Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Collection of Skin Samples
4.3. Lipid Extraction
4.4. LC-MS/MS Analysis
4.5. Ceramides Identification
4.6. Data Treatment and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef]
- Edmondson, S.R.; Thumiger, S.P.; Werther, G.A.; Wraight, C.J. Epidermal homeostasis: The role of the growth hormone and insulin-like growth factor systems. Endocr. Rev. 2003, 24, 737–764. [Google Scholar] [CrossRef] [PubMed]
- Pilgram, G.S.; Vissers, D.C.; van der Meulen, H.; Pavel, S.; Lavrijsen, S.P.; Bouwstra, J.A.; Koerten, H.K. Aberrant lipid organization in stratum corneum of patients with atopic dermatitis and lamellar ichthyosis. J. Invest. Dermatol. 2001, 117, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Koyano, S.; Hatamochi, A.; Yamazaki, S.; Ishikawa, J.; Kitahara, T.; Narita, H.; Kondo, N.; Masukawa, Y. Psoriasis patients have abnormal ceramide profile in stratum corneum. Nishinihon. J. Dermatol. 2010, 72, 494–499. [Google Scholar] [CrossRef]
- T’Kindt, R.; Jorge, L.; Dumont, E.; Couturon, P.; David, F.; Sandra, P.; Sandra, K. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography–quadrupole time-of-flight mass spectrometry. Anal. Chem. 2011, 84, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Tawada, C.; Kanoh, H.; Banno, Y.; Nakamura, Y.; Seishima, M. Analysis of ceramide profiles in stratum corneum of atopic dermatitis and psoriasis by MALDI-TOF-MS. J. Dermatol. 2012, 39, 67. [Google Scholar]
- Tawada, C.; Kanoh, H.; Nakamura, M.; Mizutani, Y.; Fujisawa, T.; Banno, Y.; Seishima, M. Interferon-γ decreases ceramides with long-chain fatty acids: possible involvement in atopic dermatitis and psoriasis. J. Invest. Dermatol. 2014, 134, 712–718. [Google Scholar] [CrossRef]
- Lowes, M.A.; Suarez-Farinas, M.; Krueger, J.G. Immunology of psoriasis. Annu. Rev. Immunol. 2014, 32, 227–255. [Google Scholar] [CrossRef]
- Hubler, M.J.; Kennedy, A.J. Role of lipids in the metabolism and activation of immune cells. J. Nutr. Biochem. 2016, 34, 1–7. [Google Scholar] [CrossRef]
- Briganti, S.; Picardo, M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 663–669. [Google Scholar] [CrossRef]
- Zeng, C.; Wen, B.; Hou, G.; Lei, L.; Mei, Z.; Jia, X.; Chen, X.; Zhu, W.; Li, J.; Kuang, Y. Lipidomics profiling reveals the role of glycerophospholipid metabolism in psoriasis. GigaScience 2017, 6, gix087. [Google Scholar] [CrossRef] [PubMed]
- Cha, H.J.; He, C.; Zhao, H.; Dong, Y.; An, I.-S.; An, S. Intercellular and intracellular functions of ceramides and their metabolites in skin. Int. J. Mol. Med. 2016, 38, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, Y.; Mitsutake, S.; Tsuji, K.; Kihara, A.; Igarashi, Y. Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 2009, 91, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Masukawa, Y.; Narita, H.; Shimizu, E.; Kondo, N.; Sugai, Y.; Oba, T.; Homma, R.; Ishikawa, J.; Takagi, Y.; Kitahara, T. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 2008, 49, 1466–1476. [Google Scholar] [CrossRef] [PubMed]
- Coderch, L.; López, O.; de la Maza, A.; Parra, J.L. Ceramides and skin function. Am. J, Clin. Dermatol. 2003, 4, 107–129. [Google Scholar] [CrossRef] [PubMed]
