection
4.4. Determination of the Lignin Content by the Klason Method
4.5. Thermogravimetric Analysis
4.6. Microscopic Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Braovac, S.; McQueen, C.M.A.; Sahlstedt, M.; Kutzke, H.; Łucejko, J.J.; Klokkernes, T. Navigating Conservation Strategies: Linking Material Research on Alum-Treated Wood from the Oseberg Collection to Conservation Decisions. Herit. Sci. 2018, 6, 77. [Google Scholar] [CrossRef]
- Jeong, M.J.; Bogolitsyna, A.; Jo, B.M.; Kang, K.Y.; Rosenau, T.; Potthast, A. Deterioration of Ancient Korean Paper (Hanji), Treated with Beeswax: A Mechanistic Study. Carbohydr. Polym. 2014, 101, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Davy, H. XV. Some Observations and Experiments on the Papyri Found in the Ruins of Herculaneum. Philos. Trans. R. Soc. Lond. 1821, 111, 191–208. [Google Scholar] [CrossRef] [Green Version]
- Wiedemann, H.G.; Bayer, G. Papyrus: The Paper of Ancient Egypt. Anal. Chem. 1983, 55, 1220–1230. [Google Scholar] [CrossRef]
- Franceschi, E. Thermoanalytical Methods: A Valuable Tool for Art and Archaeology. J. Therm. Anal. Calorim. 2011, 104, 527–539. [Google Scholar] [CrossRef]
- Basile, C. I Papiri Carbonizzati Di Ercolano La Temperatura Dei Materiali Vulcanici E Le Tecniche Di Manifattura Dei Rotoli; Associazione Istituto internazionale del papiro: Siracusa, Italy, 1994. [Google Scholar]
- Nielsen, I. PAPYRUS Structure, Manufacture and Deterioration. Ph.D. Thesis, School of Conservation, Copenhagen, Denmark, 1985. [Google Scholar]
- Łojewska, J.; Rabin, I.; Pawcenis, D.; Bagniuk, J.; Aksamit-Koperska, M.A.; Sitarz, M.; Missori, M.; Krutzsch, M. Recognizing Ancient Papyri by a Combination of Spectroscopic, Diffractional and Chromatographic Analytical Tools. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Flieder, F.; Delange, E.; Duval, A.; Leroy, M. Papyrus: The Need for Analysis. Restaur. Int. J. Preserv. Libr. Arch. Mater. 2001, 22, 84–106. [Google Scholar]
- Franceschi, E.; Luciano, G.; Carosi, F.; Cornara, L.; Montanari, C. Thermal and Microscope Analysis as a Tool in the Characterisation of Ancient Papyri. Thermochim. Acta 2004, 418, 39–45. [Google Scholar] [CrossRef]
- Maggen, M. The Conservation of Papyri Documents Dated to the 4th Century BCE. Restaur. Int. J. Preserv. Libr. Arch. Mater. 1997, 18, 153–161. [Google Scholar] [CrossRef]
- Lucejko, J.J.; Colombini, M.P.; Ribechini, E. Chemical Alteration Patterns of Ancient Egyptian Papyri Studied by Pyrolysis-GC/MS with in Situ Silylation. J. Anal. Appl. Pyrolysis 2020, 152, 104967. [Google Scholar] [CrossRef]
- McGovern, J.N. Bonding in papyrus and papyrus-like mats. TAPPI 1982, 65, 159–162. [Google Scholar]
- El Meligy, M.G.; Wahba, W.N. True Paper from Papyrus. Restaur. Int. J. Preserv. Libr. Arch. Mater. 2002, 23, 27–38. [Google Scholar] [CrossRef]
- El Ashry, E.H.E.; El Kilany, Y.; El Engebawy, A.; El Taraboulsi, M.A. Some Chemical Data on Cyperus Papyrus, L. the Ancient Papermaking Material. Egypt. J. Chem. 2003, 46, 181–185. [Google Scholar]
- Karlen, S.D.; Free, H.C.A.; Padmakshan, D.; Smith, B.G.; Ralph, J.; Harris, P.J. Commelinid Monocotyledon Lignins Are Acylated by P-Coumarate. Plant. Physiol. 2018, 177, 513–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- TAPPI T 222 Om-88. 2004.
