A Cyclodextrin-Based Controlled Release System in the Simulation of In Vitro Small Intestine
Abstract
1. Introduction
2. Results and Discussion
2.1. Substrate Specificity of Single and Dual Enzyme
2.2. Preparation and Characterization of the Vanillin-/Curcumin-β-CD Complexes
2.3. Qualitative and Kinetic Analysis of CD-Complex Degradation by Dual-Enzyme
2.4. Controlled Release of Guest Molecules in the CD-Complex System
2.5. Mimic Pathway of the CD-Based Controlled Release System in the Small Intestine
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Enzyme Assays
3.2.2. β-CD Hydrolysis Assays
3.2.3. Vanillin/Curcumin Release Assays
3.2.4. Preparation of Inclusion Complexes
3.2.5. Fourier Transform Infrared (FT-IR) Spectroscopy
3.2.6. Differential Scanning Calorimetry (DSC)
3.2.7. Thermogravimetric Analysis (TGA)
3.2.8. High Performance Liquid Chromatography (HPLC)
3.2.9. Kinetics of the Release of β-CD Inclusion Complex
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Langer, R.; Kost, J. Controlled release technology: Bioengineering aspects. Trends Biotechnol. 1984, 2, 22. [Google Scholar] [CrossRef]
- Ge, J.; Neofytou, E.; Cahill, T.J.; Beygui, R.E.; Zare, R.N. Drug Release from Electric-Field-Responsive Nanoparticles. ACS Nano 2011, 6, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Augustine, R.; Kalva, N.; Kim, H.A.; Zhang, Y.; Kim, I. pH-Responsive Polypeptide-Based Smart Nano-Carriers for Theranostic Applications. Molecules 2019, 24, 2961. [Google Scholar] [CrossRef] [PubMed]
- Clear, N.J.; Milton, A.; Humphrey, M.; Henry, B.T.; Wulff, M.; Nichols, D.J.; Anziano, R.J.; Wilding, I. Evaluation of the Intelisite capsule to deliver theophylline and frusemide tablets to the small intestine and colon. Eur. J. Pharm. Sci. 2001, 13, 375–384. [Google Scholar] [CrossRef]
- Sadeghi, A.; Avadi, M.; Ejtemaimehr, S.; Abashzadeh, S.; Partoazar, A.; Dorkoosh, F.; Faghihi, M.; Rafiee-Tehrani, M.; Junginger, H. Development of a Gas Empowered Drug Delivery system for peptide delivery in the small intestine. J. Control. Release 2009, 134, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, H.; Kawashima, Y.; Lin, S.-Y. Preparation of enteric-coated microcapsules for tableting by spray-drying technique and In Vitro simulation of drug release from the tablet in GI tract. J. Pharm. Sci. 1980, 69, 1388–1392. [Google Scholar] [CrossRef]
- Rujivipat, S.; Bodmeier, R. Improved drug delivery to the lower intestinal tract with tablets compression-coated with enteric/nonenteric polymer powder blends. Eur. J. Pharm. Biopharm. 2010, 76, 486–492. [Google Scholar] [CrossRef]
- Alvarez-Fuentes, J.; Arevalo, M.F.; González-Rodríguez, M.L.; Cirri, M.; Mura, P. Development of Enteric-coated Timed-release Matrix Tablets for Colon Targeting. J. Drug Target. 2004, 12, 607–612. [Google Scholar] [CrossRef]
- Liu, F.; Lizio, R.; Meier, C.; Petereit, H.-U.; Blakey, P.; Basit, A.W. A novel concept in enteric coating: A double-coating system providing rapid drug release in the proximal small intestine. J. Control. Release 2009, 133, 119–124. [Google Scholar] [CrossRef]
- Kang, J.-H.; Hwang, J.-Y.; Seo, J.-W.; Kim, H.-H.; Shin, U.S. Small intestine- and colon-specific smart oral drug delivery system with controlled release characteristic. Mater. Sci. Eng. C 2018, 91, 247–254. [Google Scholar] [CrossRef]
