A Hybrid Nanomaterial Based on Single Walled Carbon Nanotubes Cross-Linked via Axially Substituted Silicon (IV) Phthalocyanine for Chemiresistive Sensors
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Thermogravimetric Analysis
2.3. Morphological Characterization of the Hybrid Material
2.4. Sensor Properties of SWCNT/SiPc Hybrid Material
2.4.1. Sensor Response of SWCNT/SiPc Layers to Ammonia and Hydrogen
2.4.2. Effect of the Humidity
2.4.3. Cross-Sensitivity toward Various Gases
2.4.4. Effect of Operating Temperature
3. Materials and Methods
3.1. Materials
3.2. Synthesis
3.2.1. Azido Functionalized SWCNTs (SWCNT–N3)
3.2.2. Axially-bis(propynoxy)phthalocyaninato Silicon (IV) (SiPc)
3.2.3. Preparation of the Hybrid SWCNTs Nanomaterial by Functionalization with Silicon (IV) Phthalocyanine (SWCNT/SiPc)
3.3. Characterization Methods
3.4. Sensor Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cao, A.; Dickrell, P.L.; Sawyer, W.G.; Ghasemi-Nejhad, M.N.; Ajayan, P.M. Materials science: Super-compressible foamlike carbon nanotube films. Science 2005, 310, 1307–1310. [Google Scholar] [CrossRef]
- Li, Y.-L.; Kinloch, I.A.; Windle, A.H. Direct Spinning of Carbon Nanotube Fibers from Chemical Vapor Deposition Synthesis. Science 2004, 304, 276–278. [Google Scholar] [CrossRef] [PubMed]
- Krasnikova, I.V.; Mishakov, I.V.; Vedyagin, A.A.; Krivoshapkin, P.V.; Korneev, D.V. Hierarchically structured carbon-carbon nanocomposites: The preparation aspects. Compos. Commun. 2018, 7, 65–68. [Google Scholar] [CrossRef]
- Fedoseeva, Y.V.; Arkhipov, V.E.; Maksimovskiy, E.A.; Gusel’nikov, A.V.; Mikhlin, Y.L.; Zhuravlev, K.S.; Senkovskiy, B.V.; Larionov, S.V.; Bulusheva, L.G.; Okotrub, A.V. Fluorinated Surface of Carbon Nanotube Buckypaper for Uniform Growth of CdS Nanoparticles. J. Phys. Chem. C 2017, 121, 19182–19190. [Google Scholar] [CrossRef]
- Endo, M.; Muramatsu, H.; Hayashi, T.; Kim, Y.A.; Terrones, M.; Dresselhaus, M.S. Nanotechnology: “Buckypaper” from coaxial nanotubes. Nature 2005, 433, 476. [Google Scholar] [CrossRef]
- Krivoshapkin, P.V.; Mishakov, I.V.; Vedyagin, A.A.; Bauman, Y.I.; Krivoshapkina, E.F. Synthesis and characterization of carbon/ceramic composite materials for environmental applications. Compos. Commun. 2017, 6, 17–19. [Google Scholar] [CrossRef]
- Zheng, D.; Ci, S.; Cai, P.; Wang, G.; Wen, Z. Nitrogen-Doped Carbon Nanosheets Encapsulating Cobalt Nanoparticle Hybrids as High-Performance Bifunctional Electrocatalysts. ChemElectroChem 2019, 6, 2683–2688. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, D.; Bao, X.; Zhang, Z.; Huang, B. Preparation and properties of Co–N/C by different cobalt salts as efficient electrocatalyst for oxygen reduction. Ionics (Kiel) 2019, 25, 1953–1958. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Bannov, A.G.; Popov, M.V.; Yun, J.-W.; Nguyen, A.D.; Kim, Y.S. High-temperature-treated multiwall carbon nanotubes for hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43, 6526–6531. [Google Scholar] [CrossRef]
