Doubling the Carbonate-Binding Capacity of Nanojars by the Formation of Expanded Nanojars
Abstract
1. Introduction
2. Results and Discussion
2.1. Crystallographic Description
2.2. Mass Spectrometric Studies
3. Materials and Methods
3.1. Mass Spectrometry
3.2. X-ray Crystallography
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Ahmed, B.M.; Szymczyna, B.R.; Jianrattanasawat, S.; Surmann, S.A.; Mezei, G. Survival of the Fittest Nanojar: Stepwise Breakdown of Polydisperse Cu27–Cu31 Nanojar Mixtures into Monodisperse Cu27(CO3) and Cu31(SO4) Nanojars. Chem. Eur. J. 2016, 22, 5499–5503. [Google Scholar] [CrossRef]
- Fernando, I.R.; Surmann, S.A.; Urech, A.A.; Poulsen, A.M.; Mezei, G. Selective total encapsulation of the sulfate anion by neutral nano-jars. Chem. Commun. 2012, 48, 6860–6862. [Google Scholar] [CrossRef] [PubMed]
- Mezei, G. Incarceration of one or two phosphate or arsenate species within nanojars, capped nanojars and nanohelicages: Helical chirality from two closely-spaced, head-to-head PO43− or AsO43− ions. Chem. Commun. 2015, 51, 10341–10344. [Google Scholar] [CrossRef] [PubMed]
- Mezei, G.; Baran, P.; Raptis, R.G. Anion Encapsulation by Neutral Supramolecular Assemblies of Cyclic CuII Complexes: A Series of Five Polymerization Isomers, [{cis-CuII(μ-OH)(μ-pz)}n], n = 6, 8, 9, 12, and 14. Angew. Chem. Int. Ed. 2004, 43, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Hen, L.; Berry, S.N.; Wu, X.; Howe, E.N.W.; Gale, P.A. Advances in Anion Receptor Chemistry. Chem 2020, 6, 61–141. [Google Scholar]
- Liu, Y.; Sengupta, A.; Raghavachari, K.; Flood, A.H. Anion Binding in Solution: Beyond the Electrostatic Regime. Chem 2017, 3, 411–427. [Google Scholar] [CrossRef]
- Molina, P.; Zapata, F.; Caballero, A. Anion Recognition Strategies Based on Combined Noncovalent Interactions. Chem. Rev. 2017, 117, 9907–9972. [Google Scholar] [CrossRef]
- Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P.A. Applications of Supramolecular Anion Recognition. Chem. Rev. 2015, 115, 8038–8155. [Google Scholar] [CrossRef]
- Jacobson, B.L.; Quiocho, F.A. Sulfate-Binding Protein Dislikes Protonated Oxyacids: A Molecular Explanation. J. Mol. Biol. 1988, 204, 783–787. [Google Scholar] [CrossRef]
- Gonzalez, D.; Richez, M.; Bergonzi, C.; Chabriere, E.; Elias, M. Crystal structure of the phosphate-binding protein (PBP-1) of an ABC-type phosphate transporter from Clostridium perfringens. Sci. Rep. 2014, 4, 6636. [Google Scholar] [CrossRef]
- Ahmed, B.M.; Calco, B.; Mezei, G. Tuning the structure and solubility of nanojars by peripheral ligand substitution, leading to unprecedented liquid–liquid extraction of the carbonate ion from water into aliphatic solvents. Dalton Trans. 2016, 45, 8327–8339. [Google Scholar] [CrossRef] [PubMed]
- Mezei, G. Selective Extraction of Anions from Solutions. U.S. Patent 10,087,197 B2, 2 October 2018. U.S. Patent 9,901,901 B2, 27 February 2018; European Patent 2852558 B1, 9 September 2020. [Google Scholar]
- Haiduc, I. Inverse coordination—An emerging new chemical concept. Oxygen and other calchogens as coordination centers. Coord. Chem. Rev. 2017, 338, 1–26. [Google Scholar] [CrossRef]
- Haiduc, I. Inverse coordination—An emerging new chemical concept. II. Halogens as coordination centers. Coord. Chem. Rev. 2017, 348, 71–91. [Google Scholar] [CrossRef]
- Haiduc, I. Nitrogen centered inverse coordination complexes. A survey of molecular topologies. J. Coord. Chem. 2018, 71, 3139–3179. [Google Scholar] [CrossRef]
- Haiduc, I. Review. Inverse coordination. Inorganic open and cyclic nitrogen heteroatom molecules as coordination centers. A survey of molecular topologies. J. Coord. Chem. 2019, 72, 35–52. [Google Scholar] [CrossRef]