- Chen, J.; Qin, X.; Zhong, S.; Chen, S.; Su, W.; Liu, Y. Characterization of Curcumin/Cyclodextrin Polymer Inclusion Complex and Investigation on Its Antioxidant and Antiproliferative Activities. Molecules 2018, 23, 1179. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Yue, S.; Xiang, H.; Xie, M. Inclusion complexes of eucalyptus essential oil with β-cyclodextrin: preparation, characterization and controlled release. J. Porous Mater. 2018, 25, 1577–1586. [Google Scholar] [CrossRef]
- Kuplennik, N.; Sosnik, A. Enhanced Nanoencapsulation of Sepiapterin within PEG-PCL Nanoparticles by Complexation with Triacetyl-Beta Cyclodextrin. Molecules 2019, 24, 2715. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Yun, J.; Xing, Y.G.; Xiao, Y.; Tang, Y. Complexation of Cinnamon Essential Oil by β-Cyclodextrin and its Release Characteristics at High Temperature. Adv. Mater. Res. 2010, 146, 619–622. [Google Scholar] [CrossRef]
- Dana, G.; Osnat, D.; Alexander, V.; Lijun, W.; Jallal, G.; Sandy, C.; Andreas, M. Ultrasound-mediated targeted drug delivery with a novel cyclodextrin-based drug carrier by mechanical and thermal mechanisms. J. Control. Release 2013, 170, 316–324. [Google Scholar]
- Horiuchi, Y.; Abe, K.; Hirayama, F.; Uekama, K. Release control of theophylline by β-cyclodextrin derivatives: hybridizing effect of hydrophilic, hydrophobic and ionizable β-cyclodextrin complexes. J. Control. Release 1991, 15, 177–183. [Google Scholar] [CrossRef]
- Ikeda, Y.; Kimura, K.; Hirayama, F.; Arima, H.; Uekama, K. Controlled release of a water-soluble drug, captopril, by a combination of hydrophilic and hydrophobic cyclodextrin derivatives. J. Control. Release 2000, 66, 271–280. [Google Scholar] [CrossRef]
- Rastegari, B.; Karbalaei-Heidari, H.R.; Zeinali, S.; Sheardown, H. The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magnetic nanoparticles as an anticancer drug delivery system: Synthesis, characterization and cytotoxicity studies. Colloids Surfaces B 2017, 158, 589–601. [Google Scholar] [CrossRef]
- Dufresne, M.-H.; Marouf, E.; Kränzlin, Y.; Gauthier, M.A.; Leroux, J.-C. Lipase Is Essential for the Study of in Vitro Release Kinetics from Organogels. Mol. Pharm. 2012, 9, 1803–1811. [Google Scholar] [CrossRef]
- Rodríguez, S.D.; Bernik, D. Flavor release by enzymatic hydrolysis of starch samples containing vanillin–amylose inclusion complexes. LWT 2014, 59, 635–640. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Lim, S.-T. Utilization of Enzyme-resistant Starch to Control Theophylline Release from Tablets. Starch 2009, 61, 154–160. [Google Scholar] [CrossRef]
- Alpers, D. Carbohydrates: Digestion, Absorption, and Metabolism. In Encyclopedia of Food Sciences and Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 881–887. [Google Scholar]
- Divakar, S. Structure of β-cyclodextrin-vanillin inclusion complex. J. Agric. Food Chem. 1990, 38, 940–944. [Google Scholar] [CrossRef]
- Kayaci, F.; Uyar, T. Solid Inclusion Complexes of Vanillin with Cyclodextrins: Their Formation, Characterization, and High-Temperature Stability. J. Agric. Food Chem. 2011, 59, 11772–11778. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Deng, L.; Yang, S. Synthesis and characterization of β-cyclodextrin inclusion complex containing di(8-hydroxyquinoline)magnesium. Spectrochim. Acta Part A 2008, 70, 878–883. [Google Scholar] [CrossRef]
- Karathanos, V.T.; Mourtzinos, I.; Yannakopoulou, K.; Andrikopoulos, N.K. Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem. 2007, 101, 652–658. [Google Scholar] [CrossRef]
