Next Article in Journal
Impact of Isoorientin on Metabolic Activity and Lipid Accumulation in Differentiated Adipocytes
Next Article in Special Issue
An Unexpected Reaction of Isodehydracetic Acid with Amines in the Presence of 1-Ethyl-3-(3-dimethylaminopropyl) Carbodiimide Hydrochloride Yields a New Type of β-Enaminones
Previous Article in Journal
Optimization of Ultrasound-Assisted Extraction Using Response Surface Methodology for Simultaneous Quantitation of Six Flavonoids in Flos Sophorae Immaturus and Antioxidant Activity
Previous Article in Special Issue
Unsymmetrically Substituted Dibenzo[b,f][1,5]-diazocine-6,12(5H,11H)dione—A Convenient Scaffold for Bioactive Molecule Design
Open AccessArticle

Synthesis and Antibacterial Evaluation of N-phenylacetamide Derivatives Containing 4-Arylthiazole Moieties

State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
*
Authors to whom correspondence should be addressed.
Academic Editor: Andrea Penoni
Molecules 2020, 25(8), 1772; https://doi.org/10.3390/molecules25081772
Received: 4 April 2020 / Accepted: 10 April 2020 / Published: 12 April 2020
(This article belongs to the Special Issue Synthesis of Heterocyclic Compounds)
A series of new N-phenylacetamide derivatives containing 4-arylthiazole moieties was designed and synthesized by introducing the thiazole moiety into the amide scaffold. The structures of the target compounds were confirmed by 1H-NMR, 13C-NMR and HRMS. Their in vitro antibacterial activities were evaluated against three kinds of bacteria—Xanthomonas oryzae pv. Oryzae (Xoo), Xanthomonas axonopodis pv. Citri (Xac) and X.oryzae pv. oryzicola (Xoc)—showing promising results. The minimum 50% effective concentration (EC50) value of N-(4-((4-(4-fluoro-phenyl)thiazol-2-yl)amino)phenyl)acetamide (A1) is 156.7 µM, which is superior to bismerthiazol (230.5 µM) and thiodiazole copper (545.2 µM). A scanning electron microscopy (SEM) investigation has confirmed that compound A1 could cause cell membrane rupture of Xoo. In addition, the nematicidal activity of the compounds against Meloidogyne incognita (M. incognita) was also tested, and compound A23 displayed excellent nematicidal activity, with mortality of 100% and 53.2% at 500 μg/mL and 100 μg/mL after 24 h of treatment, respectively. The preliminary structure-activity relationship (SAR) studies of these compounds are also briefly described. These results demonstrated that phenylacetamide derivatives may be considered as potential leads in the design of antibacterial agents. View Full-Text
Keywords: synthesis; thiazole; nematicidal activity; antibacterial activity; structure-activity relationship synthesis; thiazole; nematicidal activity; antibacterial activity; structure-activity relationship
Show Figures

Figure 1

MDPI and ACS Style

Lu, H.; Zhou, X.; Wang, L.; Jin, L. Synthesis and Antibacterial Evaluation of N-phenylacetamide Derivatives Containing 4-Arylthiazole Moieties. Molecules 2020, 25, 1772.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop