An Oxalate-Bridged Copper(II) Complex Combining Monodentate Benzoate, 2,2′-bipyridine and Aqua Ligands: Synthesis, Crystal Structure and Investigation of Magnetic Properties
Abstract
1. Introduction
2. Results and Discussion
2.1. Crystal Structure
2.2. Thermal Analysis
2.3. Vibrational Spectroscopy
2.4. Electron Paramagnetic Resonance Spectroscopy (EPR)
2.5. UV/Vis Spectroscopy
2.6. Magnetic Properties and ab Initio Calculations
3. Materials and Methods
3.1. Materials and Physical Measurements
3.2. Synthesis of Compound 1
3.3. X-ray Crystallographic Data Collection and Refinement
3.4. Theoretical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, K.-B.; Chen, Z.-F.; Liu, Y.-C.; Xie, X.-L.; Liang, H. Dihydroisoquinoline copper(II) complexes: Crystal structures, cytotoxicity, and action mechanism. Rsc. Adv. 2015, 5, 81313–81323. [Google Scholar] [CrossRef]
- Usman, M.; Arjmand, F.; Khan, R.A.; Alsalme, A.; Ahmad, M.; Bishwas, M.S.; Tabassum, S. Tetranuclear cubane Cu4O4 complexes as prospective anticancer agents: Design, synthesis, structural elucidation, magnetism, computational and cytotoxicity studies. Inorg. Chim. Acta 2018, 473, 121–132. [Google Scholar] [CrossRef]
- Sanyal, R.; Kundu, P.; Rychagova, E.; Zhigulin, G.; Ketkov, S.; Ghosh, B.; Chattopadhyay, S.K.; Zangrando, E.; Das, D. Catecholase activity of Mannich-based dinuclear CuII complexes with theoretical modeling: New insight into the solvent role in the catalytic cycle. New J. Chem. 2016, 40, 6623–6635. [Google Scholar] [CrossRef]
- Parween, A.; Naskar, S.; Mota, A.J.; Espinosa Ferao, A.; Chattopadhyay, S.K.; Rivière, E.; Lewis, W.; Naskar, S. C i -Symmetry, [2 × 2] grid, square copper complex with the N4,N5-bis(4-fluorophenyl)-1H-imidazole-4,5-dicarboxamide ligand: Structure, catecholase activity, magnetic properties and DFT calculations. New J. Chem. 2017, 41, 11750–11758. [Google Scholar] [CrossRef]
- Castro, I.; Calatayud, M.L.; Yuste, C.; Castellano, M.; Ruiz-García, R.; Cano, J.; Faus, J.; Verdaguer, M.; Lloret, F. Dinuclear copper(II) complexes as testing ground for molecular magnetism theory. Polyhedron 2019, 169, 66–77. [Google Scholar] [CrossRef]
- Dutta, D.; Nath, H.; Frontera, A.; Bhattacharyya, M.K. A novel oxalato bridged supramolecular ternary complex of Cu(II) involving energetically significant π-hole interaction: Experimental and theoretical studies. Inorg. Chim. Acta 2019, 487, 354–361. [Google Scholar] [CrossRef]
- Calatayud, M.A.L.; Castro, I.; Sletten, J.; Lloret, F.; Julve, M. Syntheses, crystal structures and magnetic properties of chromato-, sulfato-, and oxalato-bridged dinuclear copper(II) complexes. Inorg. Chim. Acta 2000, 300–302, 846–854. [Google Scholar] [CrossRef]
- Cangussu, D.; Stumpf, H.O.; Adams, H.; Thomas, J.A.; Lloret, F.; Julve, M. Oxalate, squarate and croconate complexes with bis(2-pyrimidylcarbonyl)amidatecopper(II): Synthesis, crystal structures and magnetic properties. Inorg. Chim. Acta 2005, 358, 2292–2302. [Google Scholar] [CrossRef]
- Zheng, A.-L.; Ju, Z.-F.; Li, W.; Zhang, J. Ferromagnetic dinuclear copper(II) complex based on bridging oxalate and bipyridinium ligands. Inorg. Chem. Commun. 2006, 9, 489–492. [Google Scholar] [CrossRef]