- Navrotskaya, A.G.; Krivoshapkina, E.F.; Perovskiy, I.A.; Bauman, Y.I.; Mishakov, I.V.; Vegyagin, A.A.; Isaenko, S.I.; Krivoshapkin, P.V. Synthesis and properties of carbon–metal oxide nanomaterials. J. Sol-Gel Sci. Technol. 2019. [Google Scholar] [CrossRef]
- Perovskiy, I.A.; Khramenkova, E.V.; Pidko, E.A.; Krivoshapkin, P.V.; Vinogradov, A.V.; Krivoshapkina, E.F. Efficient extraction of multivalent cations from aqueous solutions into sitinakite-based sorbents. Chem. Eng. J. 2018, 354, 727–739. [Google Scholar] [CrossRef]
- Srivastava, A.; Srivastava, O.N.; Talapatra, S.; Vajtai, R.; Ajayan, P.M. Carbon nanotube filters. Nat. Mater. 2004, 3, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Sedelnikova, O.V.; Fedoseeva, Y.V.; Romanenko, A.I.; Gusel’nikov, A.V.; Vilkov, O.Y.; Maksimovskiy, E.A.; Bychanok, D.S.; Kuzhir, P.P.; Bulusheva, L.G.; Okotrub, A.V. Effect of boron and nitrogen additives on structure and transport properties of arc-produced carbon. Carbon N. Y. 2019, 143, 660–668. [Google Scholar] [CrossRef]
- Bulusheva, L.G.; Sysoev, V.I.; Lobiak, E.V.; Fedoseeva, Y.V.; Makarova, A.A.; Dubois, M.; Flahaut, E.; Okotrub, A.V. Chlorinated holey double-walled carbon nanotubes for relative humidity sensor. Carbon N. Y. 2019, 148, 413–420. [Google Scholar] [CrossRef]
- Adusei, P.K.; Gbordzoe, S.; Kanakaraj, S.N.; Hsieh, Y.-Y.; Alvarez, N.T.; Fang, Y.; Johnson, K.; McConnell, C.; Shanov, V. Fabrication and study of supercapacitor electrodes based on oxygen plasma functionalized carbon nanotube fibers. J. Energy Chem. 2020, 40, 120–131. [Google Scholar] [CrossRef]
- Bulusheva, L.G.; Okotrub, A.V.; Fedoseeva, Y.V.; Kurenya, A.G.; Asanov, I.P.; Vilkov, O.Y.; Koós, A.A.; Grobert, N. Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition. Phys. Chem. Chem. Phys. 2015, 17, 23741–23747. [Google Scholar] [CrossRef]
- Dong, K.-Y.; Choi, J.; Lee, Y.D.; Kang, B.H.; Yu, Y.-Y.; Choi, H.H.; Ju, B.-K. Detection of a CO and NH3 gas mixture using carboxylic acid-functionalized single-walled carbon nanotubes. Nanoscale Res. Lett. 2013, 8, 1–6. [Google Scholar] [CrossRef]
- Liu, X.; Luo, J.; Fan, J.; Lin, S.; Jia, L.; Jia, X.; Cai, Q.; Yang, X. Comprehensive enhancement in overall properties of MWCNTs-COOH/epoxy composites by microwave: An efficient approach to strengthen interfacial bonding via localized superheating effect. Compos. Part B Eng. 2019, 174, 106909. [Google Scholar] [CrossRef]
- Druchok, M.; Lukšič, M. Carboxylated carbon nanotubes can serve as pathways for molecules in sandwich-like two-phase organic-water systems. J. Mol. Liq. 2019, 291, 111287. [Google Scholar] [CrossRef]
- Bagherzadeh-Nobari, S.; Istadeh, K.H.; Kalantarinejad, R. Computational modelling of an amide functionalized single-walled carbon nanotube based H2S gas sensor. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 115, 113691. [Google Scholar] [CrossRef]
- He, D.; Peng, Y.; Yang, H.; Ma, D.; Wang, Y.; Chen, K.; Chen, P.; Shi, J. Single-wall carbon nanotubes covalently linked with zinc (II) phthalocyanine bearing poly (aryl benzyl ether) dendritic substituents: Synthesis, characterization and photoinduced electron transfer. Dye Pigments 2013, 99, 395–401. [Google Scholar] [CrossRef]