- Van Smeden, J.; Janssens, M.; Gooris, G.S.; Bouwstra, J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta 2014, 1841, 295–313. [Google Scholar] [CrossRef]
- Geilen, C.C.; Barz, S.; Bektas, M. Sphingolipid signaling in epidermal homeostasis. Skin Pharmacol. Appl. Skin Physiol. 2001, 14, 261–271. [Google Scholar] [CrossRef]
- Ishikawa, J.; Narita, H.; Kondo, N.; Hotta, M.; Takagi, Y.; Masukawa, Y.; Kitahara, T.; Takema, Y.; Koyano, S.; Yamazaki, S.; et al. Changes in the ceramide profile of atopic dermatitis patients. J. Invest. Dermatol. 2010, 130, 2511–2514. [Google Scholar] [CrossRef]
- Jenkins, B.; West, J.A.; Koulman, A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15: 0) and heptadecanoic acid (C17: 0) in health and disease. Molecules 2015, 20, 2425–2444. [Google Scholar] [CrossRef]
- Hinder, A.; Schmelzer, C.E.H.; Rawlings, A.V.; Neubert, R.H.H. Investigation of the molecular structure of the human stratum corneum ceramides [NP] and [EOS] by mass spectrometry. Skin Pharmacol. Physiol. 2011, 24, 127–135. [Google Scholar] [CrossRef]
- Farwanah, H.; Wohlrab, J.; Neubert, R.H.; Raith, K. Profiling of human stratum corneum ceramides by means of normal phase LC/APCI–MS. Anal. Bioanal. Chem. 2005, 383, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Ohno, Y.; Yamagata, M.; Obara, T.; Seki, N.; Kitamura, T.; Naganuma, T.; Kihara, A. Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids. Nat. Commun. 2014, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mundra, P.A.; Barlow, C.K.; Nestel, P.J.; Barnes, E.H.; Kirby, A.; Thompson, P.; Sullivan, D.R.; Alshehry, Z.H.; Mellett, N.A.; Huynh, K. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [PubMed]
- Lew, B.-L.; Cho, Y.; Kim, J.; Sim, W.-Y.; Kim, N.-I. Ceramides and cell signaling molecules in psoriatic epidermis: reduced levels of ceramides, PKC-α, and JNK. J. Korean Med. Sci. 2006, 21, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Lew, B.-L.; Seong, K.; Kim, N.-I. An inverse relationship between ceramide synthesis and clinical severity in patients with psoriasis. J. Korean Med. Sci. 2004, 19, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Bouwstra, J.A.; Ponec, M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta 2006, 1758, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Candi, E.; Schmidt, R.; Melino, G. The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005, 6, 328–340. [Google Scholar] [CrossRef]
- Man, M.-Q.; Choi, E.-H.; Schmuth, M.; Crumrine, D.; Uchida, Y.; Elias, P.M.; Holleran, W.M.; Feingold, K.R. Basis for improved permeability barrier homeostasis induced by PPAR and LXR activators: liposensors stimulate lipid synthesis, lamellar body secretion, and post-secretory lipid processing. J. Invest. Dermatol. 2006, 126, 386–392. [Google Scholar] [CrossRef]
- Amen, N.; Mathow, D.; Rabionet, M.; Sandhoff, R.; Langbein, L.; Gretz, N.; Jäckel, C.; Gröne, H.-J.; Jennemann, R. Differentiation of epidermal keratinocytes is dependent on glucosylceramide: ceramide processing. Hum. Mol. Genet. 2013, 22, 4164–4179. [Google Scholar] [CrossRef]
- Alessandrini, F.; Pfister, S.; Kremmer, E.; Gerber, J.-K.; Ring, J.; Behrendt, H. Alterations of glucosylceramide-β-glucosidase levels in the skin of patients with psoriasis vulgaris. J. Invest. Dermatol. 2004, 123, 1030–1036. [Google Scholar] [CrossRef]