- Castillo, O.; Luque, A.; Román, P.; Lloret, F.; Julve, M. Syntheses, Crystal Structures, and Magnetic Properties of One-Dimensional Oxalato-Bridged Co(II), Ni(II), and Cu(II) Complexes with n-Aminopyridine (n = 2−4) as Terminal Ligand. Inorg. Chem. 2001, 40, 5526–5535. [Google Scholar] [CrossRef]
- Julve, M.; Gleizes, A.; Chamoreau, L.M.; Ruiz, E.; Verdaguer, M. Antiferromagnetic Interactions in Copper(II) µ-Oxalato Dinuclear Complexes: The Role of the Counterion. Eur. J. Inorg. Chem. 2018, 2018, 509–516. [Google Scholar] [CrossRef]
- Zheng, L.-Y.; Chi, Y.-H.; Liang, Y.; Cottrill, E.; Pan, N.; Shi, J.-M. Green and mild oxidation: From acetate anion to oxalate anion. J. Coord. Chem. 2018, 71, 3947–3954. [Google Scholar] [CrossRef]
- Carranza, J.; Brennan, C.; Sletten, J.; Vangdal, B.; Rillema, P.; Lloret, F.; Julve, M. Syntheses, crystal structures and magnetic properties of new oxalato-, croconato- and squarato-containing copper(II) complexes. New J. Chem. 2003, 27, 1775–1783. [Google Scholar] [CrossRef]
- Melnic, E.; Kravtsov, V.C.; Krämer, K.; van Leusen, J.; Decurtins, S.; Liu, S.-X.; Kögerler, P.; Baca, S.G. Versatility of copper(II) coordination compounds with 2,3-bis(2-pyridyl)pyrazine mediated by temperature, solvents and anions choice. Solid State Sci. 2018, 82, 1–12. [Google Scholar] [CrossRef]
- Golchoubian, H.; Samimi, R. Solvato- and thermochromism study in oxalato-bridged dinuclear copper(II) complexes of bidentate diamine ligands. Polyhedron 2017, 128, 68–75. [Google Scholar] [CrossRef]
- Royappa, A.T.; Royappa, A.D.; Moral, R.F.; Rheingold, A.L.; Papoular, R.J.; Blum, D.M.; Duong, T.Q.; Stepherson, J.R.; Vu, O.D.; Chen, B.; et al. Copper(I) oxalate complexes: Synthesis, structures and surprises. Polyhedron 2016, 119, 563–574. [Google Scholar] [CrossRef]
- Świtlicka-Olszewska, A.; Machura, B.; Mroziński, J.; Kalińska, B.; Kruszynski, R.; Penkala, M. Effect of N-donor ancillary ligands on structural and magnetic properties of oxalate copper(ii) complexes. New J. Chem. 2014, 38, 1611–1626. [Google Scholar] [CrossRef]
- Miyazato, Y.; Asato, E.; Ohba, M.; Wada, T. Synthesis and Characterization of a Di-µ-oxalato Tetracopper(II) Complex with Tetranucleating Macrocyclic Ligand. B. Chem. Soc. Jpn 2016, 89, 430–436. [Google Scholar] [CrossRef]
- Yuste, C.; Cañadillas-Delgado, L.; Labrador, A.; Delgado, F.S.; Ruiz-Pérez, C.; Lloret, F.; Julve, M. Low-Dimensional Copper(II) Complexes with the Trinucleating Ligand 2,4,6-Tris(di-2-pyridylamine)-1,3,5-triazine: Synthesis, Crystal Structures, and Magnetic Properties. Inorg. Chem. 2009, 48, 6630–6640. [Google Scholar] [CrossRef]
- Vicente, R.; Escuer, A.; Solans, X.; Font-Bardía, M. Synthesis, magnetic behaviour and structural characterization of the alternating hexanuclear copper(II) compound [Cu6(tmen)6(µ-N3)2(µ-C2O4)3(H2O)2][ClO4]4·2H2O (tmen = Me2NCH2CH2NMe2). J. Chem. Soc. Dalton Trans. 1996, 1996, 1835–1838. [Google Scholar] [CrossRef]
- Nakahata, D.H.; de Paiva, R.E.F.; Lustri, W.R.; Ribeiro, C.M.; Pavan, F.R.; da Silva, G.G.; Ruiz, A.L.T.G.; de Carvalho, J.E.; Corbi, P.P. Sulfonamide-containing copper(II) metallonucleases: Correlations with in vitro antimycobacterial and antiproliferative activities. J. Inorg. Biochem. 2018, 187, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Maxim, C.; Ferlay, S.; Train, C. Binuclear heterometallic M(III)–Mn(II) (M = Fe, Cr) oxalate-bridged complexes associated with a bisamidinium dication: A structural and magnetic study. New J. Chem. 2011, 35, 1254–1259. [Google Scholar] [CrossRef]
