Women in the Singlet Fission World: Pearls in a Semi-Open Shell
Abstract
:1. Introduction
2. Singlet Fission Renaissance
3. The Open Shells
4. Mechanism, Rate, and the Supramolecular View
5. From Molecular Design to Lab Realization
6. Closing Words
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Julien, N. The Mammoth Dictionary of Symbols: Understanding the Hidden Language of Symbols; Carol and Graf Publishers Inc.: New York, NY, USA, 1996. [Google Scholar]
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Hanna, M.C.; Nozik, A.J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 2006, 100, 074510. [Google Scholar] [CrossRef]
- Musser, A.J.; Clark, J. Triplet-pair states in organic semiconductors. Annu. Rev. Phys. Chem. 2019, 70, 323–351. [Google Scholar] [CrossRef] [PubMed]
- Bossanyi, D.G.; Matthiesen, M.; Wang, S.; Smith, J.A.; Kilbride, R.C.; Shipp, J.D.; Chekulaev, D.; Holland, E.; Anthony, J.E.; Zaumseil, J.; et al. Emissive spin-0 triplet-pairs are a direct product of triplet-triplet annihilation in pentacene single crystals and anthradithiophene films. Nat. Chem. 2021, 13, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.B.; Michl, J. Singlet fission. Chem. Rev. 2010, 110, 6891–6936. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.B.; Michl, J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 2013, 64, 361–386. [Google Scholar] [CrossRef] [PubMed]
- Monahan, N.; Zhu, X.-Y. Charge transfer-mediated singlet fission. Annu. Rev. Phys. Chem. 2015, 66, 601–618. [Google Scholar] [CrossRef]
- Rao, A.; Friend, R.H. Harnessing singlet exciton fission to break the Shockley-Queisser limit. Nat. Rev. Mater. 2017, 2, 17063. [Google Scholar] [CrossRef]
- Casanova, D. Theoretical modeling of singlet fission. Chem. Rev. 2018, 118, 7164–7207. [Google Scholar] [CrossRef]
- Miyata, K.; Conrad-Burton, F.S.; Geyer, F.L.; Zhu, X.-Y. Triplet pair states in singlet fission. Chem. Rev. 2019, 119, 4261–4292. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, S.L.; Weiss, L.R.; Rao, A.; Friend, R.H.; Chepelianskii, A.D.; Greenham, N.C. Spin signatures of exchange-coupled triplet pairs formed by singlet fission. Phys. Rev. B 2016, 94, 045204. [Google Scholar] [CrossRef] [Green Version]
- Ullrich, T.; Munz, D.; Guldi, D.M. Unconventional singlet fission materials. Chem. Soc. Rev. 2021, 50, 3485–3518. [Google Scholar] [CrossRef] [PubMed]
- Sasikumar, D.; John, A.T.; Sunny, J.; Hariharan, M. Access to the triplet excited states of organic chromophores. Chem. Soc. Rev. 2020, 49, 6122–6140. [Google Scholar] [CrossRef]
- Zhu, T.; Huang, L. Exciton transport in singlet fission materials: A new hare and tortoise story. J. Phys. Chem. Lett. 2018, 9, 6502–6510. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Nagami, T.; Nakano, M. Molecular design for efficient singlet fission. J. Photochem. Photobiol. C: Photochem Rev. 2018, 34, 85–120. [Google Scholar] [CrossRef]
- Kim, H.; Zimmerman, P.M. Coupled double triplet state in singlet fission. Phys. Chem. Chem. Phys. 2018, 20, 30083–30094. [Google Scholar] [CrossRef] [PubMed]
- Hedley, G.J.; Ruseckas, A.; Samuel, I.D.W. Light harvesting for organic photovoltaics. Chem. Rev. 2017, 117, 796–837. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Jadhav, P.; Reusswig, P.D.; Yost, S.R.; Thompson, N.J.; Congreve, D.N.; Hontz, E.; Voorhis, T.V.; Baldo, M.A. Singlet exciton fission photovoltaics. Acc. Chem. Res. 2013, 46, 1300–1311. [Google Scholar] [CrossRef] [PubMed]