- Hussain, M.M.; Jin, W.; Jiang, X.-C. Mechanisms involved in cellular ceramide homeostasis. Nutr. Metab. 2012, 9, 71. [Google Scholar] [CrossRef]
- Uchida, Y.; Di Nardo, A.; Collins, V.; Elias, P.M.; Holleran, W.M. De novo ceramide synthesis participates in the ultraviolet B irradiation-induced apoptosis in undifferentiated cultured human keratinocytes. J. Ivest. Dermatol. 2003, 120, 662–669. [Google Scholar] [CrossRef] [PubMed]
- Mathias, S.; Younes, A.; Kan, C.-C.; Orlow, I.; Joseph, C.; Kolesnick, R.N. Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science 1993, 259, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Obeid, L.M.; Linardic, C.M.; Karolak, L.A.; Hannun, Y.A. Programmed cell death induced by ceramide. Science 1993, 259, 1769–1771. [Google Scholar] [CrossRef] [PubMed]
- Daido, S.; Kanzawa, T.; Yamamoto, A.; Takeuchi, H.; Kondo, Y.; Kondo, S. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res. 2004, 64, 4286–4293. [Google Scholar] [CrossRef] [PubMed]
- Scarlatti, F.; Bauvy, C.; Ventruti, A.; Sala, G.; Cluzeaud, F.; Vandewalle, A.; Ghidoni, R.; Codogno, P. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J. Biol. Chem. 2004, 279, 18384–18391. [Google Scholar] [CrossRef]
- Jun, W.U.; Hansen, G.H.; Nilsson, Å.; Rui-Dong, D. Functional studies of human intestinal alkaline sphingomyelinase by deglycosylation and mutagenesis. Biochem. J. 2005, 386, 153–160. [Google Scholar]
- Elsherbini, A.; Bieberich, E. Ceramide and exosomes: a novel target in cancer biology and therapy. Adv. Cancer Res. 2018, 140, 121–154. [Google Scholar]
- Raposo, G.; Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef]
- Maia, J.; Caja, S.; Strano Moraes, M.C.; Couto, N.; Costa-Silva, B. Exosome-based cell-cell communication in the tumor microenvironment. Front. Cell Dev. Biol. 2018, 6, 18. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Bergamini, G.; Rajendran, L. Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience 2018. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.-H.; Kim, J.-Y.; Song, E.-H.; Shin, M.-K.; Cho, Y.-H.; Kim, N.-I. Altered levels of sphingosine and sphinganine in psoriatic epidermis. Ann. Dermatol. 2013, 25, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Hara, M.; Nishio, H.; Sidransky, E.; Inoue, S.; Otsuka, F.; Suzuki, A.; Elias, P.M.; Holleran, W.M.; Hamanaka, S. Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. Res. J. Lipid Res. 2000, 41, 2071–2082. [Google Scholar] [PubMed]
- Hamanaka, S.; Suzuki, A.; Hara, M.; Nishio, H.; Otsuka, F.; Uchida, Y. Human epidermal glucosylceramides are major precursors of stratum corneum ceramides. J. Invest. Dermatol. 2002, 119, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Holleran, W.M. Omega-O-acylceramide, a lipid essential for mammalian survival. J. Dermatol. Sci. 2008, 51, 77–87. [Google Scholar] [CrossRef]
- Motta, S.; Monti, M.; Sesana, S.; Mellesi, L.; Ghidoni, R.; Caputo, R. Abnormality of water barrier function in psoriasis: role of ceramide fractions. Arch. Dermatol. 1994, 130, 452–456. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010, 11, 395. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
CER Subclass | Fatty Acid | Sphingoid Base |
---|---|---|
CER[NDS] | non-hydroxy [N] | dihydrosphingosine [DS] |
