Inducing Intermediates in Biotransformation of Natural Polyacetylene and A Novel Spiro-γ-Lactone from Red Ginseng by Solid Co-Culture of Two Gut Chaetomium globosum and The Potential Bioactivity Modification by Oxidative Metabolism
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedure
3.2. Fungus Material and Cultivation Condition
3.3. Extraction and Separation Methods
3.4. LC-MS Method
3.5. Bioassay Method
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jin, S.; Jeon, J.H.; Lee, S.; Kang, W.Y.; Seong, S.J.; Yoon, Y.R.; Choi, M.K.; Song, I.S. Detection of 13 ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, compound K, 20(S)-protopanaxadiol, and 20(S)-protopanaxatriol) in human plasma and application of the analytical method to human pharma cokinetic studies following two week-repeated administration of red ginseng extract. Molecules 2019, 24, 2618. [Google Scholar]
- Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R.; Goodman, A.L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 2019, 570, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Kim, H.B.; Lee, K.H.; Choi, Y.R.; Kim, H.J.; Shin, S.I.; Gyoung, Y.S.; Joo, S.S. Steam-dried ginseng berry fermented with lactobacillus plantarum controls the increase of blood glucose and body weight in type 2 obese diabetic db/db mice. J. Agric. Food Chem. 2012, 60, 5438–5445. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.; Paik, H.D. Bioconversion using lactic acid bacteria: Ginsenosides, GABA, and phenolic Compounds. J. Microbiol. Biotechnol. 2017, 27, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Parshikov, I.A.; Woodling, K.A.; Sutherland, J.B. Biotransformations of organic compounds mediated by cultures of Aspergillus niger. Appl. Microbiol. Biot. 2015, 99, 6971–6986. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.F.; Zhao, S.J.; Wang, Z.T.; Koffas, M.A. Recent advances in modular co-culture engineering for synthesis of natural products. Curr. Opin. Biotech. 2020, 62, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; Lombard, L.; Groenewald, J.Z.; Li, J.; Videira, S.I.R.; Samson, R.A.; Liu, X.Z.; Crous, P.W. Phylogenetic reassessment of the Chaetomium globosum species complex. Persoonia 2016, 36, 83–133. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Ge, H.M.; Wang, G.; Jiang, N.; Mei, Y.N.; Jiang, R.; Li, S.J.; Chen, C.J.; Jiao, R.H.; Xu, Q.; et al. Pictet–Spengler reaction-based biosynthetic machinery in fungi. PNAS. 2014, 111, 18138–18143. [Google Scholar] [CrossRef] [PubMed]
- Fatima, N.; Muhammad, S.A.; Khan, I.; Qazi, M.A.; Shahzadi, I.; Mumtaz, A.; Hashmi, M.A.; Khan, A.K.; Ismail, T. Chaetomium endophytes: a repository of pharmacologically active metabolites. Acta Physiol. Plant. 2016, 38, 136. [Google Scholar] [CrossRef]
- Chang, Z.; Yadav, V.; Lee, S.C.; Heitman, J. Epigenetic mechanisms of drug resistance in fungi. Fungal Genet. Biol. 2019, 132, 103253. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.Y.; Yang, X.Q.; Hu, M.; Shi, L.J.; Yin, H.Y.; Wu, Y.M.; Yang, Y.B.; Zhou, H.; Ding, Z.T. Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum. J. Ginseng Res. 2019. [Google Scholar] [CrossRef]
- Satoh, M.; Ishii, M.; Watanabe, M.; Isobe, K.; Uchiyama, T.; Fujimoto, Y. Absolute structure of panaxytriol. Chem. Pharm. Bull. 2002, 50, 126–128. [Google Scholar] [CrossRef][Green Version]
- Gurjar, M.K.; Kumar, V.S.; Rao, B.V. Synthesis of a new type of antitumour agent panaxytriol: Synthesis of its four diastereomers. Tetrahedron 1999, 55, 12563–12576. [Google Scholar] [CrossRef]