- Casillas, R.; Papadopoulos, I.; Ullrich, T.; Thiel, D.; Kunzmann, A.; Guldi, D.M. Molecular insights and concepts to engineer singlet fission energy conversion devices. Energy Env. Sci. 2020, 13, 2741–2804. [Google Scholar] [CrossRef]
- Felter, K.M.; Grozema, F.C. Singlet fission in crystalline organic materials: Recent insights and future directions. J. Phys. Chem. Lett. 2019, 10, 7208–7214. [Google Scholar] [CrossRef] [Green Version]
- Bera, K.; Kwang, S.Y.; Frontiera, R.R. Advances in singlet fission chromophore design enabled by vibrational spectroscopies. J. Phys. Chem. C 2020, 124, 25163–25174. [Google Scholar] [CrossRef]
- El Bakouri, O.; Smith, J.R.; Ottosson, H. Strategies for design of potential singlet fission chromophores utilizing a combination of ground-state and excited-state aromaticity rules. J. Am. Chem. Soc. 2020, 142, 5602–5617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Japahuge, A.; Zeng, T. Theoretical studies of singlet fission: Searching for materials and exploring mechanisms. Chem. Plus Chem. 2018, 83, 146–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minami, T.; Nakano, M. Diradical character view of singlet fission. J. Phys. Chem. Lett. 2011, 3, 145–150. [Google Scholar] [CrossRef]
- Runge, E.; Gross, E.K.U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984, 52, 997–1000. [Google Scholar] [CrossRef]
- Zeng, T.; Ananth, N.; Hoffmann, R. Seeking small molecules for singlet fission: A heteroatom substitution strategy. J. Am. Chem. Soc. 2014, 136, 12638–12647. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Havlas, Z.; Michl, J. Captodatively stabilized biradicaloids as chromophores for singlet fission. J. Am. Chem. Soc. 2015, 137, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Peach, M.J.G.; Williamson, M.J.; Tozer, D.J. Infulence of triplet instabilities in TDDFT. J. Chem. Theory Comput. 2011, 7, 3578–3585. [Google Scholar] [CrossRef] [PubMed]
- Akdag, A.; Havlas, Z.; Michl, J. Search for a small chromophore with efficient singlet fission: Biradicaloid heterocycles. J. Am. Chem. Soc. 2012, 134, 14624–14631. [Google Scholar] [CrossRef]
- Krylov, A.I. Spin-flip configuration interaction: An electronic structure model that is both variational and size-consistent. Chem. Phys. Lett. 2011, 350, 522–530. [Google Scholar] [CrossRef]
- Slipchenko, L.V.; Krylov, A.I. Singlet-triplet gaps in diradicals by the spin-flip approach: A benchmark study. J. Chem. Phys. 2002, 117, 4694–4708. [Google Scholar] [CrossRef] [Green Version]
- Casanova, D.; Krylov, A.I. Spin-flip methods in quantum chemistry. Phys. Chem. Chem. Phys. 2020, 22, 4326–4342. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A.T.; Wormit, M.; Kussmann, J.; Lange, A.W.; Behn, A.; Dend, J.; Feng, X.; et al. Advances in molecular quantum chemistry contained in the Q-CHEM 4 program package. Mol. Phys. 2015, 113, 184–215. [Google Scholar] [CrossRef] [Green Version]
- Greyson, E.C.; Stepp, B.R.; Chen, X.; Schwerin, A.F.; Paci, I.; Smith, M.B.; Akdag, A.; Johnson, J.C.; Nozik, A.J.; Michl, J.; et al. Singlet exciton fission for solar cell applications: Energy aspects of interchromophore coupling. J. Phys. Chem. B 2010, 114, 14223–14232. [Google Scholar] [CrossRef]
- Feng, X.; Luzanov, A.V.; Krylov, A.I. Fission of entangled spins: An electronic structure perspective. J. Phys. Chem. Lett. 2013, 4, 3845–3852. [Google Scholar] [CrossRef]
