Cholinergic Chemotransmission and Anesthetic Drug Effects at the Carotid Bodies
Abstract
1. Introduction
2. Chemosensing at the Carotid Bodies
3. The Role of Cholinergic Chemotransmission in Chemotransduction
4. Anesthetic Drug Effects on Peripheral Chemosensitivity
5. Anesthetic Perturbation of Peripheral Chemosensitivity: Consequences for Clinical Practice
Author Contributions
Funding
Conflicts of Interest
References
- Pandit, J.J. Volatile anaesthetic depression of the carotid body chemoreflex-mediated ventilatory response to hypoxia: Directions for future research. Scientifica 2014, 2014, 394270. [Google Scholar] [CrossRef]
- Blouin, R.T.; Seifert, H.A.; Babenco, H.D.; Conard, P.F.; Gross, J.B. Propofol depresses the hypoxic ventilatory response during conscious sedation and isohypercapnia. Anesthesiology 1993, 79, 1177–1182. [Google Scholar] [CrossRef]
- Pattinson, K.T. Opioids and the control of respiration. Br. J. Anaesth. 2008, 100, 747–758. [Google Scholar] [CrossRef]
- Eriksson, L.I. Reduced hypoxic chemosensitivity in partially paralysed man. A new property of muscle relaxants? Acta Anaesthesiol. Scand. 1996, 40, 520–523. [Google Scholar] [CrossRef]
- Dahan, A.; Nieuwenhuijs, D.J.; Olofsen, E. Influence of propofol on the control of breathing. Adv. Exp. Med. Biol. 2003, 523, 81–92. [Google Scholar] [CrossRef]
- Kumar, P.; Prabhakar, N.R. Peripheral chemoreceptors: Function and plasticity of the carotid body. Compr. Physiol. 2012, 2, 141–219. [Google Scholar] [CrossRef]
- Eriksson, L.I.; Lennmarken, C.; Wyon, N.; Johnson, A. Attenuated ventilatory response to hypoxaemia at vecuronium-induced partial neuromuscular block. Acta Anaesthesiol. Scand. 1992, 36, 710–715. [Google Scholar] [CrossRef]
- Eriksson, L.I.; Sato, M.; Severinghaus, J.W. Effect of a vecuronium-induced partial neuromuscular block on hypoxic ventilatory response. Anesthesiology 1993, 78, 693–699. [Google Scholar] [CrossRef]
- Broens, S.J.L.; Boon, M.; Martini, C.H.; Niesters, M.; van Velzen, M.; Aarts, L.; Dahan, A. Reversal of Partial Neuromuscular Block and the Ventilatory Response to Hypoxia: A Randomized Controlled Trial in Healthy Volunteers. Anesthesiology 2019, 131, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Teppema, L.J.; Dahan, A. The ventilatory response to hypoxia in mammals: Mechanisms, measurement, and analysis. Physiol. Rev. 2010, 90, 675–754. [Google Scholar] [CrossRef]
- Albuquerque, E.X.; Pereira, E.F.; Alkondon, M.; Rogers, S.W. Mammalian nicotinic acetylcholine receptors: From structure to function. Physiol. Rev. 2009, 89, 73–120. [Google Scholar] [CrossRef] [PubMed]
- Shirahata, M.; Balbir, A.; Otsubo, T.; Fitzgerald, R.S. Role of acetylcholine in neurotransmission of the carotid body. Respir. Physiol. Neurobiol. 2007, 157, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, A.; Wright, S. Action of prostigmine and acetylcholine on respiration. Q. J. Exp. Physiol. Cogn. Med Sci. 1938, 28, 33–47. [Google Scholar] [CrossRef]
- Docherty, R.J.; McQueen, D.S. The effects of acetylcholine and dopamine on carotid chemosensory activity in the rabbit. J. Physiol. 1979, 288, 411–423. [Google Scholar] [PubMed]
- Reyes, E.P.; Fernandez, R.; Larrain, C.; Zapata, P. Carotid body chemosensory activity and ventilatory chemoreflexes in cats persist after combined cholinergic-purinergic block. Respir. Physiol. Neurobiol. 2007, 156, 23–32. [Google Scholar] [CrossRef] [PubMed]
- O’Donohoe, P.B.; Turner, P.J.; Huskens, N.; Buckler, K.J.; Pandit, J.J. Influence of propofol on isolated neonatal rat carotid body glomus cell response to hypoxia and hypercapnia. Respir. Physiol. Neurobiol. 2019, 260, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, D.F. Nicotinic acetylcholine receptors do not mediate excitatory transmission in young rat carotid body. J. Appl. Physiol. 2009, 107, 1806–1816. [Google Scholar] [CrossRef]
- Igarashi, A.; Amagasa, S.; Horikawa, H.; Shirahata, M. Vecuronium directly inhibits hypoxic neurotransmission of the rat carotid body. Anesth. Analg. 2002, 94, 117–122. [Google Scholar] [CrossRef]