- Glerup, J.; Goodson, P.A.; Hodgson, D.J.; Michelsen, K. Magnetic Exchange through Oxalate Bridges: Synthesis and Characterization of (mu-Oxalato)dimetal(II) Complexes of Manganese, Iron, Cobalt, Nickel, Copper, and Zinc. Inorg. Chem. 1995, 34, 6255–6264. [Google Scholar] [CrossRef]
- Baruah, B.; Golub, V.O.; O’Connor, C.J.; Chakravorty, A. Synthesis of Oxalato-Bridged (Oxo)vanadium(IV) Dimers Using L-Ascorbic Acid as Oxalate Precursor: Structure and Magnetism of Two Systems. Eur. J. Inorg. Chem. 2003, 2003, 2299–2303. [Google Scholar] [CrossRef]
- Bratsos, I.; Serli, B.; Zangrando, E.; Katsaros, N.; Alessio, E. Replacement of Chlorides with Dicarboxylate Ligands in Anticancer Active Ru(II)-DMSO Compounds: A New Strategy That Might Lead to Improved Activity. Inorg. Chem. 2007, 46, 975–992. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V.; Bencini, A.; Totti, F.; Ciofini, I. On the Calculation and Modeling of Magnetic Exchange Interactions in Weakly Bonded Systems: The Case of the Ferromagnetic Copper(II) μ2-Azido Bridged Complexes. Inorg. Chem. 1999, 38, 1996–2004. [Google Scholar] [CrossRef]
- Calzado, C.J.; Cabrero, J.; Malrieu, J.P.; Caballol, R. Analysis of the magnetic coupling in binuclear complexes. I. Physics of the coupling. J. Chem. Phys. 2002, 116, 2728–2747. [Google Scholar] [CrossRef]
- Calzado, C.J.; Cabrero, J.; Malrieu, J.P.; Caballol, R. Analysis of the magnetic coupling in binuclear complexes. II. Derivation of valence effective Hamiltonians from ab initio CI and DFT calculations. J. Chem. Phys. 2002, 116, 3985–4000. [Google Scholar] [CrossRef]
- Xu, Z.; Thompson, L.K.; Miller, D.O. Dicopper(II) Complexes Bridged by Single N−N Bonds. Magnetic Exchange Dependence on the Rotation Angle between the Magnetic Planes. Inorg. Chem. 1997, 36, 3985–3995. [Google Scholar] [CrossRef]
- Thompson, L.K.; Tandon, S.S.; Lloret, F.; Cano, J.; Julve, M. An Azide-Bridged Copper(II) Ferromagnetic Chain Compound Exhibiting Metamagnetic Behavior. Inorg. Chem. 1997, 36, 3301–3306. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Jurić, M.; Pajić, D.; Žilić, D.; Rakvin, B.; Milić, D.; Planinić, P. Synthesis, crystal structures and magnetic properties of the oxalate-bridged single CuIICuII and cocrystallized CuIIZnII systems. Three species (CuCu, CuZn, ZnZn) in the crystalline lattice. Polyhedron 2015, 98, 26–34. [Google Scholar]
- Goswami, S.; Singha, S.; Saha, R.; Singha Roy, A.; Islam, M.; Kumar, S. A bi-nuclear Cu(II)-complex for selective epoxidation of alkenes: Crystal structure, thermal, photoluminescence and cyclic voltammetry. Inorg. Chim. Acta 2019, 486, 352–360. [Google Scholar] [CrossRef]
- Oliveira, W.X.C.; Pereira, C.L.M.; Pinheiro, C.B.; Lloret, F.; Julve, M. Oxotris(oxalate)niobate(V): An oxalate delivery agent in the design of building blocks. J. Coord. Chem. 2018, 71, 707–724. [Google Scholar] [CrossRef]
- Samimi, R.; Golchoubian, H. Dinuclear copper(II) complexes with ethylenediamine derivative and bridging oxalato ligands: Solvatochromism and density functional theory studies. Transit. Met. Chem. 2017, 42, 643–653. [Google Scholar] [CrossRef]