- Tolbin, A.Y.; Khabashesku, V.N.; Tomilova, L.G. Synthesis of phthalocyanine tert-butyl ligand conjugates with fluorinecontaining single-walled carbon nanotubes having mobile ether bonds. Mendeleev Commun. 2012, 22, 59–61. [Google Scholar] [CrossRef]
- Liang, X.; Chen, Z.; Wu, H.; Guo, L.; He, C.; Wang, B.; Wu, Y. Enhanced NH3-sensing behavior of 2,9,16, 23-tetrakis(2,2,3,3-tetrafluoropropoxy) metal(II) phthalocyanine/multi-walled carbon nanotube hybrids: An investigation of the effects of central metals. Carbon N. Y. 2014, 80, 268–278. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, N.; Zhou, Z.; Xu, D.; Wang, Z.; Yang, Z.; Wei, H.; Kong, E.S.-W.; Zhang, Y. Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: Preparation, characterization and its gas sensing properties. J. Mater. Chem. 2011, 21, 3779–3787. [Google Scholar] [CrossRef]
- Rahman, G.M.A.; Guldi, D.M.; Campidelli, S.; Prato, M. Electronically interacting single wall carbon nanotube-porphyrin nanohybrids. J. Mater. Chem. 2006, 16, 62–65. [Google Scholar] [CrossRef]
- Chitta, R.; Sandanayaka, A.S.D.; Schumacher, A.L.; D’Souza, L.; Araki, Y.; Ito, O.; D’Souza, F. Donor - Acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer. J. Phys. Chem. C 2007, 111, 6947–6955. [Google Scholar] [CrossRef]
- Bulushev, D.A.; Chuvilin, A.L.; Sobolev, V.I.; Pirutko, L.V.; Fedoseeva, Y.V.; Lobiak, E.V.; Modin, E.; Okotrub, A.V.; Bulusheva, L.G. Single Au Atoms on the Surface of N-Free and N-Doped Carbon: Interaction with Formic Acid and Methanol Molecules. Top. Catal. 2019, 62, 508–517. [Google Scholar] [CrossRef]
- Nismy, N.A.; Adikaari, A.A.D.T.; Silva, S.R.P. Functionalized multiwall carbon nanotubes incorporated polymer/fullerene hybrid photovoltaics. Appl. Phys. Lett. 2010, 97, 033105. [Google Scholar] [CrossRef]
- Zhou, Y.; Fang, Y.; Ramasamy, R.P. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors 2019, 19, 392. [Google Scholar] [CrossRef]
- Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; McGuire, K.; Gothard, N.; Rao, A.M.; Pham, A. Selective gas detection using a carbon nanotube sensor. Appl. Phys. Lett. 2003, 83, 2280–2282. [Google Scholar] [CrossRef]
- Singh, A.; Samanta, S.; Kumar, A.; Debnath, A.K.; Prasad, R.; Veerender, P.; Balouria, V.; Aswal, D.K.; Gupta, S.K. Implication of molecular orientation on charge transport and gas sensing characteristics of cobalt-phthalocyanine thin films. Org. Electron. 2012, 13, 2600–2604. [Google Scholar] [CrossRef]
- Yan, T.; Li, T.X.; Wang, R.Z.; Jia, R. Experimental investigation on the ammonia adsorption and heat transfer characteristics of the packed multi-walled carbon nanotubes. Appl. Therm. Eng. 2015, 77, 20–29. [Google Scholar] [CrossRef]
- Valli, L. Phthalocyanine-based Langmuir-Blodgett films as chemical sensors. Adv. Colloid Interface Sci. 2005, 116, 13–44. [Google Scholar] [CrossRef] [PubMed]
