Conversion of CO2 into Chloropropene Carbonate Catalyzed by Iron (II) Phthalocyanine Hypercrosslinked Porous Organic Polymer
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Iron (II) Phthalocyanine Porous Organic Polymer (FePc-POP)
2.2. Catalytic Activity
2.3. Recyclability
3. Materials and Methods
3.1. Materials
3.2. Characterization
3.3. Catalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kamphuis, A.J.; Picchioni, F.; Pescarmona, P.P. CO2-fixation into cyclic and polymeric carbonates: Principles and applications. Green Chem. 2019, 21, 406–448. [Google Scholar] [CrossRef]
- Dalpozzo, R.; Della Ca, N.; Gabriele, B.; Mancuso, R. Recent advances in the chemical fixation of carbon dioxide: A green route to carbonylated heterocycle synthesis. Catalysts 2019, 9, 511. [Google Scholar] [CrossRef]
- Martín, C.; Fiorani, G.; Kleij, A.W. Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal. 2015, 5, 1353–1370. [Google Scholar] [CrossRef]
- Shaikh, A.G.; Sivaram, S. Organic Carbonates. Chem. Rev. 1996, 96, 951–976. [Google Scholar] [CrossRef] [PubMed]
- Saptal, V.B.; Bhanage, B.M. Current advances in heterogeneous catalysts for the synthesis of cyclic carbonates from carbon dioxide. Curr. Opin. Green Sustain. Chem. 2017, 3, 1–10. [Google Scholar] [CrossRef]
- Kathalikkattil, A.C.; Babu, R.; Tharun, J.; Roshan, R.; Park, D.W. Advancements in the conversion of carbon dioxide to cyclic carbonates using metal organic frameworks as catalysts. Catal. Surv. Asia 2015, 19, 223–235. [Google Scholar] [CrossRef]
- Liang, J.; Huang, Y.B.; Cao, R. Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates. Coord. Chem. Rev. 2019, 378, 32–65. [Google Scholar] [CrossRef]
- Bae, J.S.; Hong, S.Y.; Park, J.C.; Rhim, G.B.; Youn, M.H.; Jeong, H.; Kang, S.W.; Yang, J.; Jung, H.; Chun, D.H. Eco-friendly prepared iron-ore-based catalysts for Fischer-Tropsch synthesis. Appl. Catal. B-Environ. 2019, 244, 576–582. [Google Scholar] [CrossRef]
- Verma, S.; Nazish, M.; Kureshy, R.I.; Khan, N.H. Bi-functional heterogeneous iron complexes for catalytic conversion of epoxides to cyclic carbonates and their application in the synthesis of polyurethane. Sustain. Energy Fuels 2018, 2, 1312–1322. [Google Scholar] [CrossRef]
- Liu, D.; Li, G.; Guo, H.; Liu, J. Facile preparation of bi-functional iron doped mesoporous materials and their application in the cycloaddition of CO2. J. Energy Chem. 2020, 41, 52–59. [Google Scholar] [CrossRef]
- Ravi, S.; Puthiaraj, P.; Park, D.W.; Ahn, W.S. Cycloaddition of CO2 and epoxides over a porous covalent triazine-based polymer incorporated with Fe3O4. New J. Chem. 2018, 42, 12429–12436. [Google Scholar] [CrossRef]
- Maya, E.M.; González-Lucas, M.; Iglesias, M. Efficient and reusable metal heterogeneous catalysts for conversion of CO2 prepared from a microwave synthetized porous polyiminopyridine. ChemistrySelect 2017, 2, 9516–9522. [Google Scholar] [CrossRef]
- Brivary, M.A.; Gómez, M.; Iglesias, M.; Maya, E.M. Accessible microwave synthetized conjugated poly(azomethine-pyridine) networks and its metal complexes for CO2 conversion. J. Polym. Sci. Part A Polym. Chem. 2018, 56, 1946–1952. [Google Scholar] [CrossRef]