- Feng, X.; Kolomeisky, A.B.; Krylov, A.I. Dissecting the effect of morphology on the rates of singlet fission: Insights from theory. J. Phys. Chem. C 2014, 118, 19608–19617. [Google Scholar] [CrossRef]
- Kolomeisky, A.B.; Feng, X.; Krylov, A.I. A simple kinetic model for singlet fission: A role of electronic and entropic contributions to macroscopic rates. J. Phys. Chem. C 2014, 118, 5188–5195. [Google Scholar] [CrossRef]
- Johnson, J.C.; Nozik, A.J.; Michl, J. High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 2010, 132, 16302–16303. [Google Scholar] [CrossRef] [PubMed]
- Ryerson, J.L.; Schrauben, J.N.; Ferguson, A.J.; Sahoo, S.C.; Naumov, P.; Havlas, Z.; Michl, J.; Nozik, A.J.; Johnson, J.C. Two thin film polymorphs of the singlet fission compound 1,3-diphenylisobenzofuran. J. Phys. Chem. C 2014, 118, 12121–12132. [Google Scholar] [CrossRef]
- Johnson, J.C.; Nozik, A.J.; Michl, J. The role of chromophore coupling in singlet fission. Acc. Chem. Res. 2013, 46, 1290–1299. [Google Scholar] [CrossRef]
- Buchanan, E.A.; Kaleta, J.; Wen, J.; Lapidus, S.H.; Cisarova, I.; Havlas, Z.; Johnson, J.C.; Michl, J. Molecular packing and singlet fission: The parent and three fluorinated 1,3-diphenylisobenzofurans. J. Phys. Chem. Lett. 2019, 10, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
- Schwerin, A.F.; Johnson, J.C.; Smith, M.B.; Sreearunothai, P.; Popović, D.; Černy, J.; Havlas, Z.; Paci, I.; Akdag, A.; MacLeod, M.K.; et al. Toward designed singlet fission: Electronic states and photophysics of 1,3- diphenylisobenzofuran. J. Phys. Chem. A 2010, 114, 1457–1473. [Google Scholar] [CrossRef]
- Johnson, J.C.; Akdag, A.; Zamadar, M.; Chen, X.; Schwerin, A.F.; Paci, I.; Smith, M.B.; Havlas, Z.; Miller, J.R.; Ratner, M.A.; et al. Toward designed singlet fission: Solution photophysics of two indirectly coupled covalent dimers of 1,3-diphenylisobenzofuran. J. Phys. Chem. B 2013, 117, 4680–4695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korovina, N.V.; Das, S.; Nett, Z.; Feng, X.; Joy, J.; Haiges, R.; Krylov, A.I.; Bradforth, S.E.; Thompson, M.E. Singlet fission in a covalently linked cofacial alkynyltetracene dimer. J. Am. Chem. Soc. 2016, 138, 617–627. [Google Scholar] [CrossRef]
- Feng, X.; Krylov, A.I. On couplings and excimers: Lessons from studies of singlet fission in covalently linked tetracene dimers. Phys. Chem. Chem. Phys. 2016, 18, 7751–7761. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Casanova, D.; Krylov, A.I. Intra- and intermolecular singlet fission in covalently linked dimers. J. Phys. Chem. C 2016, 120, 19070–19077. [Google Scholar] [CrossRef]
- Zaykov, A.; Felkel, P.; Buchanan, E.A.; Jovanovic, M.; Havenith, R.W.A.; Kathir, R.K.; Broer, R.; Havlas, Z.; Michl, J. Singlet fission rate: Optimized packing of a molecular pair. Ethylene as a model. J. Am. Chem. Soc. 2019, 141, 17729–17743. [Google Scholar] [CrossRef]
- Hoffmann, R. An extended Hückel theory. I. Hydrocarbons. J. Chem. Phys. 1963, 39, 1397–1412. [Google Scholar] [CrossRef]
- Ryerson, J.L.; Zaykov, A.; Suarez, L.E.A.; Havenith, R.W.A.; Stepp, B.R.; Dron, P.I.; Kaleta, J.; Akdag, A.; Teat, S.J.; Magnera, T.F.; et al. Structure and photophysics of indigoids for singlet fission: Cibalackrot. J. Chem. Phys. 2019, 151, 184903. [Google Scholar] [CrossRef]