CER[NS] | non-hydroxy [N] | sphingosine [S] |
CER[NP] | non-hydroxy [N] | phytosphingosine [P] |
CER[ADS] | α-hydroxy [A] | dihydrosphingosine [DS] |
CER[AS] | α-hydroxy [A] | sphingosine [S] |
CER[AP] | α-hydroxy [A] | phytosphingosine [P] |
CER[EOS] | esterified ω-hydroxy [EO] | sphingosine [S] |
m/z | RT | VIP Score | CER Species | Class | Control | Ps |
---|---|---|---|---|---|---|
612.5858 | 42.11 | 1.71 | Cer(t18:0/20:0) | CER[NP] | ||
680.6881 | 34.91 | 1.65 | Cer(d18:0/26:0) | CER[NDS] | ||
622.6056 | 34.91 | 1.57 | Cer(d18:1/22:0) | CER[NS] | ||
512.4985 | 32.79 | 1.40 | Cer(d18:0/14:0) | CER[NDS] | ||
590.5429 | 38.94 | 1.38 | Cer(d18:2/20:1) | CER[NS] | ||
566.5429 | 36.95 | 1.37 | Cer(d18:1/18:0) | CER[NS] | ||
638.5996 | 43.02 | 1.35 | Cer(d16:1/24:0(2OH)) | CER[AS] | ||
554.5423 | 40.60 | 1.34 | Cer(d18:0/17:0) | CER[NDS] | ||
552.4898 | 41.10 | 1.32 | Cer(d16:1/18:1 (2OH)) | CER[AS] | ||
526.5142 | 36.49 | 1.32 | Cer(d18:0/15:0) | CER[NDS] | ||
538.5148 | 32.43 | 1.30 | Cer(d18:1/16:0) | CER[NS] | ||
606.5752 | 35.22 | 1.29 | Cer(d18:2/21:0) | CER[NS] | ||
612.5870 | 41.46 | 1.29 | Cer(d18:0/20:0(2OH)) | CER[ADS] | ||
748.7098 | 64.50 | 1.28 | 1-O-myristoyl-Cer(d18:1/16:0) | CER[EOS] | ||
580.5255 | 33.33 | 1.27 | Cer(d16:2/20:0(2OH)) | CER[AS] | ||
524.4978 | 33.56 | 1.23 | Cer(d16:1/17:0) | CER[NS] |
m/z | RT | VIP Score | CER Species | Class | Control | Ps |
---|---|---|---|---|---|---|
612.5858 | 42.11 | 1.71 | Cer(t18:0/20:0) | CER[NP] | ||
680.6881 | 34.91 | 1.65 | Cer(d18:0/26:0) | CER[NDS] | ||
622.6056 | 34.91 | 1.57 | Cer(d18:1/22:0) | CER[NS] | ||
512.4985 | 32.79 | 1.40 | Cer(d18:0/14:0) | CER[NDS] | ||
590.5429 | 38.94 | 1.38 | Cer(d18:2/20:1) | CER[NS] | ||
566.5429 | 36.95 | 1.37 | Cer(d18:1/18:0) | CER[NS] | ||
638.5996 | 43.02 | 1.35 | Cer(d16:1/24:0(2OH)) | CER[AS] | ||
554.5423 | 40.60 | 1.34 | Cer(d18:0/17:0) | CER[NDS] | ||
552.4898 | 41.10 | 1.32 | Cer(d16:1/18:1 (2OH)) | CER[AS] | ||
526.5142 | 36.49 | 1.32 | Cer(d18:0/15:0) | CER[NDS] | ||
538.5148 | 32.43 | 1.30 | Cer(d18:1/16:0) | CER[NS] | ||
606.5752 | 35.22 | 1.29 | Cer(d18:2/21:0) | CER[NS] | ||
612.5870 | 41.46 | 1.29 | Cer(d18:0/20:0(2OH)) | CER[ADS] | ||
748.7098 | 64.50 | 1.28 | 1-O-myristoyl-Cer(d18:1/16:0) | CER[EOS] | ||
580.5255 | 33.33 | 1.27 | Cer(d16:2/20:0(2OH)) | CER[AS] | ||
524.4978 | 33.56 | 1.23 | Cer(d16:1/17:0) | CER[NS] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łuczaj, W.; Wroński, A.; Domingues, P.; Domingues, M.R.; Skrzydlewska, E. Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris. Molecules 2020, 25, 630. https://doi.org/10.3390/molecules25030630
Łuczaj W, Wroński A, Domingues P, Domingues MR, Skrzydlewska E. Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris. Molecules. 2020; 25(3):630. https://doi.org/10.3390/molecules25030630
Chicago/Turabian StyleŁuczaj, Wojciech, Adam Wroński, Pedro Domingues, M Rosário Domingues, and Elżbieta Skrzydlewska. 2020. "Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris" Molecules 25, no. 3: 630. https://doi.org/10.3390/molecules25030630
APA StyleŁuczaj, W., Wroński, A., Domingues, P., Domingues, M. R., & Skrzydlewska, E. (2020). Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris. Molecules, 25(3), 630. https://doi.org/10.3390/molecules25030630