- Calatayud, M.L.; Orts-Arroyo, M.; Julve, M.; Lloret, F.; Marino, N.; De Munno, G.; Ruiz-García, R.; Castro, I. Magneto-structural correlations in asymmetric oxalato-bridged dicopper(II) complexes with polymethyl-substituted pyrazole ligands. J. Coord. Chem. 2018, 71, 657–674. [Google Scholar] [CrossRef]
- Bahemmat, S.; Neumüller, B.; Ghassemzadeh, M. One-Pot Synthesis of an Oxalato-Bridged CuII Coordination Polymer Containing an in Situ Produced Pyrazole Moiety: A Precursor for the Preparation of CuO Nano structures. Eur. J. Inorg. Chem. 2015, 2015, 4116–4124. [Google Scholar] [CrossRef]
- Liu, C.; Abboud, K.A. Crystal structures of [mu]-oxalato-bis[azido(histamine)copper(II)] and [mu]-oxalato-bis[(dicyanamido)(histamine)copper(II)]. Acta Cryst. 2015, E71, 1379–1383. [Google Scholar]
- Min, K.S.; Suh, M.P. Self-Assembly, Structures, and Magnetic Properties of Ladder-Like Copper(II) Coordination Polymers. J. Solid State Chem. 2000, 152, 183–190. [Google Scholar] [CrossRef][Green Version]
- Hökelek, T.; Ünaleroğglu, C.; Mert, Y. Crystal Structure of [Bis(N,N,N’,N’-tetramethylethylenediamine)-O,O’-μ-O,O’-oxalato]dihydroxy Dicopper(II). Anal. Sci. 2000, 16, 1235–1236. [Google Scholar] [CrossRef][Green Version]
- Huang, W.; Ogawa, T. Spectral and structural studies of a new oxalato-bridged dinuclear copper(II) complex having two 3-(thiophen-2-yl)-1,10-phenanthroline ligands in a trans configuration. Inorg. Chim. Acta 2009, 362, 3877–3880. [Google Scholar] [CrossRef]
- Thuéry, P. Increasing Complexity in the Uranyl Ion–Kemp’s Triacid System: From One- and Two-Dimensional Polymers to Uranyl–Copper(II) Dodeca- and Hexadecanuclear Species. Cryst. Growth Des. 2014, 14, 2665–2676. [Google Scholar] [CrossRef]
- Du, M.; Guo, Y.-M.; Chen, S.-T.; Bu, X.-H.; Ribas, J. Crystal structures, spectra and magnetic properties of di-2-pyridylamine (dpa) CuII complexes [Cu(dpa)2(N3)2]·(H2O)2 and [Cu2(μ-ox)(dpa)2(CH3CN)2](ClO4)2. Inorg. Chim. Acta 2003, 346, 207–214. [Google Scholar] [CrossRef]
- Youngme, S.; van Albada, G.A.; Chaichit, N.; Gunnasoot, P.; Kongsaeree, P.; Mutikainen, I.; Roubeau, O.; Reedijk, J.; Turpeinen, U. Synthesis, spectroscopic characterization, X-ray crystal structure and magnetic properties of oxalato-bridged copper(II) dinuclear complexes with di-2-pyridylamine. Inorg. Chim. Acta 2003, 353, 119–128. [Google Scholar] [CrossRef]
- Castillo, O.; Muga, I.; Luque, A.; Gutiérrez-Zorrilla, J.M.; Sertucha, J.; Vitoria, P.; Román, P. Synthesis, chemical characterization, X-ray crystal structure and magnetic properties of oxalato-bridged copper(II) binuclear complexes with 2,2′-bipyridine and diethylenetriamine as peripheral ligands. Polyhedron 1999, 18, 1235–1245. [Google Scholar] [CrossRef]
- Gusev, A.N.; Nemec, I.; Herchel, R.; Bayjyyev, E.; Nyshchimenko, G.A.; Alexandrov, G.G.; Eremenko, I.L.; Trávníček, Z.; Hasegawa, M.; Linert, W. Versatile coordination modes of bis [5-(2-pyridine-2-yl)-1,2,4-triazole-3-yl]alkanes in Cu(ii) complexes. Dalton Trans. 2014, 43, 7153–7165. [Google Scholar] [CrossRef]
- Pokharel, U.R.; Fronczek, F.R.; Maverick, A.W. Reduction of carbon dioxide to oxalate by a binuclear copper complex. Nat. Commun. 2014, 5, 5883. [Google Scholar] [CrossRef]
- Boyko, A.N.; Haukka, M.; Golenya, I.A.; Pavlova, S.V.; Usenko, N.I. [mu]-Oxalato-bis[(2,2’-bipyridyl)copper(II)] bis(perchlorate) dimethylformamide disolvate monohydrate. Acta Cryst. 2010, E66, m1101–m1102. [Google Scholar]