- Gülmez, A.D.; Polyakov, M.S.; Volchek, V.V.; Kostakoğlu, S.T.; Esenpinar, A.A.; Basova, T.V.; Durmuş, M.; Gürek, A.G.; Ahsen, V.; Banimuslem, H.A.; et al. Tetrasubstituted copper phthalocyanines: Correlation between liquid crystalline properties, films alignment and sensing properties. Sens. Actuators B Chem. 2017, 241, 364–375. [Google Scholar] [CrossRef]
- Chidawanyika, W.; Nyokong, T. Characterization of amine-functionalized single-walled carbon nanotube-low symmetry phthalocyanine conjugates. Carbon N. Y. 2010, 48, 2831–2838. [Google Scholar] [CrossRef]
- Polyakov, M.S.; Basova, T.V.; Göksel, M.; Şenocak, A.; Demirbaş, E.; Durmuş, M.; Kadem, B.; Hassan, A. Effect of covalent and non-covalent linking of zinc(II) phthalocyanine functionalised carbon nanomaterials on the sensor response to ammonia. Synth. Met. 2017, 227, 78–86. [Google Scholar] [CrossRef]
- Hashim, D.P.; Narayanan, N.T.; Romo-Herrera, J.M.; Cullen, D.A.; Hahm, M.G.; Lezzi, P.; Suttle, J.R.; Kelkhoff, D.; Muñoz-Sandoval, E.; Ganguli, S.; et al. Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Sci. Rep. 2012, 2, srep00363. [Google Scholar] [CrossRef]
- Shan, C.; Zhao, W.; Lu, X.L.; O’Brien, D.J.; Li, Y.; Cao, Z.; Elias, A.L.; Cruz-Silva, R.; Terrones, M.; Wei, B.; et al. Three-dimensional nitrogen-doped multiwall carbon nanotube sponges with tunable properties. Nano Lett. 2013, 13, 5514–5520. [Google Scholar] [CrossRef]
- Xie, B.; Liu, Y.; Ding, Y.; Zheng, Q.; Xu, Z. Mechanics of carbon nanotube networks: Microstructural evolution and optimal design. Soft Matter 2011, 7, 10039–10047. [Google Scholar] [CrossRef]
- Leonard, A.D.; Hudson, J.L.; Fan, H.; Booker, R.; Simpson, L.J.; O’Neill, K.J.; Parilla, P.A.; Heben, M.J.; Pasquali, M.; Kittrell, C.; et al. Nanoengineered carbon scaffolds for hydrogen storage. J. Am. Chem. Soc. 2009, 131, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Miyaura, N.; Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc. Chem. Commun. 1979, 866–867. [Google Scholar] [CrossRef]
- Sonogashira, K.; Tohda, Y.; Hagihara, N. A convenient synthesis of acetylenes: Catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975, 16, 4467–4470. [Google Scholar] [CrossRef]
- Kumar, R.; Rao, C.N.R. Assemblies of single-walled carbon nanotubes generated by covalent cross-linking with organic linkers. J. Mater. Chem. A 2015, 3, 6747–6750. [Google Scholar] [CrossRef]
- Şenocak, A.; Göl, C.; Basova, T.V.; Demirbaş, E.; Durmuş, M.; Al-Sagur, H.; Kadem, B.; Hassan, A. Preparation of single walled carbon nanotube-pyrene 3D hybrid nanomaterial and its sensor response to ammonia. Sens. Actuators B Chem. 2018, 256, 853–860. [Google Scholar] [CrossRef]
- Şenocak, A.; Köksoy, B.; Demirbaş, E.; Basova, T.; Durmuş, M. 3D SWCNTs-coumarin hybrid material for ultra-sensitive determination of quercetin antioxidant capacity. Sens. Actuators B Chem. 2018, 267, 165–173. [Google Scholar] [CrossRef]
- Şenocak, A.; Köksoy, B.; Akyüz, D.; Koca, A.; Klyamer, D.; Basova, T.; Demirbaş, E.; Durmuş, M. Highly selective and ultra-sensitive electrochemical sensor behavior of 3D SWCNT-BODIPY hybrid material for eserine detection. Biosens. Bioelectron. 2019, 128, 144–150. [Google Scholar] [CrossRef]