- Haiduc, I. Review. Inverse coordination. Organic nitrogen heterocycles as coordination centers. A survey of molecular topologies and systematization. Part 1. Five-membered and smaller rings. J. Coord. Chem. 2019, 72, 2127–2159. [Google Scholar] [CrossRef]
- Haiduc, I. Review. Inverse coordination. Organic nitrogen heterocycles as coordination centers. A survey of molecular topologies and systematization. Part 2. Six-membered rings. J. Coord. Chem. 2019, 72, 2805–2903. [Google Scholar] [CrossRef]
- Haiduc, I. Inverse coordination metal complexes with oxalate and sulfur, selenium and nitrogen analogues as coordinationcenters. Topology and systematization. J. Coord. Chem. 2020, 73, 1619–1700. [Google Scholar] [CrossRef]
- Haiduc, I.; Tiekink, E.R.T. Inverse Coordination. A Novel Chemical Concept; Sunway University Press: Sunway City, Selangor, Malaysia, 2020. [Google Scholar]
- Velasco, V.; Aguilà, D.; Barrios, L.A.; Borilovic, I.; Roubeau, O.; Ribas-Ariño, J.; Fumanal, M.; Teat, S.J.; Aromí, G. New coordination features; a bridging pyridine and the forced shortest non-covalent distance between two CO32− species. Chem. Sci. 2015, 6, 123–131. [Google Scholar] [CrossRef]
- Einstein, F.W.B.; Willis, A.C. Crystal and molecular structure of μ-carbonato-di-μ-chloro-tetrakis(bis(3-aminopropyl)amine)tetracopper(II) chloride hydrate. Inorg. Chem. 1981, 20, 609–614. [Google Scholar] [CrossRef]
- Escuer, A.; Peñalba, E.; Vicente, R.; Solans, X.; Font-Bardía, M. Two new tetranuclear µ4-carbonato copper(II) complexes. Syntheses, crystal structure and magnetic behaviour of [(µ4-CO3)(µ-Br)2{Cu4(bapa)4}]Br4 and [(µ4-CO3)(µ-Cl)2{Cu4(bapma)4}]Cl4·12H2O [bapa = bis(aminopropyl)amine and bapma = bis(aminopropyl)methylamine]. J. Chem. Soc. Dalton Trans. 1997, 2315–2320. [Google Scholar] [CrossRef]
- Rodríguez, M.; Llobet, A.; Corbella, M.; Müller, P.; Usón, M.A.; Martelle, A.E.; Reibenspiese, J. Solvent controlled nuclearity in Cu(II) complexes linked by the CO32− ligand: Synthesis, structure and magnetic properties. J. Chem. Soc. Dalton Trans. 2002, 2900–2906. [Google Scholar] [CrossRef]
- Fondo, M.; García-Deibe, A.M.; Corbella, M.; Ruiz, E.; Tercero, J.; Sanmartín, J.; Bermejo, M.R. Unexpected Ferromagnetic Interaction in a New Tetranuclear Copper(II) Complex: Synthesis, Crystal Structure, Magnetic Properties, and Theoretical Studies. Inorg. Chem. 2005, 44, 5011–5020. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, L.; Chen, R.; Peng, Z.-H.; Song, Y.; Pan, Z.-Q.; Huang, Q.-M.; Hua, X.-L.; Bai, Z.-W. Hexamine copper(II) coordination polymers: Synthesis, structure and magnetic properties. CrystEngComm 2009, 11, 671–679. [Google Scholar] [CrossRef]
- Ho, Y.-H.; Chang, M.-C.; Yu, K.-H.; Liu, Y.-H.; Wang, Y.; Cheng, Y.-C.; Chen, J.-T. CO2 fixation by dicopper(II) complexes in hypodentate framework of N8O2. Dalton Trans. 2014, 43, 6287–6290. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Nishihara, S.; Nakano, Y.; Maryunina, K.Y.; Inoue, K. A Cuprate Spin Ladder Linked by a Pyridyl Ligand. Chem. Lett. 2014, 43, 1713–1715. [Google Scholar] [CrossRef]
- Uraev, A.I.; Popov, L.D.; Levchenkov, S.I.; Shcherbakov, I.N.; Suponitsky, K.Y.; Garnovskii, D.A.; Lukov, V.V.; Kogan, V.A. Crystal structure and magnetic properties of a tetranuclear carbonate-bridged CuII complex with a Schiff base compartmental ligand with the N2OS2 donor set. Mendeleev Commun. 2015, 25, 62–64. [Google Scholar] [CrossRef]
- APEX2 v2014.9-0; Bruker AXS Inc.: Madison, WI, USA, 2014.