- Castro, I.; Faus, J.; Julve, M.; Mollar, M.; Monge, A.; Gutierrez-Puebla, E. Formation in solution, synthesis and crystal structure of μ-oxalatobis[bis(2-pyridylcarbonyl)amido] dicopper(II). Inorg. Chim. Acta 1989, 161, 97–104. [Google Scholar] [CrossRef]
- Li, K.-k.; Zhang, C.; Xu, W. [mu]-Oxalato-bis[bis(2,2’-bipyridine)manganese(II)] bis(perchlorate) 2,2’-bipyridine solvate. Acta Cryst. 2011, E67, m1443–m1444. [Google Scholar]
- Kaizaki, S.; Nakahanada, M.; Fuyuhiro, A.; Ikedo-Urade, M.; Abe, Y. Synthesis, characterization and redox reactivity of l-tartrato bridged dinuclear manganese complex with 2,2′-bipyridine. Inorg. Chim. Acta 2009, 362, 5117–5121. [Google Scholar] [CrossRef]
- Duan, W.; Jiao, S.; Liu, X.; Chen, J.; Cao, X.; Chen, Y.; Xu, W.; Cui, X.; Xu, J.; Pang, G. Two new supramolecular hybrids based on bi-capped Keggin {PMo12V2O42} clusters and transition metal mixed-organic-ligand complexes. Chem. Res. Chin. Univ. 2015, 31, 179–186. [Google Scholar] [CrossRef]
- Shi, C.; Fan, L.; Wei, P.; Li, B.; Zhang, X. (μ-Oxalato-κ4O1,O2:O1’,O2’)bis[bis(2,2’-bipyridine-κ2N,N’)cobalt(II)] μ6-oxido-dodeca-μ2-oxido-hexaoxido-hexatungstate(VI). Acta Cryst. 2010, E66, m822–m823. [Google Scholar] [CrossRef] [PubMed]
- Androš Dubraja, L.; Jurić, M.; Torić, F.; Pajić, D. The influence of metal centres on the exchange interaction in heterometallic complexes with oxalate-bridged cations. Dalton Trans. 2017, 46, 11748–11756. [Google Scholar] [CrossRef] [PubMed]
- Youngme, S.; Gunnasoot, P.; Chaichit, N.; Pakawatchai, C. Dinuclear copper(II) complexes with ferromagnetic and antiferromagnetic interactions mediated by a bridging oxalato group: Structures and magnetic properties of [Cu2L4(μ-C2O4)](PF6)2(H2O)2 and [Cu2L2(μ-C2O4)(NO3)2((CH3)2NCOH)2] (L = di-2-pyridylamine). Transit. Met. Chem. 2004, 29, 840–846. [Google Scholar] [CrossRef]
- Qin, C. μ-Oxalato-κ2O1,O2:κ2O1’,O2’-bis[(3,5-dicarboxybenzoato-κ2O1,O1’)(1,10-phenanthroline-κ2N,N’)copper(II)]. Acta Cryst. 2007, E63, m1006–m1007. [Google Scholar] [CrossRef]
- de Faria, D.M.; Yoshida, M.I.; Pinheiro, C.B.; Guedes, K.J.; Krambrock, K.; Diniz, R.; de Oliveira, L.F.C.; Machado, F.C. Preparation, crystal structures and spectroscopic characterization of oxalate copper(II) complexes containing the nitrogen ligands 4,4′-dimethyl-2,2′-bipyridine and di(2-pyridyl)sulfide. Polyhedron 2007, 26, 4525–4532. [Google Scholar] [CrossRef]
- Androš, L.; Jurić, M.; Planinić, P.; Žilić, D.; Rakvin, B.; Molčanov, K. New mononuclear oxalate complexes of copper(II) with 2D and 3D architectures: Synthesis, crystal structures and spectroscopic characterization. Polyhedron 2010, 29, 1291–1298. [Google Scholar] [CrossRef]
- Sarma, R.; Boudalis, A.K.; Baruah, J.B. Aromatic N-oxide bridged copper(II) coordination polymers: Synthesis, characterization and magnetic properties. Inorg. Chim. Acta 2010, 363, 2279–2286. [Google Scholar] [CrossRef]
- Stepanian, S.G.; Reva, I.D.; Radchenko, E.D.; Sheina, G.G. Infrared spectra of benzoic acid monomers and dimers in argon matrix. Vib. Spectrosc. 1996, 11, 123–133. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds—Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Edwards, H.G.M.; Farwell, D.W.; Rose, S.J.; Smith, D.N. Vibrational spectra of copper (II) oxalate dihydrate, CuC2O4·2H20, and dipotassium bis-oxalato copper (II) tetrahydrate, K2Cu(C2O4)2·4H2O. J. Mol. Struc. 1991, 249, 233–243. [Google Scholar] [CrossRef]