- Wonnacott, S. Presynaptic nicotinic ACh receptors. Trends Neurosci. 1997, 20, 92–98. [Google Scholar] [CrossRef]
- Jonsson, M.; Gurley, D.; Dabrowski, M.; Larsson, O.; Johnson, E.C.; Eriksson, L.I. Distinct pharmacologic properties of neuromuscular blocking agents on human neuronal nicotinic acetylcholine receptors: A possible explanation for the train-of-four fade. Anesthesiology 2006, 105, 521–533. [Google Scholar] [CrossRef]
- Fagerlund, M.J.; Eriksson, L.I. Current concepts in neuromuscular transmission. Br. J. Anaesth. 2009, 103, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Higashi, T.; McIntosh, J.M.; Shirahata, M. Characterization of nicotinic acetylcholine receptors in cultured arterial chemoreceptor cells of the cat. Brain Res. 2003, 974, 167–175. [Google Scholar] [CrossRef]
- Shirahata, M.; Ishizawa, Y.; Rudisill, M.; Schofield, B.; Fitzgerald, R.S. Presence of nicotinic acetylcholine receptors in cat carotid body afferent system. Brain Res. 1998, 814, 213–217. [Google Scholar] [CrossRef]
- Czirjak, G.; Petheo, G.L.; Spat, A.; Enyedi, P. Inhibition of TASK-1 potassium channel by phospholipase C. Am. J. Physiol. Cell Physiol. 2001, 281, C700–C708. [Google Scholar] [CrossRef] [PubMed]
- Fagerlund, M.J.; Kahlin, J.; Ebberyd, A.; Schulte, G.; Mkrtchian, S.; Eriksson, L.I. The human carotid body: Expression of oxygen sensing and signaling genes of relevance for anesthesia. Anesthesiology 2010, 113, 1270–1279. [Google Scholar] [CrossRef]
- Brull, S.J.; Kopman, A.F. Current Status of Neuromuscular Reversal and Monitoring: Challenges and Opportunities. Anesthesiol. J. Am. Soc. Anesthesiol. 2017, 126, 173–190. [Google Scholar] [CrossRef]
- Jonsson, M.; Kim, C.; Yamamoto, Y.; Runold, M.; Lindahl, S.G.; Eriksson, L.I. Atracurium and vecuronium block nicotine-induced carotid body chemoreceptor responses. Acta Anaesthesiol. Scand. 2002, 46, 488–494. [Google Scholar] [CrossRef]
- Tassonyi, E.; Charpantier, E.; Muller, D.; Dumont, L.; Bertrand, D. The role of nicotinic acetylcholine receptors in the mechanisms of anesthesia. Brain Res. Bull. 2002, 57, 133–150. [Google Scholar] [CrossRef]
- Dahan, A.; Sarton, E.; van den Elsen, M.; van Kleef, J.; Teppema, L.; Berkenbosch, A. Ventilatory response to hypoxia in humans. Influences of subanesthetic desflurane. Anesthesiology 1996, 85, 60–68. [Google Scholar] [CrossRef]
- Dahan, A.; van den Elsen, M.J.; Berkenbosch, A.; DeGoede, J.; Olievier, I.C.; Burm, A.G.; van Kleef, J.W. Influence of a subanesthetic concentration of halothane on the ventilatory response to step changes into and out of sustained isocapnic hypoxia in healthy volunteers. Anesthesiology 1994, 81, 850–859. [Google Scholar] [CrossRef]
- Lodenius, A.; Ebberyd, A.; Hardemark Cedborg, A.; Hagel, E.; Mkrtchian, S.; Christensson, E.; Ullman, J.; Scheinin, M.; Eriksson, L.I.; Jonsson Fagerlund, M. Sedation with Dexmedetomidine or Propofol Impairs Hypoxic Control of Breathing in Healthy Male Volunteers: A Nonblinded, Randomized Crossover Study. Anesthesiology 2016, 125, 700–715. [Google Scholar] [CrossRef] [PubMed]
- Pandit, J.J.; Winter, V.; Bayliss, R.; Buckler, K.J. Differential effects of halothane and isoflurane on carotid body glomus cell intracellular Ca2+ and background K+ channel responses to hypoxia. Adv. Exp. Med. Biol 2010, 669, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Karanovic, N.; Pecotic, R.; Valic, M.; Jeroncic, A.; Carev, M.; Karanovic, S.; Ujevic, A.; Dogas, Z. The acute hypoxic ventilatory response under halothane, isoflurane, and sevoflurane anaesthesia in rats. Anaesthesia 2010, 65, 227–234. [Google Scholar] [CrossRef]