- Straatsma, T.P.; Broer, R.; Faraji, S.; Havenith, R.W.A. GronOR nonorthogonal configuration interaction calculations at exascale. Annu. Rep. Comp. Chem. 2018, 14, 77–91. [Google Scholar]
- Wibowo, M.; Broer, R.; Havenith, R.W.A. A rigorous nonorthogonal configuration interaction approach for the calculation of electronic couplings between diabatic states applied to singlet fission. Comput. Chem. 2017, 1116, 190–194. [Google Scholar] [CrossRef]
- Straatsma, T.P.; Broer, R.; Faraji, S.; Havenith, R.W.A.; Suarez, L.E.A.; Kathir, R.K.; Wibowo, M.; de Graaf, C. GronOR: Massively parallel and GPU-accelerated nonorthogonal configuration interaction for large molecular systems. J. Chem. Phys. 2020, 152, 064111. [Google Scholar] [CrossRef] [PubMed]
- Pace, N.A.; Clikeman, T.T.; Strauss, S.H.; Boltalina, O.V.; Johnson, J.C.; Rumbles, G.; Reid, O.G. Triplet excitons in pentacene are intrinsically difficult to dissociate via charge transfer. J. Phys. Chem. C 2020, 124, 26153–26164. [Google Scholar] [CrossRef]
- Pace, N.A.; Korovina, N.V.; Clikeman, T.T.; Holliday, S.; Granger, D.B.; Carroll, G.M.; Nanayakkara, S.U.; Anthony, J.E.; McCulloch, I.; Strauss, S.H.; et al. Slow charge transfer from pentacene triplet states at the Marcus optimum. Nat. Chem. 2020, 12, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Stoicheff, B.P. Double-photon excitation of fluorescence in anthracene single crystals. J. Chem. Phys. 1963, 38, 2032. [Google Scholar] [CrossRef]
- Wilson, M.W.B.; Rao, A.; Johnson, K.; Gélinas, S.; di Pietro, S.; Clark, J.; Friend, R.H. Temperature-dependent singlet exciton fission in tetracene. J. Am. Chem. Soc. 2013, 135, 16680–16688. [Google Scholar] [CrossRef]
- Poletayev, A.D.; Clark, J.; Wilson, M.W.B.; Rao, A.; Makino, Y.; Hotta, S.; Friend, R.H. Triplet dynamics in pentacene crystals: Applications to fission-sensitized photovoltaics. Adv. Mater. 2014, 26, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.W.B.; Rao, A.; Clark, J.; Kumar, R.S.S.; Brida, D.; Cerullo, G.; Friend, R.H. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 2011, 133, 11830–11833. [Google Scholar] [CrossRef]
- Hele, T.J.H.; Fuemmeler, E.G.; Sanders, S.N.; Kumarasamy, E.; Sfeir, M.Y.; Campos, L.M.; Ananth, N. Anticipating acene-based chromophore spectra with molecular orbital arguments. J. Phys. Chem. A 2019, 123, 2527–2536. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Nakano, M. Theoretical molecular design of heteroacenes for singlet fission: Tuning the diradical character by modifying π-conjugation length and aromaticity. J. Phys. Chem. C 2015, 119, 148–157. [Google Scholar] [CrossRef]
- Hückel, E. Quantum theoretical contributions to the benzene problem. J. Phys. 1931, 70, 204–286. [Google Scholar]
- Stoycheva, J.; Tadjer, A.; Garavelli, M.; Spassova, M.; Nenov, A.; Romanova, J. Boron-doped polycyclic aromatic hydrocarbons: A molecular set revealing the interplay between topology and singlet fission propensity. J. Phys. Chem. Lett. 2020, 11, 1390–1396. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Han, B.; Havlas, Z.; Michl, J. An MS-CASPT2 calculation of the excited electronic states of an axial difluoroborondipyrromethene (BODIPY) dimer. J. Chem. Theory Comput. 2018, 14, 4291–4297. [Google Scholar] [CrossRef] [PubMed]
- Japahuge, A.; Lee, S.; Choi, C.H.; Zeng, T. Design of singlet fission chromophores with cyclic (alkyl)(amino)carbene building blocks. J. Chem. Phys. 2019, 150, 234306. [Google Scholar] [CrossRef] [PubMed]