- Ozden, S.; Narayanan, T.N.; Tiwary, C.S.; Dong, P.; Hart, A.H.C.; Vajtai, R.; Ajayan, P.M. 3D macroporous solids from chemically cross-linked carbon nanotubes. Small 2015, 11, 688–693. [Google Scholar] [CrossRef]
- Cai, S.; Wang, R.; Yourey, W.M.; Li, J.; Zhang, H.; Tang, H. An efficient bifunctional electrocatalyst derived from layer-by-layer self-assembly of a three-dimensional porous Co-N-C@graphene. Sci. Bull. 2019, 64, 968–975. [Google Scholar] [CrossRef]
- Kwak, D.; Lei, Y.; Maric, R. Ammonia gas sensors: A comprehensive review. Talanta 2019, 204, 713–730. [Google Scholar] [CrossRef]
- Insausti, M.; Timmis, R.; Kinnersley, R.; Rufino, M.C. Advances in sensing ammonia from agricultural sources. Sci. Total Environ. 2020, 706. [Google Scholar] [CrossRef]
- Phillips, A.J.; Hamilton, P.A. Improved Detection Limits in Fourier Transform Spectroscopy from a Maximum Entropy Approach to Baseline Estimation. Anal. Chem. 1996, 68, 4020–4025. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Bhattacharya, S. Hydrogen gas sensing methods, materials, and approach to achieve parts per billion level detection: A review. Int. J. Hydrogen Energy 2019, 44, 26076–26099. [Google Scholar] [CrossRef]
- Bıyıklıoğlu, Z.; Çakır, D. Novel axially disubstituted non-aggregated silicon phthalocyanines. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 98, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Lau, J.T.F.; Lo, P.C.; Fong, W.P.; Ng, D.K.P. Preparation and photodynamic activities of silicon(IV) phthalocyanines substituted with permethylated β-cyclodextrins. Chem.-A Eur. J. 2011, 17, 7569–7577. [Google Scholar] [CrossRef]
- Zhao, Z.; Chan, P.-S.; Li, H.; Wong, K.-L.; Ngok Shun Wong, R.; Mak, N.-K.; Zhang, J.; Tam, H.-L.; Wong, W.-Y.; Kwong, D.W.; et al. Highly Selective Mitochondria-Targeting Amphiphilic Silicon(IV) Phthalocyanines with Axially Ligated Rhodamine B for Photodynamic Therapy. Inorg. Chem. 2011, 51, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Kadem, B.; Göksel, M.; Şenocak, A.; Demirbaş, E.; Atilla, D.; Durmuş, M.; Basova, T.; Shanmugasundaram, K.; Hassan, A. Effect of covalent and non-covalent linking on the structure, optical and electrical properties of novel zinc(II) phthalocyanine functionalized carbon nanomaterials. Polyhedron 2016, 110, 37–45. [Google Scholar] [CrossRef]
- He, N.; Chen, Y.; Bai, J.; Wang, J.; Blau, W.J.; Zhu, J. Preparation and Optical Limiting Properties of Multiwalled Carbon Nanotubes with π-Conjugated Metal-Free Phthalocyanine Moieties. J. Phys. Chem. C 2009, 113, 13029–13035. [Google Scholar] [CrossRef]
- Şenocak, A.; Basova, T.; Demirbas, E.; Durmuş, M. Direct and Fast Electrochemical Determination of Catechin in Tea Extracts using SWCNT-Subphthalocyanine Hybrid Material. Electroanalysis 2019, 31, 1697–1707. [Google Scholar] [CrossRef]
- Sarıoğulları, H.; Şenocak, A.; Basova, T.; Demirbaş, E.; Durmuş, M. Effect of different SWCNT-BODIPY hybrid materials for selective and sensitive electrochemical detection of guanine and adenine. J. Electroanal. Chem. 2019, 840, 10–20. [Google Scholar] [CrossRef]