- Choi, B.K.; Park, S.Y.; Choi, D.K.; Shin, B.; Shin, Y.H.; Oh, D.C.; Lee, H.S.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; et al. Streptoglycerides A−D with a rare 6/5/5 tricyclic ring skeleton from a marine actinomycete Streptomyces species. Org. Lett. 2018, 20, 6037–6040. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, Y.; Satoh, M.; Takeuchi, N.; Kirisawa, M. Synthesis and absolute configurations of the cytotoxic polyacetylenes isolated from the callus of Panax ginseng. Chem. Pharm. Bull. 1990, 38, 1447–1450. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.N.; Chen, H.P.; Zhao, Z.Z.; Hu, D.B.; Li, Z.H.; Feng, T.; Liu, J.K. Two new γ-lactones from the cultures of basidiomycete Lenzites betulinus. Phytochemistry Lett. 2017, 20, 9–12. [Google Scholar] [CrossRef]
- Szoka, L.; Isidorov, V.; Nazaruk, J.; Stocki, M.; Siergiejczyk, L. Cytotoxicity of triterpene seco-acids from Betula pubescens buds. Molecules 2019, 24, 4060. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 1–3 are available from the authors. |
Pos. | 1 | 2 | Chaetoginsin | |||
---|---|---|---|---|---|---|
δH | δC | δH | δC | δH | δC | |
1 | 5.20 (d, J = 12.0 Hz) 5.42 (d, J = 18.0 Hz) | 115.1 | 1.00 (t, J = 7.2 Hz) | 8.4 | 168.7 | |
2 | 5.93 (m) | 136.9 | 1.68 (m) | 30.5 | 6.23 (d, J = 6.0 Hz) | 124.1 |
3 | 4.63 (s) | 62.5 | 4.29 (t, J = 6.6 Hz) | 63.0 | 7.26 (d, J = 6.0 Hz) | 152.3 |
4 | 74.6 | 76.8 | 94.2 | |||
5 | 69.7 | 68.5 | 2.83 (m) | 48.5 | ||
6 | 65.1 | 64.8 | 2.09 (d, J = 18.0 Hz), 2.51 (m) | 32.7 | ||
7 | 78.3 | 77.5 | 204.9 | |||
8 | 2.49, 2.61 (m) | 23.5 | 2.49, 2.60 (m) | 23.5 | 3.94 (d, J = 18.0 Hz), 4.60 (d, J = 18.0 Hz) | 67.5 |
9 | 3.61 (m) | 72.1 | 3.61 (m) | 72.1 | 106.8 | |
10 | 3.59 (m) | 72.4 | 3.59 (m) | 72.4 | 1.64 (s) | 25.1 |
11 | 1.55 (m) | 32.6 | 1.54 (m) | 32.6 | 3.94 (d, J = 12.0 Hz), 4.12 (d, J = 10. 8 Hz) | 71.8 |
12 | 1.38 (m) | 25.5 | 1.38 (m) | 25.5 | ||
13 | 1.38 (m) | 29.4 | 1.38 (m) | 29.3 | ||
14 | 1.38 (m) | 29.3 | 1.38 (m) | 29.1 | ||
15 | 1.38 (m) | 25.5 | 1.38 (m) | 25.5 | ||
16 | 1.55 (m) | 32.2 | 1.54 (m) | 32.2 | ||
17 | 3.59 (m) | 61.6 | 3.59 (m) | 61.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.-Y.; Zhu, C.-H.; Yang, X.-Q.; Hu, M.; Xu, T.-T.; Wang, X.-Y.; Yang, S.; Yang, Y.-B.; Ding, Z.-T. Inducing Intermediates in Biotransformation of Natural Polyacetylene and A Novel Spiro-γ-Lactone from Red Ginseng by Solid Co-Culture of Two Gut Chaetomium globosum and The Potential Bioactivity Modification by Oxidative Metabolism. Molecules 2020, 25, 1216. https://doi.org/10.3390/molecules25051216
Wang B-Y, Zhu C-H, Yang X-Q, Hu M, Xu T-T, Wang X-Y, Yang S, Yang Y-B, Ding Z-T. Inducing Intermediates in Biotransformation of Natural Polyacetylene and A Novel Spiro-γ-Lactone from Red Ginseng by Solid Co-Culture of Two Gut Chaetomium globosum and The Potential Bioactivity Modification by Oxidative Metabolism. Molecules. 2020; 25(5):1216. https://doi.org/10.3390/molecules25051216
Chicago/Turabian StyleWang, Bang-Yan, Chen-Hao Zhu, Xue-Qiong Yang, Ming Hu, Ting-Ting Xu, Xue-Yin Wang, Shuang Yang, Ya-Bin Yang, and Zhong-Tao Ding. 2020. "Inducing Intermediates in Biotransformation of Natural Polyacetylene and A Novel Spiro-γ-Lactone from Red Ginseng by Solid Co-Culture of Two Gut Chaetomium globosum and The Potential Bioactivity Modification by Oxidative Metabolism" Molecules 25, no. 5: 1216. https://doi.org/10.3390/molecules25051216
APA StyleWang, B.-Y., Zhu, C.-H., Yang, X.-Q., Hu, M., Xu, T.-T., Wang, X.-Y., Yang, S., Yang, Y.-B., & Ding, Z.-T. (2020). Inducing Intermediates in Biotransformation of Natural Polyacetylene and A Novel Spiro-γ-Lactone from Red Ginseng by Solid Co-Culture of Two Gut Chaetomium globosum and The Potential Bioactivity Modification by Oxidative Metabolism. Molecules, 25(5), 1216. https://doi.org/10.3390/molecules25051216