- Messelberger, J.; Grünwald, A.; Pinter, P.; Hansmann, M.M.; Munz, D. Carbene derived diradicaloids – building blocks for singlet fission? Chem. Sci. 2018, 9, 6107–6117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullrich, T.; Pinter, P.; Messelberger, J.; Haines, P.; Kaur, R.; Hansmann, M.M.; Munz, D.; Guldi, D.M. Singlet fission in carbene-derived diradicaloids. Angew. Chem 2020, 59, 7906–7914. [Google Scholar] [CrossRef] [Green Version]
- Zeng, T.; Hoffmann, R.; Ananth, N. The low-lying electronic staes of pentacene and their roles in singlet fission. J. Am. Chem. Soc. 2014, 136, 5755–5764. [Google Scholar] [CrossRef]
- Musser, A.J.; Al-Hashimi, M.; Maiuri, M.; Brida, D.; Heeney, M.; Cerullo, G.; Friend, R.H.; Clark, J. Activated singlet exciton fission in a semiconducting polymer. J. Am. Chem. Soc. 2013, 135, 12747–12754. [Google Scholar] [CrossRef]
- Musser, A.J.; Maiuri, M.; Brida, D.; Cerullo, G.; Friend, R.H.; Clark, J. The nature of singlet exciton fission in carotenoid aggregates. J. Am. Chem. Soc. 2015, 137, 5130–5139. [Google Scholar] [CrossRef] [Green Version]
- Fuemmeler, E.G.; Sandres, S.N.; Pun, A.B.; Kumarasamy, E.; Zeng, T.; Miyata, K.; Steigerwald, M.L.; Zhu, X.-Y.; Sfeir, M.Y.; Campos, L.M.; et al. A direct mechanism of ultrafast intramolecular singlet fission in pentacene dimers. ACS Cent. Sci. 2016, 2, 316–324. [Google Scholar] [CrossRef]
- Kumarasamy, E.; Sanders, S.N.; Tayebjee, M.J.Y.; Asadpoordarvish, A.; Hele, T.J.; Fuemmeler, E.G.; Pun, A.B.; Yablon, L.M.; Low, J.Z.; Paley, D.W.; et al. Tuning Singlet Fission in pi-Bridge-pi Chromophores. J. Am. Chem. Soc. 2017, 139, 12488. [Google Scholar] [CrossRef] [PubMed]
- Korovina, N.V.; Pompetti, N.F.; Johnson, J.C. Lessons from intramolecular singlet fission with covalently bound chromophores. J. Chem. Phys. 2020, 152, 040904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busby, E.; Xia, J.; Wu, Q.; Low, J.Z.; Song, R.; Miller, J.R.; Zhu, X.-Y.; Campos, L.M.; Sfeir, M.Y. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor-acceptor organic materials. Nat. Mater. 2015, 14, 426–433. [Google Scholar] [CrossRef]
- Fumanal, M.; Corminboeuf, C. Direct, mediated, and delayed intramolecular singlet fission mechanism in donor-acceptor copolymers. J. Phys. Chem. Lett. 2020, 11, 9788–9794. [Google Scholar] [CrossRef]
- Blaskovits, J.T.; Fumanal, M.; Vela, S.; Corminboeuf, C. Designing singlet fission candidates from donor-acceptor copolymers. Chem. Mater. 2020, 32, 6515–6524. [Google Scholar] [CrossRef]
- Pandey, L.; Risko, C.; Norton, J.E.; Bredas, J.L. Donor-acceptor copolymers of relevance for organic photovoltaics: A theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties. Macromolecules 2012, 45, 6405–6414. [Google Scholar] [CrossRef]
- Korovina, N.V.; Chang, C.H.; Johnson, J.C. Spatial separation of triplet excitons drives endothermic singlet fission. Nat. Chem. 2020, 12, 391–398. [Google Scholar] [CrossRef]
- Korovina, N.V.; Joy, J.; Feng, X.; Feltenberger, C.; Krylov, A.I.; Bradforth, S.E.; Thompson, M.E. Linker-dependent singlet fission in tetracene dimers. J. Am. Chem. Soc. 2018, 140, 10179–10190. [Google Scholar] [CrossRef] [PubMed]
- Korovina, N.V.; Johnson, J.C.; Chang, C.H. Molecules and Oligomers for Endothermic Singlet Fission. U.S. Patent No. US20200317855A1, 8 October 2020. [Google Scholar]