- Tønnesen, H.H.; Másson, M.; Loftsson, T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: solubility, chemical and photochemical stability. Int. J. Pharm. 2002, 244, 127–135. [Google Scholar] [CrossRef]
- Stella, V. Mechanisms of drug release from cyclodextrin complexes. Adv. Drug Deliv. Rev. 1999, 36, 3–16. [Google Scholar] [CrossRef]
- Sharma, R.A.; Gescher, A.; Steward, W. Curcumin: The story so far. Eur. J. Cancer 2005, 41, 1955–1968. [Google Scholar] [CrossRef]
- Radu, C.D.; Parteni, O.; Ochiuz, L. Applications of cyclodextrins in medical textiles — review. J. Control. Release 2016, 224, 146–157. [Google Scholar] [CrossRef]
- Yim, C.T.; Zhu, X.X.; Brown, G.R. Kinetics of Inclusion Reactions of β-Cyclodextrin with Several Dihydroxycholate Ions Studied by NMR Spectroscopy. J. Phys. Chem. B 1999, 103, 597–602. [Google Scholar] [CrossRef]
- Goh, K.M.; Mahadi, N.M.; Hassan, O.; Rahman, R.N.Z.R.A.; Illias, R.M. A predominant β-CGTase G1 engineered to elucidate the relationship between protein structure and product specificity. J. Mol. Catal. B Enzym. 2009, 57, 270–277. [Google Scholar] [CrossRef]
- Vikmon, M. Rapid and Simple Spectrophotometric Method for Determination of Micro-Amounts of Cyclodextrins. In Proceedings of the Proceedings of the First International Symposium on Cyclodextrins; Springer: Berlin, Germany, 1982; pp. 69–74. [Google Scholar]
- Rani, A.; Das, M.; Satyanarayana, S. Preparation and characterization of amyloglucosidase adsorbed on activated charcoal. J. Mol. Catal. B 2000, 10, 471–476. [Google Scholar] [CrossRef]
- Ji, H.; Wang, Y.; Bai, Y.; Li, X.; Qiu, L.; Jin, Z. Application of cyclodextrinase in non-complexant production of γ-cyclodextrin. Biotechnol. Prog. 2019, e2930. [Google Scholar] [CrossRef]
- Wan, H.; Ni, Y.; Li, D. Preparation, characterization and evaluation of an inclusion complex of steviolbioside with γ-cyclodextrin. Food Biosci. 2018, 26, 65–72. [Google Scholar] [CrossRef]
- Ji, H.; Bai, Y.; Li, X.; Wang, J.; Xu, X.; Jin, Z. Preparation of malto-oligosaccharides with specific degree of polymerization by a novel cyclodextrinase from Palaeococcus pacificus. Carbohydr. Polym. 2019, 210, 64–72. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Km (mg/mL) | Vmax (mg/(mL × min)) | kcat (min−1) | kcat/Km (mL × min−1 × mg−1) | |
---|---|---|---|---|
β-CD | 1.39 | 1.30 | 4.48 | 3.22 |
Vanillin-β-CD inclusion complex | 1.79 | 0.92 | 3.17 | 1.77 |
Curcumin-β-CD inclusion complex | 1.75 | 0.88 | 3.04 | 1.74 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, D.; Xia, L.; Ji, H.; Jin, Z.; Bai, Y. A Cyclodextrin-Based Controlled Release System in the Simulation of In Vitro Small Intestine. Molecules 2020, 25, 1212. https://doi.org/10.3390/molecules25051212
Zheng D, Xia L, Ji H, Jin Z, Bai Y. A Cyclodextrin-Based Controlled Release System in the Simulation of In Vitro Small Intestine. Molecules. 2020; 25(5):1212. https://doi.org/10.3390/molecules25051212
Chicago/Turabian StyleZheng, Danni, Liuxi Xia, Hangyan Ji, Zhengyu Jin, and Yuxiang Bai. 2020. "A Cyclodextrin-Based Controlled Release System in the Simulation of In Vitro Small Intestine" Molecules 25, no. 5: 1212. https://doi.org/10.3390/molecules25051212
APA StyleZheng, D., Xia, L., Ji, H., Jin, Z., & Bai, Y. (2020). A Cyclodextrin-Based Controlled Release System in the Simulation of In Vitro Small Intestine. Molecules, 25(5), 1212. https://doi.org/10.3390/molecules25051212