- Halaška, J.; Pevec, A.; Strauch, P.; Kozlevčar, B.; Koman, M.; Moncol, J. Supramolecular hydrogen-bonding networks constructed from copper(II) chlorobenzoates with nicotinamide: Structure and EPR. Polyhedron 2013, 61, 20–26. [Google Scholar] [CrossRef]
- Godlewska, S.; Jezierska, J.; Baranowska, K.; Augustin, E.; Dołęga, A. Copper(II) complexes with substituted imidazole and chlorido ligands: X-ray, UV–Vis, magnetic and EPR studies and chemotherapeutic potential. Polyhedron 2013, 65, 288–297. [Google Scholar] [CrossRef]
- Vicente, R.; Escuer, A.; Ferretjans, J.; Stoeckli-Evans, H.; Solans, X.; Font-Bardía, M. Structurally alternating copper(II) chains from oxalate and azide bridging ligands: Syntheses and crystal structure of [Cu2(µ-ox)(deen)2(H2O)2(ClO4)2] and [{Cu2(µ-N3)(µ-ox)(deen)2}n][ClO4] n (deen = Et2NCH2CH2NH2). J. Chem. Soc. Dalton Trans. 1997, 1997, 167–172. [Google Scholar] [CrossRef]
- Recio, A.; Server-Carrió, J.; Escrivà, E.; Acerete, R.; García-Lozano, J.; Sancho, A.; Soto, L. Novel Cu(II)-Based Frameworks Built from BIMAM and Oxalate: Syntheses, Structures, and Magnetic Characterizations (BIMAM = Bis(imidazol-yl) methylaminomethane). Cryst. Growth Des. 2008, 8, 4075–4082. [Google Scholar] [CrossRef]
- Halcrow, M.A. Interpreting and controlling the structures of six-coordinate copper(II) centres—When is a compression really a compression? Dalton Trans. 2003, 4375–4384. [Google Scholar] [CrossRef]
- Yilmaz, V.T.; Hamamci, S.; Andac, O.; Thöne, C.; Harrison, W.T.A. Mono- and binuclear copper(II) complexes of saccharin with 2-pyridinepropanol synthesis, spectral, thermal and structural characterization. Transit. Met. Chem. 2003, 28, 676–681. [Google Scholar] [CrossRef]
- zuah, R.T.; LR, K.; Qiu, Y.; Tregenna-Piggott, P.L.W.; Brown, C.M.; Copley, J.R.D.; Dimeo, R.M. DAVE: A comprehensive software suite for the reduction, visualization, and analysis of low energy neutron spectroscopic data. J. Res. Nat. Inst. Stan. 2009, 114, 341–358. [Google Scholar]
- Bencini, A.; Gatteschi, D. Electron Paramagnetic Resonance of Exchange Coupled Systems; Springer-Verlag: Berlin, Germany, 1990. [Google Scholar]
- Pal, P.; Konar, S.; El Fallah, M.S.; Das, K.; Bauzá, A.; Frontera, A.; Mukhopadhyay, S. Synthesis, crystal structures, magnetic properties and DFT calculations of nitrate and oxalate complexes with 3,5 dimethyl-1-(2′-pyridyl)-pyrazole-Cu(ii). Rsc Adv. 2015, 5, 45082–45091. [Google Scholar] [CrossRef]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J. App. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Neese, F. The ORCA program system. Wires Comput. Mol. Sci. 2012, 2, 73–78. [Google Scholar] [CrossRef]
- Bencini, A.; Totti, F.; Daul, C.A.; Doclo, K.; Fantucci, P.; Barone, V. Density Functional Calculations of Magnetic Exchange Interactions in Polynuclear Transition Metal Complexes. Inorg. Chem. 1997, 36, 5022–5030. [Google Scholar] [CrossRef]
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Kahn, O. Molecular Magnetism; VCH: New York, NY, USA, 1993. [Google Scholar]
- Program APEX3; Bruker AXS Inc.: Madison, WI, USA, 2015; Available online: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/single-crystal-x-ray-diffraction/sc-xrd-software/apex3.html (accessed on 16 April 2020).