- Albrecht, W.G.; Coufal, H.; Haberkorn, R.; Michel-Beyerle, M.E. Excitation spectra of exciton fission in organic crystals. Phys. Stat. Sol. B 1978, 89, 261–265. [Google Scholar] [CrossRef]
- Albrecht, W.G.; Michel-Beyerle, M.E.; Yakhot, V. Exciton fission in excimer forming crystal. Dynamics of an excimer build-up in α-perylene. Chem. Phys. 1978, 35, 193–200. [Google Scholar] [CrossRef]
- Albrecht, W.G.; Michel-Beyerle, M.E.; Yakhot, V. Exciton fission in excimer forming crystal dynamics of an excimer build-up. J. Lumin. 1979, 20, 147–149. [Google Scholar] [CrossRef]
- Ma, L.; Galstyan, G.; Zhang, K.; Kloc, C.; Sun, H.; Soci, C.; Michel-Beyerle, M.E.; Gurzadyan, G.G. Two-photon induced singlet fission in rubrene single crystal. J. Chem. Phys. 2013, 138, 184508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, L.; Zhang, K.; Kloc, C.; Sun, H.; Michel-Beyerle, M.E.; Gurzadyan, G.G. Singlet fission in rubrene single crystal: Direct observation by femtosecond pump-probe spectroscopy. Phys. Chem. Chem. Phys. 2012, 14, 8307–8312. [Google Scholar] [CrossRef]
- Ma, L.; Tan, K.J.; Jiang, H.; Kloc, C.; Michel-Beyerle, M.E.; Gurzadyan, G.G. Excited-state dynamics in an α -perylene single crystal: Two-photon- and consecutive two-quantum-induced singlet fission. J. Phys. Chem. A 2014, 118, 836–843. [Google Scholar] [CrossRef]
- Ma, L.; Kloc, C.; Soci, C.; Michel-Beyerle, M.E.; Gurzadyan, G.G. Singlet fission in organic crystals. In Ultrafast Dynamics in Molecules, Nanostructures and Interfaces; Gurzadyan, G.G., Lanzani, G., Soci, C., Sum, T.C., Eds.; World Scientific: Singapore, 2014; Volume 7, pp. 110–127. [Google Scholar]
- MacQueen, R.W.; Liebhaber, M.; Niederhausen, J.; Mews, M.; Gersmann, C.; Jäckle, S.; Jäger, K.; Tayabjee, M.J.Y.; Schmidt, T.W.; Rech, B.; et al. Crystalline silicon solar cells with tetracene interlayers: The path to silicon-singlet fission heterojunction devices. Mater. Horiz. 2018, 5, 1065–1075. [Google Scholar] [CrossRef] [Green Version]
- Niederhausen, J.; MacQueen, R.W.; Özkol, E.; Gersmann, C.; Futscher, M.H.; Liebhaber, M.; Friedrich, D.; Borgwardt, M.; Mazzio, K.A.; Amsalem, P.; et al. Energy-level alignment tuning at tetracene/c-Si interfaces. J. Phys. Chem. C 2020, 124, 27867–27881. [Google Scholar] [CrossRef]
- Zhang, T.; Rai, D.; Holmes, R.J. Device-based probe of triplet exciton diffusion in singlet fission materials. J. Phys. Chem. Lett. 2021, 12, 966–972. [Google Scholar] [CrossRef]
- Machine Learning for Singlet Fission. Available online: ml4sf.chem.uni-sofia.bg (accessed on 21 October 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoycheva, J.; Romanova, J.; Tadjer, A. Women in the Singlet Fission World: Pearls in a Semi-Open Shell. Molecules 2021, 26, 2922. https://doi.org/10.3390/molecules26102922
Stoycheva J, Romanova J, Tadjer A. Women in the Singlet Fission World: Pearls in a Semi-Open Shell. Molecules. 2021; 26(10):2922. https://doi.org/10.3390/molecules26102922
Chicago/Turabian StyleStoycheva, Joanna, Julia Romanova, and Alia Tadjer. 2021. "Women in the Singlet Fission World: Pearls in a Semi-Open Shell" Molecules 26, no. 10: 2922. https://doi.org/10.3390/molecules26102922
APA StyleStoycheva, J., Romanova, J., & Tadjer, A. (2021). Women in the Singlet Fission World: Pearls in a Semi-Open Shell. Molecules, 26(10), 2922. https://doi.org/10.3390/molecules26102922