- Llobet, E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013, 179, 32–45. [Google Scholar] [CrossRef]
- Travlou, N.A.; Bandosz, T.J. Nanoporous carbon-composites as gas sensors: Importance of the specific adsorption forces for ammonia sensing mechanism. Carbon N. Y. 2017, 121, 114–126. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Yu, Z.; Zhou, X.; Kang, D.; Wu, Y.; Chen, Z.; He, C.; Zhou, X. The effects of central metals on ammonia sensing of metallophthalocyanines covalently bonded to graphene oxide hybrids. RSC Adv. 2017, 7, 34215–34225. [Google Scholar] [CrossRef]
- Orzechowska, S.; Mazurek, A.; Świslocka, R.; Lewandowski, W. Electronic nose: Recent developments in gas sensing and molecular mechanisms of graphene detection and other materials. Materials 2020, 13, 80. [Google Scholar] [CrossRef]
- Polyakov, M.S.; Ivanova, V.N.; Basova, T.V.; Saraev, A.A.; Köksoy, B.; Şenocak, A.; Demirbaş, E.; Durmuş, M. 3D, covalent and noncovalent hybrid materials based on 3-phenylcoumarin derivatives and single walled carbon nanotubes as gas sensing layers. Appl. Surf. Sci. 2020, 504, 144276. [Google Scholar] [CrossRef]
- Yang, M.; Kim, D.-H.; Kim, W.-S.; Kang, T.J.; Lee, B.Y.; Hong, S.; Kim, Y.H.; Hong, S.-H. H2sensing characteristics of {SnO}2coated single wall carbon nanotube network sensors. Nanotechnology 2010, 21, 215501. [Google Scholar] [CrossRef]
- Zhang, M.; Brooks, L.L.; Chartuprayoon, N.; Bosze, W.; Choa, Y.; Myung, N.V. Palladium/Single-Walled Carbon Nanotube Back-to-Back Schottky Contact-Based Hydrogen Sensors and Their Sensing Mechanism. ACS Appl. Mater. Interfaces 2014, 6, 319–326. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef]
- Li, X.; Wang, B.; Wang, X.; Zhou, X.; Chen, Z.; He, C.; Yu, Z.; Wu, Y. Enhanced NH3-Sensitivity of Reduced Graphene Oxide Modified by Tetra-α-Iso-Pentyloxymetallophthalocyanine Derivatives. Nanoscale Res. Lett. 2015, 10. [Google Scholar] [CrossRef]
- Dehsari, H.S.; Gavgani, J.N.; Hasani, A.; Mahyari, M.; Shalamzari, E.K.; Salehi, A.; Taromi, F.A. Copper(II) phthalocyanine supported on a three-dimensional nitrogen-doped graphene/PEDOT-PSS nanocomposite as a highly selective and sensitive sensor for ammonia detection at room temperature. RSC Adv. 2015, 5, 79729–79737. [Google Scholar] [CrossRef]
- Kang, D.; Wang, B.; Wang, X.; Li, Y.; Chen, Z.; He, C.; Wu, Y. Stably dispersed metallophthalocyanine noncovalently bonded to multiwalled carbon nanotubes for ammonia sensing at room temperature. Sens. Actuators B Chem. 2017, 246, 262–270. [Google Scholar] [CrossRef]
- Chen, P.-C.; Ishikawa, F.N.; Chang, H.-K.; Ryu, K.; Zhou, C. A nanoelectronic nose: A hybrid nanowire/carbon nanotube sensor array with integrated micromachined hotplates for sensitive gas discrimination. Nanotechnology 2009, 20, 125503. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.C.; Moraes, D.J. Control of the emission of ammonia through adsorption in a fixed bed of activated carbon. Adsorpt. Sci. Technol. 2002, 20, 1013–1022. [Google Scholar] [CrossRef]