- Sheldrick, G. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Sheldrick, G. A short history of SHELX. Acta Cryst. 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Farrugia, L. WinGX and ORTEP for Windows: An update. J. App. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Bencini, A.; Totti, F. A Few Comments on the Application of Density Functional Theory to the Calculation of the Magnetic Structure of Oligo-Nuclear Transition Metal Clusters. J. Chem. Theory Comput. 2009, 5, 144–154. [Google Scholar] [CrossRef]
- Neese, F. Efficient and accurate approximations to the molecular spin-orbit coupling operator and their use in molecular g-tensor calculations. J. Chem. Phys. 2005, 122, 034107. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Sample of the compound 1 is available from the authors. |
Bond Length (Å) | |||
Cu(1)–O(1) | 2.426(3) | Cu(1)–N(2) | 2.006(2) |
Cu(1)–O(5) | 1.9732(19) | O(6)–C(11) | 1.263(3) |
Cu(1)–O(8) | 2.378(2) | O(7)–C(11) | 1.230(3) |
Cu(1)–O(6) | 1.9425(19) | C(18)–O(5) | 1.260(3) |
Cu(1)–N(1) | 2.008(2) | C(18) i–O(8) | 1.230(3) |
Bond Angle (°) | |||
O(5)–Cu(1)–O(8) | 76.62(7) | O(5)–Cu(1)–N(2) | 93.67(8) |
O(6)–Cu(1)–O(1) | 89.46(9) | N(1)–Cu(1)–O(8) | 95.24(7) |
O(1)–Cu(1)–O(5) | 94.26(8) | N(2)–Cu(1)–O(8) | 94.08(8) |
O(1)–Cu(1)–O(8) | 170.00(7) | N(1)–Cu(1)–N(2) | 80.56(9) |
O(6)–Cu(1)–O(5) | 92.77(9) | N(1)–Cu(1)–O(1) | 94.26(8) |
O(6)–Cu(1)–O(8) | 86.93(9) | N(2)–Cu(1)–O(1) | 90.55(9) |
O(6)–Cu(1)–N(1) | 93.00(9) | H(1B)–O(1)–H(1A) | 104(3) |
O(6)–Cu(1)–N(2) | 173.55(9) | O(8) i–C(18)–O(5) | 124.4(2) |
O(5)–Cu(1)–N(1) | 169.75(9) | O(7)–C(11)–O(6) | 125.7(3) |
Sample | g-Matrix | A-Matrix/MHz | D-Matrix/MHz | |||||
---|---|---|---|---|---|---|---|---|
gx | gy | gz | Ax | Ay | Az | D | E | |
Solid | 2.079 | 2.079 | 2.278 | <100 | <100 | >360 | 350 | 65.5 |
Frozen solution | 2.053 | 2.078 | 2.262 | <100 | <100 | 555.1 | - | - |
Compound (a) | dCu⋅⋅⋅Cu (Å) (b) | θ (°) (c) | α (°) (d) | J (cm−1) (e) | Reference |
---|---|---|---|---|---|
[{Cu(bipy)(bzt)(OH2)}2(μ-ox)] | 5.60 | 85.9 | 107.7 | +2.3 | Complex 1 |
[{Cu(dpyam)2}2(μ-ox)](BF4)2·3H2O | 5.74 | 86.1 | - | +3.38 | [44] |
[{Cu(dpyam)2}2(μ-ox)](ClO4)2·3H2O | 5.75 | 77.0 | - | +2.42 | [44] |
[{Cu(prbipy)}2(μ-ox)]·4H2O | 5.46 | 78.7 | 107.4 | +3.22 | [9] |
[{Cu(bpca)(H2O)}2(μ-ox)]·2H2O | 5.63 | 80.7 | 106.8 | +1.1 | [7] |
[{Cu(bpca)}2(μ-ox)] | 5.44 | 86.3 | 107.4 | +1.0 | [7,49] |
[{Cu(bpcam)(H2O)}2(μ-ox)] | 5.68 | 81.6 | 106.6 | +0.75 | [8] |
[{Cu(dien)}2(μ-ox)](NO3)2 | 5.14 | 4.6 | 110.2 | −6.5 | [45] |
