Boswellic Acids Show In Vitro Activity against Leishmania donovani
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.A.; Biavatti, M.W.; Brun, R.; da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.G.; et al. The Potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-part II. Curr. Med. Chem. 2012, 19, 2176–2228. [Google Scholar] [CrossRef] [PubMed]
- Greve, H.L.; Kaiser, M.; Brun, R.; Schmidt, T.J. Terpenoids from the oleo-gum-resin of boswellia serrata and their antiplasmodial effects in vitro. Planta Med. 2017, 83, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Greve, H.L.; Kaiser, M.; Schmidt, T.J. Investigation of antiplasmodial effects of terpenoid compounds isolated from myrrh. Planta Med. 2020, 86, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Mehan, S.; Kalra, S.; Khanna, D. Boswellia serrata-frankincense (A Jesus Gifted Herb); An updated pharmacological profile. Pharmacologia 2013, 4, 457–463. [Google Scholar] [CrossRef]
- Eskandari, E.G.; Setorki, M.; Doudi, M. Medicinal plants with antileishmanial properties: A review study. Pharm. Biomed. Res. 2020, 6, 1–16. [Google Scholar] [CrossRef]
- Parvizi, M.M.; Zare, F.; Handjani, F.; Nimrouzi, M.; Zarshenas, M.M. Overview of herbal and traditional remedies in the treatment of cutaneous leishmaniasis based on Traditional Persian Medicine. Dermatol. Ther. 2020, 33, e13566. [Google Scholar] [CrossRef] [PubMed]
- Monzote, L.; Herrera, I.; Satyal, P.; Setzer, W.N. In-vitro evaluation of 52 commercially-available essential oils against Leishmania amazonensis. Molecules 2019, 24, 1248. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.J.; Kaiser, M.; Brun, R. Complete structural assignment of serratol, a cembrane-type diterpene from Boswellia serrata, and evaluation of its antiprotozoal activity. Planta Med. 2011, 77, 849–850. [Google Scholar] [CrossRef] [PubMed]
- Okba, M.M.; Sabry, O.M.; Matheeussen, A.; Abdel-Sattar, E. In vitro antiprotozoal activity of some medicinal plants against sleeping sickness, Chagas disease and leishmaniasis. Future Med. Chem. 2018, 10, 2607–2617. [Google Scholar] [CrossRef] [PubMed]
- Montesino, N.L.; Kaiser, M.; Brun, R.; Schmidt, T.J. Search for antiprotozoal activity in herbal medicinal preparations; new natural leads against neglected tropical diseases. Molecules 2015, 20, 14118–14138. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Basu, M.K. Leishmania phagolysosome: Drug trafficking and protein sorting across the compartment. Crit. Rev. Microbiol. 1997, 23, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Burchmore, R.J.S.; Barrett, M.P. Life in vacuoles–nutrient acquisition by Leishmania amastigotes. Int. J. Parasitol. 2001, 31, 1311–1320. [Google Scholar] [CrossRef]
- Berry, S.L.; Hameed, H.; Thomason, A.; Maciej-Hulme, M.L.; Abou-Akkada, S.S.; Horrocks, P.; Price, H.P. Development of NanoLuc-PEST expressing Leishmania mexicana as a new drug discovery tool for axenic- and intramacrophage-based assays. PLoS Negl. Trop. Dis. 2018, 12, e0006639. [Google Scholar] [CrossRef] [PubMed]