- Bejaoui, A.; Guerin, J.; Aguir, K. Modeling of a p-type resistive gas sensor in the presence of a reducing gas. Sens. Actuators B Chem. 2013, 181, 340–347. [Google Scholar] [CrossRef]
- Kaya, E.N.; Polyakov, M.S.; Basova, T.V.; Durmuş, M.; Hassan, A. Pyrene containing liquid crystalline asymmetric phthalocyanines and their composite materials with single-walled carbon nanotubes. J. Porphyr. Phthalocyanines 2018, 22, 56–63. [Google Scholar] [CrossRef]
- Polyakov, M.S.; Basova, T.V. Hybrid materials of zinc(II) tetra-tert-butylphthalocyanine and zinc(II) tetra-tert-butylnaphthalocyanine with single walled carbon nanotubes: Structure and sensing properties. Macroheterocycles 2017, 10, 31–36. [Google Scholar] [CrossRef]
- Kaya, E.N.; Basova, T.; Polyakov, M.; Durmuş, M.; Kadem, B.; Hassan, A. Hybrid materials of pyrene substituted phthalocyanines with single-walled carbon nanotubes: Structure and sensing properties. RSC Adv. 2015, 5, 91855–91862. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds SiPc, SWCNT-N3 and SWCNT/SiPc are available from the authors. |
NH3 Sensing Layer | LOD, ppm | Linear Range, ppm | Temp. Range, °C | Ref. |
---|---|---|---|---|
SWCNT/pyrene-3D | 0.5 | 0.5–5 | RT | [45] |
GO/CoPc | 0.8 | 0.8–50 | RT | [64] |
rGO/MPc | 0.8 | 0.8–50 | RT | [70] |
G/PEDOT-PSS | 10 | 5–20 | RT | [71] |
MWCNT/CuPc | 0.75 | 0.6–5; 10–30 | RT | [72] |
SWCNT/SiPc | 0.5 | 0.5–50 | 25–80 | This work |
H2 Sensing Layer | LOD, ppm | Linear Range, ppm | Temp. Range,°C | Ref. |
SWCNT/SnO2 | 100 | 100–10,000 | RT | [67] |
SWCNT/Pd | 50 | 50–500 | RT | [68] |
SWCNT/In2O3, ZnO or SnO2 | 500 | 500–2000 | 25–200 | [73] |
SWCNT/SiPc | 70 | 70–1000 | 25–80 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polyakov, M.; Ivanova, V.; Klyamer, D.; Köksoy, B.; Şenocak, A.; Demirbaş, E.; Durmuş, M.; Basova, T. A Hybrid Nanomaterial Based on Single Walled Carbon Nanotubes Cross-Linked via Axially Substituted Silicon (IV) Phthalocyanine for Chemiresistive Sensors. Molecules 2020, 25, 2073. https://doi.org/10.3390/molecules25092073
Polyakov M, Ivanova V, Klyamer D, Köksoy B, Şenocak A, Demirbaş E, Durmuş M, Basova T. A Hybrid Nanomaterial Based on Single Walled Carbon Nanotubes Cross-Linked via Axially Substituted Silicon (IV) Phthalocyanine for Chemiresistive Sensors. Molecules. 2020; 25(9):2073. https://doi.org/10.3390/molecules25092073
Chicago/Turabian StylePolyakov, Maxim, Victoria Ivanova, Darya Klyamer, Baybars Köksoy, Ahmet Şenocak, Erhan Demirbaş, Mahmut Durmuş, and Tamara Basova. 2020. "A Hybrid Nanomaterial Based on Single Walled Carbon Nanotubes Cross-Linked via Axially Substituted Silicon (IV) Phthalocyanine for Chemiresistive Sensors" Molecules 25, no. 9: 2073. https://doi.org/10.3390/molecules25092073
APA StylePolyakov, M., Ivanova, V., Klyamer, D., Köksoy, B., Şenocak, A., Demirbaş, E., Durmuş, M., & Basova, T. (2020). A Hybrid Nanomaterial Based on Single Walled Carbon Nanotubes Cross-Linked via Axially Substituted Silicon (IV) Phthalocyanine for Chemiresistive Sensors. Molecules, 25(9), 2073. https://doi.org/10.3390/molecules25092073