- Sobarzo, P.A.; Terraza, C.A.; Maya, E.M. New efficient tetraphenyl silylated poly(azomethine)s based on “pincer-like” bis(imino)pyridine Iron(III) complexes as heterogeneous catalysts for CO2 conversion. Eur. Polym. J. 2020, 126, 109567. [Google Scholar] [CrossRef]
- Alkordi, M.H.; Weselinski, L.J.; D’Elia, V.; Barman, S.; Cadiau, A.; Hedhili, M.N.; Cairns, A.J.; AbdulHalim, R.G.; Basset, J.M.; Eddaoudi, M. CO2 conversion: The potential of porous-organic polymers (POPs) for catalytic CO2-epoxide insertion. J. Mater. Chem. A 2016, 4, 7453–7460. [Google Scholar] [CrossRef]
- Luo, R.; Chen, Y.; He, Q.; Lin, X.; Xu, Q.; He, X.; Zhang, W.; Zhou, X.; Ji, H. Metallosalen-based ionic porous polymers as bifunctional catalysts for the conversion of CO2 into valuable chemicals. ChemSusChem 2017, 10, 1526–1533. [Google Scholar] [CrossRef]
- Tang, F.; Hou, J.; Liang, K.; Huang, J.; Liu, Y.N. Melamine-based metal-chelating porous organic polymers for efficient CO2 capture and conversion. Eur. J. Inorg. Chem. 2018, 37, 4175–4180. [Google Scholar] [CrossRef]
- Chakraborty, J.; Nath, I.; Song, S.; Kao, C.M.; Verpoort, F. Synergistic performance of a sub-nanoscopic cobalt and imidazole grafted porous organic polymer for CO2 fixation to cyclic carbonates under ambient pressure without a co-catalyst. J. Mater. Chem. A 2020, 8, 13916–13920. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Li, C.; Yan, L.; Jiang, M.; Ding, Y. State-of-the-art multifunctional heterogeneous POP catalyst for cooperative transformation of CO2 to cyclic carbonates. ACS Sustain. Chem. Eng. 2017, 5, 4523–4528. [Google Scholar] [CrossRef]
- Wang, W.; Li, C.; Jin, J.; Yan, L.; Ding, Y. Mg-porphyrin complex doped divinylbenzene based porous organic polymers (POPs) as highly efficient heterogeneous catalysts for the conversion of CO2 to cyclic carbonates. Dalton Trans. 2018, 47, 13135. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, R.; Xu, Q.; Zhang, W.; Zhou, X.; Ji, H. State-of-the-art aluminum porphyrin-based heterogeneous catalysts for the chemical fixation of CO2 into cyclic carbonates at ambient conditions. ChemCatChem 2017, 9, 767–773. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, R.; Xu, Q.; Jiang, J.; Zhou, X.; Ji, H. Charged metalloporphyrin polymers for cooperative synthesis of cyclic carbonates from CO2 under ambient conditions. ChemSusChem 2017, 10, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Tang, Y.; Zhang, F.; Xiong, Y.; Wang, S.; Sun, Q.; Wang, L. Combination of binary active sites into heterogeneous porous polymer catalysts for efficient transformation of CO2 under mild conditions. Chin. J. Catal. 2021, 42, 618–626. [Google Scholar] [CrossRef]
- Tian, H.; Ali, H.; van Lier, J.E. Synthesis of water soluble trisulfonated phthalocyanines via palladium-catalysed cross coupling reactions. Tetrahedron Lett. 2000, 41, 8435–8438. [Google Scholar] [CrossRef]
- Kossanyi, J.; Chahraoui, D. Electron transfer reaction and demetalation of phthalocyanines. Int. J. Phtotoenergy 2000, 2, 9–15. [Google Scholar] [CrossRef]
- Prado, G.H.C.; Klerk, A. Demetalation of metallophthalocyanines by mild halogenation without disrupting the tetrapyrrole macrocycle. Fuel 2015, 161, 43–48. [Google Scholar] [CrossRef]