- Bernal, F.A.; Kaiser, M.; Wünsch, B.; Schmidt, T.J. Structure-activity relationships of cinnamate ester analogues as potent antiprotozoal agents. Chem. Med. Chem. 2020, 15, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.B.; Danton, O.; Kaiser, M.; Khalid, S.; Hamburger, M.; Mäser, P. HPLC-based activity profiling for antiprotozoal compounds in Croton gratissimus and Cuscuta hyalina. Front. Pharmacol. 2020, 11, 1246. [Google Scholar] [CrossRef] [PubMed]
- Huber, W.; Koella, J.C. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop. 1993, 55, 257–261. [Google Scholar] [CrossRef]
Tbr | Tc | Ldon | Pf | L6 | |
---|---|---|---|---|---|
Boswellia serrata | |||||
DCM | 12 | 15 (14; 17) | 4.5 (3.9; 5.1) | 2.6 (2.4; 2.8) | 46 (45; 47) |
EtOH | 11 (9.3; 11) | 23 (20; 26) | 4,7 (4.6; 4.9) | 3.4 (2.9; 3.9) | 54 (54; 54) |
H2O | 45 | 65 | > 100 | > 50 | > 100 |
Boswellia carteri | |||||
DCM | 14 | 12 (9.9; 15) | 3.0 (2.4; 3.8) | 3.4 (2.4; 4.7) | 39 (37; 42) |
EtOH | 15 | 14 (12; 17) | 3.0 (2.4; 3.7) | 3.8 (3.2; 4.4) | 44 (43; 45) |
H2O | 34 | 77 | > 100 | > 50 | > 100 |
Commiphora myrrha | |||||
DCM | 5.2 (5.1; 5.4) | 16 (12; 21) | 6.1 (5.5; 6.7) | 1.0 (1.0; 1.0) | 8 (6; 11) |
EtOH | 13 | 41 | 15 | 1.8 (1.2; 2.6) | 42 (39; 46) |
H2O | 45 | 61 | > 100 | > 50 | > 100 |
Fraction | L. donovani | |
---|---|---|
10 µg/mL | 2 µg/mL | |
Bs-1 | 31 | 0.0 |
Bs-3 | 0.0 | 0.0 |
Bs-4 | 1.0 | 0.0 |
Bs-5 | 79 | 0.0 |
Bs-6 | 76 | 0.0 |
Bs-7 | 21 | 0.0 |
Bs-8 | 21 | 0.0 |
Bs-9 | 85 | 31 |
Bs-10 | 47 | 25 |
Bs-11 | 51 | 27 |
Bs-12 | 42 | 24 |
Bs-13 | 70 | 28 |
Bs-14 | 61 | 25 |
Bs-15 | 81 | 31 |
Bs-16 | 89 | 30 |
Bs-17 | 100 | 41 |
Bs-19 | 100 | 36 |
Bs-20 | 100 | 37 |
No. | Leishmania donovani Axenic Amastigotes | Cytotoxicity against L6 Rat Skeletal Myoblasts | |||
---|---|---|---|---|---|
IC50 (µg/mL) | IC50 (µM) | IC50 (µg/mL) | IC50 (µM) | SI | |
1 | 0.9 (0.51; 1.7) | 1.9 | 43 (42; 45) | 91 | 46 |
2 | 0.45 (0.37; 0.54) | 0.88 | 17 (17; 18) | 33 | 38 |
3 | 2.4 (1.5; 3.7) | 5.3 | 15 (14; 16) | 33 | 6.2 |
4 | 6.1 (3.1; 12) | 12 | 16 (16; 17) | 32 | 2.7 |
5 | n.a. (2.3; >100) | n.a. | 14 (14; 15) | 31 | n.a. |
6 | 3.1 (1.4; 6.9) | 6.2 | 7.2 (6.4; 8.0) | 14 | 2.3 |
PCM a | 0.047 (0.035; 0.064) | 0.12 | n.a. | n.a. | n.a. |
PCP b | n.a. | n.a. | 0.009 (0.007; 0.011) | 0.02 | n.a. |
Intracellular Amastigotes c | Cytotoxicity against Macrophages | ||||
2 | > 10 | n.a. | 20 (20; 20) | 39 | n.a. |
PCM a | 1.9 (2.6; 1.4) | 4.7 | n.a. | n.a. | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greve, H.L.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Boswellic Acids Show In Vitro Activity against Leishmania donovani. Molecules 2021, 26, 3651. https://doi.org/10.3390/molecules26123651
Greve HL, Kaiser M, Mäser P, Schmidt TJ. Boswellic Acids Show In Vitro Activity against Leishmania donovani. Molecules. 2021; 26(12):3651. https://doi.org/10.3390/molecules26123651
Chicago/Turabian StyleGreve, Hippolyt L., Marcel Kaiser, Pascal Mäser, and Thomas J. Schmidt. 2021. "Boswellic Acids Show In Vitro Activity against Leishmania donovani" Molecules 26, no. 12: 3651. https://doi.org/10.3390/molecules26123651
APA StyleGreve, H. L., Kaiser, M., Mäser, P., & Schmidt, T. J. (2021). Boswellic Acids Show In Vitro Activity against Leishmania donovani. Molecules, 26(12), 3651. https://doi.org/10.3390/molecules26123651