[{Cu(3-ampy)}2(μ-ox)]n | 5.46 | 4.8 | 111.0 | −1.3 | [10] |
[{Cu(4-ampy)}2(μ-ox)]n | 5.66 | 2.4 | 109.7 | −1.1 | [10] |
Formula | C36H30Cu2N4O10 |
---|---|
Formula weight | 805.72 g mol−1 |
Temperature (K) | 302(2) |
Wavelength (Å) | 0.71073 Å |
Crystal system | Monoclinic |
Space group | P21/n (equiv. to no 14) |
Z/calculated density | 2/1.593 Mg m−3 |
a (Å) | 7.1994(3) |
b (Å) | 10.0894(4) |
c (Å) | 23.1941(10) |
β (°) | 94.385(2) |
Unit cell volume (Å3) | 1679.83(12) |
Absorption coefficient μ (mm−1) | 1.333 |
F(000) | 824 |
Crystal size (mm)/colour | 0.175 × 0.087 × 0.067/bluish-green |
θ range (°) | 2.9–25.0 |
h, k, l ranges | ±8, ±11, ±27 |
Completeness to θ = 25° | 99.9% |
Total reflections/unique reflections/Rint | 51619/2953/0.069 |
No of parameters/restraints | 243/2 |
Goodness-of-fit on F2 (GOF) | 1.037 |
R1, wR2 (all data) b | 0.052, 0.085 |
R1, wR2 [I > 2σ(I)] a,b | 0.033, 0.078 |
Δρmaximum/Δρminimum(eÅ−3) | 0.29/−0.17 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santana, F.S.; Briganti, M.; Cassaro, R.A.A.; Totti, F.; Ribeiro, R.R.; Hughes, D.L.; Nunes, G.G.; Reis, D.M. An Oxalate-Bridged Copper(II) Complex Combining Monodentate Benzoate, 2,2′-bipyridine and Aqua Ligands: Synthesis, Crystal Structure and Investigation of Magnetic Properties. Molecules 2020, 25, 1898. https://doi.org/10.3390/molecules25081898
Santana FS, Briganti M, Cassaro RAA, Totti F, Ribeiro RR, Hughes DL, Nunes GG, Reis DM. An Oxalate-Bridged Copper(II) Complex Combining Monodentate Benzoate, 2,2′-bipyridine and Aqua Ligands: Synthesis, Crystal Structure and Investigation of Magnetic Properties. Molecules. 2020; 25(8):1898. https://doi.org/10.3390/molecules25081898
Chicago/Turabian StyleSantana, Francielli Sousa, Matteo Briganti, Rafael A. Allão Cassaro, Federico Totti, Ronny Rocha Ribeiro, David L. Hughes, Giovana Gioppo Nunes, and Dayane Mey Reis. 2020. "An Oxalate-Bridged Copper(II) Complex Combining Monodentate Benzoate, 2,2′-bipyridine and Aqua Ligands: Synthesis, Crystal Structure and Investigation of Magnetic Properties" Molecules 25, no. 8: 1898. https://doi.org/10.3390/molecules25081898
APA StyleSantana, F. S., Briganti, M., Cassaro, R. A. A., Totti, F., Ribeiro, R. R., Hughes, D. L., Nunes, G. G., & Reis, D. M. (2020). An Oxalate-Bridged Copper(II) Complex Combining Monodentate Benzoate, 2,2′-bipyridine and Aqua Ligands: Synthesis, Crystal Structure and Investigation of Magnetic Properties. Molecules, 25(8), 1898. https://doi.org/10.3390/molecules25081898