Cu1–O1 1.906(3) | Cu8–N14 1.964(4) | Cu16–O16 1.928(3) | Cu23–N45 1.946(3) |
Cu1–O6 1.957(3) | Cu8–N815 2.06(2) | Cu16–N31 1.964(3) | Cu23–O23 1.951(3) |
Cu1–N12 1.983(4) | Cu9–O9 1.910(3) | Cu16–N30 1.975(4) | Cu23–N44 1.963(3) |
Cu1–N1 2.025(3) | Cu9–O8 1.935(3) | Cu17–O17 1.908(3) | Cu24–O24 1.891(3) |
Cu2–O1 1.928(3) | Cu9–N16 1.961(6) | Cu17–O16 1.934(3) | Cu24–N46 1.948(3) |
Cu2–O2 1.939(3) | Cu9–N17 1.962(3) | Cu17–N32 1.954(4) | Cu24–O23 1.950(3) |
Cu2–N3 1.982(3) | Cu9–N816 2.00(2) | Cu17–N33 1.974(4) | Cu24–N47 1.968(4) |
Cu2–N2 2.000(3) | Cu10–O10 1.909(3) | Cu18–O17 1.925(3) | Cu25–O24 1.930(3) |
Cu2–O11 2.411(3) | Cu10–O9 1.939(3) | Cu18–O18 1.934(3) | Cu25–O25 1.937(3) |
Cu3–O2 1.928(3) | Cu10–N18 1.961(3) | Cu18–N34 1.963(3) | Cu25–N49 2.001(3) |
Cu3–O3 1.940(3) | Cu10–N19 1.983(3) | Cu18–N35 1.976(4) | Cu25–N48 2.005(4) |
Cu3–N4 1.998(3) | Cu11–O11 1.921(3) | Cu19–O27 1.934(3) | Cu25–O14 2.326(3) |
Cu3–N5 2.003(3) | Cu11–O10 1.931(3) | Cu19–O19 1.958(3) | Cu26–O25 1.893(3) |
Cu4–O3 1.938(3) | Cu11–N20 1.965(3) | Cu19–N37 1.992(4) | Cu26–N51 1.946(4) |
Cu4–O4 1.941(3) | Cu11–N21 1.967(3) | Cu19–N54 2.000(3) | Cu26–O26 1.950(3) |
Cu4–N7 1.981(3) | Cu12–O11 1.924(3) | Cu19–O18 2.399(3) | Cu26–N50 1.975(4) |
Cu4–N6 2.010(4) | Cu12–O12 1.932(3) | Cu20–O19 1.919(3) | Cu27–O27 1.905(3) |
Cu5–O5 1.934(3) | Cu12–N23 1.956(4) | Cu20–N38 1.970(4) | Cu27–O26 1.938(3) |
Cu5–O4 1.941(3) | Cu12–N22 1.966(3) | Cu20–N39 1.989(4) | Cu27–N53 1.961(4) |
Cu5–N8 1.996(3) | Cu13–O13 1.914(3) | Cu20–O20 1.998(3) | Cu27–N52 1.964(3) |
Cu5–N9 2.002(4) | Cu13–O12 1.933(3) | Cu20–O40 2.419(3) | Cu28–O28 1.922(3) |
Cu6–O5 1.916(3) | Cu13–N24 1.953(3) | Cu21–O21 1.911(3) | Cu28–O30 1.954(3) |
Cu6–O6 1.956(3) | Cu13–N25 1.975(4) | Cu21–N40 1.958(4) | Cu28–N56 2.022(4) |
Cu6–N11 1.991(3) | Cu14–O14 1.914(3) | Cu21–N41 1.973(4) | Cu28–N55 2.023(4) |
Cu6–N10 2.006(3) | Cu14–O13 1.926(3) | Cu21–O20 2.007(3) | Cu28–O26 2.296(3) |
Cu7–O18 1.905(3) | Cu14–N26 1.959(4) | Cu21–O40 2.432(3) | Cu29–O28 1.919(3) |
Cu7–O7 1.921(3) | Cu14–N27 1.960(3) | Cu22–O22 1.927(3) | Cu29–O29 1.942(3) |
Cu7–N13 1.954(4) | Cu15–O14 1.923(3) | Cu22–N42 1.969(4) | Cu29–N57 2.019(4) |
Cu7–N36 1.963(3) | Cu15–O15 1.925(3) | Cu22–O21 1.975(3) | Cu29–N58 2.026(3) |
Cu8–O7 1.907(3) | Cu15–N29 1.966(3) | Cu22–N43 2.004(4) | Cu29–O23 2.269(3) |
Cu8–O8 1.941(3) | Cu15–N28 1.969(4) | Cu22–O10 2.318(3) | |
Cu8–N15 1.943(6) | Cu16–O15 1.916(3) | Cu23–O22 1.894(3) |
D–H···A | D–H (Å) | H···A (Å) | D···A (Å) | D–H–A (°) |
---|---|---|---|---|
O1–H1O···O33 | 0.80(2) | 1.89(2) | 2.687(5) | 170(5) |
O2–H2O···O33 | 0.78(2) | 2.15(2) | 2.915(5) | 165(5) |
O2–H2O···O933 | 0.78(2) | 1.91(2) | 2.657(5) | 158(5) |
O3–H3O···O31 | 0.80(2) | 2.34(2) | 3.124(5) | 166(5) |