- Jonsson Fagerlund, M.; Krupp, J.; Dabrowski, M.A. Propofol and AZD3043 Inhibit Adult Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in Xenopus Oocytes. Pharmaceuticals 2016, 9, 8. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, M.M.; Lindahl, S.G.; Eriksson, L.I. Effect of propofol on carotid body chemosensitivity and cholinergic chemotransduction. Anesthesiology 2005, 102, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Fearon, I.M.; Zhang, M.; Vollmer, C.; Nurse, C.A. GABA mediates autoreceptor feedback inhibition in the rat carotid body via presynaptic GABAB receptors and TASK-1. J. Physiol. 2003, 553, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Clarke, K.; Zhong, H.; Vollmer, C.; Nurse, C.A. Postsynaptic action of GABA in modulating sensory transmission in co-cultures of rat carotid body via GABA(A) receptors. J. Physiol 2009, 587, 329–344. [Google Scholar] [CrossRef]
- Kirmeier, E.; Eriksson, L.I.; Lewald, H.; Jonsson Fagerlund, M.; Hoeft, A.; Hollmann, M.; Meistelman, C.; Hunter, J.M.; Ulm, K.; Blobner, M.; et al. Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): A multicentre, prospective observational study. Lancet Respir. Med. 2019, 7, 129–140. [Google Scholar] [CrossRef]
- Grosse-Sundrup, M.; Henneman, J.P.; Sandberg, W.S.; Bateman, B.T.; Uribe, J.V.; Nguyen, N.T.; Ehrenfeld, J.M.; Martinez, E.A.; Kurth, T.; Eikermann, M. Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: Prospective propensity score matched cohort study. BMJ 2012, 345, e6329. [Google Scholar] [CrossRef]
- Murphy, G.S.; Szokol, J.W.; Marymont, J.H.; Greenberg, S.B.; Avram, M.J.; Vender, J.S. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth. Analg. 2008, 107, 130–137. [Google Scholar] [CrossRef]
- Murphy, G.S.; Szokol, J.W.; Avram, M.J.; Greenberg, S.B.; Shear, T.D.; Vender, J.S.; Parikh, K.N.; Patel, S.S.; Patel, A. Residual Neuromuscular Block in the Elderly: Incidence and Clinical Implications. Anesthesiology 2015, 123, 1322–1336. [Google Scholar] [CrossRef]
- Berg, H.; Roed, J.; Viby-Mogensen, J.; Mortensen, C.R.; Engbaek, J.; Skovgaard, L.T.; Krintel, J.J. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol. Scand. 1997, 41, 1095–1103. [Google Scholar] [CrossRef]
- Sundman, E.; Witt, H.; Olsson, R.; Ekberg, O.; Kuylenstierna, R.; Eriksson, L.I. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: Pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology 2000, 92, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.I.; Sundman, E.; Olsson, R.; Nilsson, L.; Witt, H.; Ekberg, O.; Kuylenstierna, R. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: Simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology 1997, 87, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Hemmerling, T.M.; Donati, F. Neuromuscular blockade at the larynx, the diaphragm and the corrugator supercilii muscle: A review. Can. J. Anaesth. 2003, 50, 779–794. [Google Scholar] [CrossRef] [PubMed]
- Murphy, G.S.; Brull, S.J. Residual neuromuscular block: Lessons unlearned. Part I: Definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth. Analg. 2010, 111, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Fortier, L.P.; McKeen, D.; Turner, K.; de Medicis, E.; Warriner, B.; Jones, P.M.; Chaput, A.; Pouliot, J.F.; Galarneau, A. The RECITE Study: A Canadian Prospective, Multicenter Study of the Incidence and Severity of Residual Neuromuscular Blockade. Anesth. Analg. 2015, 121, 366–372. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honing, M.; Martini, C.; van Velzen, M.; Niesters, M.; Dahan, A.; Boon, M. Cholinergic Chemotransmission and Anesthetic Drug Effects at the Carotid Bodies. Molecules 2020, 25, 5974. https://doi.org/10.3390/molecules25245974
Honing M, Martini C, van Velzen M, Niesters M, Dahan A, Boon M. Cholinergic Chemotransmission and Anesthetic Drug Effects at the Carotid Bodies. Molecules. 2020; 25(24):5974. https://doi.org/10.3390/molecules25245974
Chicago/Turabian StyleHoning, Maarten, Chris Martini, Monique van Velzen, Marieke Niesters, Albert Dahan, and Martijn Boon. 2020. "Cholinergic Chemotransmission and Anesthetic Drug Effects at the Carotid Bodies" Molecules 25, no. 24: 5974. https://doi.org/10.3390/molecules25245974
APA StyleHoning, M., Martini, C., van Velzen, M., Niesters, M., Dahan, A., & Boon, M. (2020). Cholinergic Chemotransmission and Anesthetic Drug Effects at the Carotid Bodies. Molecules, 25(24), 5974. https://doi.org/10.3390/molecules25245974