- Fukushima, R.S.; Hatfield, R.D. Extraction and Isolation of Lignin for Utilization as a Standard to Determine Lignin Concentration Using the Acetyl Bromide Spectrophotometric Method. J. Agric. Food Chem. 2001, 49, 3133–3139. [Google Scholar] [CrossRef] [PubMed]
- Hatfield, R.D.; Grabber, J.; Ralph, J.; Brei, K. Using the Acetyl Bromide Assay To Determine Lignin Concentrations in Herbaceous Plants: Some Cautionary Notes. J. Agric. Food Chem. 1999, 47, 628–632. [Google Scholar] [CrossRef]
- Leach, B. Papyrus Manufacture. UCLA Encycl. Egyptol. 2009, 1, 2. [Google Scholar]
- Nicholson, P.T.; Shaw, I.; Press, C.U. Ancient Egyptian Materials and Technology; Cambridge University Press: New York, NY, USA, 2000; ISBN 978-0-521-45257-1. [Google Scholar]
- Björkman, A. Studies on Finely Divided Wood. Part 1. Extraction of Lignin with Neutral Solvents. Sven. Papp. 1956, 59, 477–485. [Google Scholar]
- Del Río, J.C.; Prinsen, P.; Rencoret, J.; Nieto, L.; Jiménez-Barbero, J.; Ralph, J.; Martínez, Á.T.; Gutiérrez, A. Structural Characterization of the Lignin in the Cortex and Pith of Elephant Grass (Pennisetum purpureum) Stems. J. Agric. Food Chem. 2012, 60, 3619–3634. [Google Scholar] [CrossRef] [Green Version]
- Rosenau, T.; Potthast, A.; Zwirchmayr, N.S.; Hettegger, H.; Plasser, F.; Hosoya, T.; Bacher, M.; Krainz, K.; Dietz, T. Chromophores from Hexeneuronic Acids: Identification of HexA-Derived Chromophores. Cellulose 2017, 24, 3671–3687. [Google Scholar] [CrossRef]
- Cheng, K.; Winter, W.T.; Stipanovic, A.J. A Modulated-TGA Approach to the Kinetics of Lignocellulosic Biomass Pyrolysis/Combustion. Polym. Degrad. Stab. 2012, 97, 1606–1615. [Google Scholar] [CrossRef]
- Hell, J.; Prückler, M.; Danner, L.; Henniges, U.; Apprich, S.; Rosenau, T.; Kneifel, W.; Böhmdorfer, S. A Comparison between Near-Infrared (NIR) and Mid-Infrared (ATR-FTIR) Spectroscopy for the Multivariate Determination of Compositional Properties in Wheat Bran Samples. Food Control 2016, 60, 365–369. [Google Scholar] [CrossRef]
- Wilför, S.; Hemming, J.; Leppänen, A.S. Analysis of Extractives in Different Pulps-Method Development, Evaluation, and Recommendations; Report No. B1 of the EU COST E41 Action; Laboratory of Wood and Paper Chemistry: Turku, Finland, 2006. [Google Scholar]
Lignin Content | Method | Reference | Ash Content |
---|---|---|---|
22–32% | TGA | [4] | 2–14% |
32–40% | TGA | [9] | Subtracted |
22–26% | TGA | [10] | ~20% |
36–40% | unspecified | [11] | Not determined |
29–47% | Py-GC/MS | [12] | Not subtracted |
13% | “a TAPPI method” | [13] | Not determined |
12–25% | Klason | [14] | 6% |
17% | Klason | [15] | 3% |
14% (whole stem) | ABSL | [16] | Not determined |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bausch, F.; Owusu, D.D.; Jusner, P.; Rosado, M.J.; Rencoret, J.; Rosner, S.; del Río, J.C.; Rosenau, T.; Potthast, A. Lignin Quantification of Papyri by TGA—Not a Good Idea. Molecules 2021, 26, 4384. https://doi.org/10.3390/molecules26144384
Bausch F, Owusu DD, Jusner P, Rosado MJ, Rencoret J, Rosner S, del Río JC, Rosenau T, Potthast A. Lignin Quantification of Papyri by TGA—Not a Good Idea. Molecules. 2021; 26(14):4384. https://doi.org/10.3390/molecules26144384
Chicago/Turabian StyleBausch, Florian, Dickson D. Owusu, Paul Jusner, Mario J. Rosado, Jorge Rencoret, Sabine Rosner, José C. del Río, Thomas Rosenau, and Antje Potthast. 2021. "Lignin Quantification of Papyri by TGA—Not a Good Idea" Molecules 26, no. 14: 4384. https://doi.org/10.3390/molecules26144384
APA StyleBausch, F., Owusu, D. D., Jusner, P., Rosado, M. J., Rencoret, J., Rosner, S., del Río, J. C., Rosenau, T., & Potthast, A. (2021). Lignin Quantification of Papyri by TGA—Not a Good Idea. Molecules, 26(14), 4384. https://doi.org/10.3390/molecules26144384