O4–H4O···O32 | 0.80(2) | 2.28(3) | 3.036(5) | 158(5) |
O4–H4O···O931 | 0.80(2) | 1.92(3) | 2.678(5) | 157(5) |
O5–H5O···O32 | 0.80(2) | 1.88(2) | 2.677(5) | 175(5) |
O6–H6O···O932 | 0.80(2) | 1.93(3) | 2.713(5) | 166(5) |
O7–H7O···O19 | 0.81(2) | 2.11(2) | 2.914(5) | 172(5) |
O8–H8O···O6 | 0.80(2) | 1.92(2) | 2.716(4) | 178(6) |
O9–H9O···O21 | 0.81(2) | 2.01(2) | 2.818(4) | 172(5) |
O10–H10O···O1 | 0.81(2) | 1.93(2) | 2.731(4) | 171(5) |
O11–H11O···O22 | 0.81(2) | 1.92(2) | 2.731(4) | 175(5) |
O12–H12O···O2 | 0.80(2) | 2.00(2) | 2.787(4) | 172(5) |
O13–H13O···O24 | 0.79(2) | 1.95(2) | 2.743(5) | 177(6) |
O14–H14O···O3 | 0.80(2) | 1.94(2) | 2.721(4) | 168(5) |
O15–H15O···O25 | 0.81(2) | 1.91(2) | 2.722(4) | 178(5) |
O16–H16O···O4 | 0.80(2) | 1.96(2) | 2.764(4) | 174(5) |
O17–H17O···O27 | 0.81(2) | 1.97(2) | 2.767(4) | 171(5) |
O18–H18O···O5 | 0.80(2) | 1.94(2) | 2.736(4) | 172(5) |
O19–H19O···O32 | 0.81(2) | 2.17(2) | 2.949(5) | 161(5) |
O19–H19O···O932 | 0.81(2) | 2.27(3) | 3.055(5) | 166(5) |
O21–H21O···O33 | 0.80(2) | 2.22(3) | 2.973(5) | 156(5) |
O21–H21O···O932 | 0.80(2) | 2.30(3) | 3.088(5) | 167(5) |
O22–H22O···O33 | 0.80(2) | 1.90(2) | 2.696(4) | 170(5) |
O22–H22O···O933 | 0.80(2) | 2.18(2) | 2.907(4) | 151(5) |
O23–H23O···O31 | 0.79(2) | 2.47(3) | 3.195(5) | 153(5) |
O23–H23O···O933 | 0.79(2) | 1.95(3) | 2.730(5) | 167(5) |
O24–H24O···O31 | 0.80(2) | 1.95(2) | 2.737(5) | 168(5) |
O24–H24O···O933 | 0.80(2) | 2.29(2) | 3.023(5) | 153(5) |
O25–H25O···O31 | 0.80(2) | 1.90(3) | 2.682(5) | 164(5) |
O25–H25O···O931 | 0.80(2) | 2.24(3) | 2.985(5) | 156(5) |
O26–H26O···O31 | 0.80(2) | 2.33(3) | 3.045(5) | 150(5) |
O26–H26O···O931 | 0.80(2) | 1.90(3) | 2.693(5) | 177(5) |
O27–H27O···O32 | 0.80(2) | 1.96(3) | 2.741(5) | 163(5) |
O27–H27O···O931 | 0.80(2) | 2.14(3) | 2.893(5) | 155(5) |
O28–H28O···O31 | 0.82(2) | 2.11(3) | 2.895(5) | 159(5) |
O40–H40O···O8 | 0.82(2) | 1.87(2) | 2.684(5) | 174(6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Isawi, W.A.; Mezei, G. Doubling the Carbonate-Binding Capacity of Nanojars by the Formation of Expanded Nanojars. Molecules 2021, 26, 3083. https://doi.org/10.3390/molecules26113083
Al Isawi WA, Mezei G. Doubling the Carbonate-Binding Capacity of Nanojars by the Formation of Expanded Nanojars. Molecules. 2021; 26(11):3083. https://doi.org/10.3390/molecules26113083
Chicago/Turabian StyleAl Isawi, Wisam A., and Gellert Mezei. 2021. "Doubling the Carbonate-Binding Capacity of Nanojars by the Formation of Expanded Nanojars" Molecules 26, no. 11: 3083. https://doi.org/10.3390/molecules26113083
APA StyleAl Isawi, W. A., & Mezei, G. (2021). Doubling the Carbonate-Binding Capacity of Nanojars by the Formation of Expanded Nanojars. Molecules, 26(11), 3083. https://doi.org/10.3390/molecules26113083