- Alzeer, J.; Roth, P.J.C.; Luedtke, N.W. An efficient two-step synthesis of metal-free phthalocyanines using a Zn(II) template. Chem. Commun. 2009, 15, 1970–1971. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Jiang, S.; Kang, G.; Nguyen, D.; Schatz, G.C.; Van Duyne, R.P. Operando Characterization of Iron Phthalocyanine Deactivation during Oxygen Reduction Reaction Using Electrochemical Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2019, 141, 15684–15692. [Google Scholar] [CrossRef]
- Valverde-González, A.; Guan, L.Z.; Iglesias, M.; Ferrer, M.L.; Maya, E.M. Iron phthalocyanine-knitted polymers as electrocatalysts for the oxygen reduction reaction. ACS App. Mater. Interfaces 2020, 12, 32681–32688. [Google Scholar] [CrossRef]
- Li, B.; Gong, R.; Wang, W.; Huang, X.; Zhang, W.; Li, H.; Hu, C.; Tan, B. A new strategy to microporous polymers: Knitting rigid aromatic building blocks by external cross-linker. Macromolecules 2011, 44, 2410–2414. [Google Scholar] [CrossRef]
- Jiang, J.; Yoon, S. An aluminum(III) picket fence phthalocyanine based heterogeneous catalyst for ring-expansion carbonylation of epoxides. J. Mater. Chem. A 2019, 7, 6120–6125. [Google Scholar] [CrossRef]
- Bell, B.M.; Briggs, J.R.; Campbell, R.M.; Chambers, S.M.; Gaarenstroom, P.D.; Hippler, J.G.; Hook, B.D.; Kearns, K.; Kenney, J.M.; Kruper, W.J.; et al. Glycerin as a renewable feedstock for epichlorohydrin production. Clean 2008, 36, 657–661. [Google Scholar]
- Kilic, A.; Ulusoy, M.; Aytar, E.; Durgun, M. Mono/multinuclear cobaloxime and organocobaloxime-catalyzed conversion of CO2 and epoxides to cyclic organic carbonates: Synthesis and characterization. J. Int. Eng. Chem. 2015, 24, 98–106. [Google Scholar] [CrossRef]
- Roshan, K.R.; Palissery, R.A.; Kathalikkattil, A.C.; Babu, R.; Mathai, G.; Lee, H.S.; Park, D.W. A computational study of the mechanistic insightsinto base catalysed synthesis of cyclic carbonates from CO2: Bicarbonate anion as an active species. Catal. Sci. Technol. 2016, 16, 3997–4004. [Google Scholar] [CrossRef]
- Kilic, A.; Yasar, E.; Aytar, E. Neutral boron [(L1–3)BPh2] and cationic charged boron [(L1a–3a)BPh2] complexes for chemical CO2 conversion to obtain cyclic carbonates under ambient conditions. Sustain. Energy Fuels 2019, 3, 1066–1077. [Google Scholar] [CrossRef]
- Paddock, R.L.; Nguyen, S.T. Chemical CO2 Fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J. Am. Chem. Soc. 2001, 123, 11498–11499. [Google Scholar] [CrossRef] [PubMed]
- Castro-Gómez, F.; Salassa, G.; Kleij, A.W.; Bo, C. A DFT Study on the mechanism of the cycloaddition reaction of CO2 to epoxides catalyzed by Zn(salphen) complexes. Chem. Eur. J. 2013, 19, 6289–6298. [Google Scholar] [CrossRef]
- Dai, Z.; Sun, Q.; Liu, X.; Bian, C.; Wu, Q.; Pan, S.; Wang, L.; Meng, X.; Deng, F.; Xiao, F.S. Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions. J. Catal. 2016, 338, 202–209. [Google Scholar] [CrossRef]
- Sharma, N.; Dhankhar, S.S.; Nagaraja, C.M. Environment-friendly, co-catalyst- and solvent-free fixation of CO2 using an ionic zinc(II)–porphyrin complex immobilized in porous metal-organic frameworks. Sustain. Energy Fuels 2019, 3, 2977–2982. [Google Scholar] [CrossRef]
- Liu, J.; Fan, Y.Z.; Li, X.; Xu, Y.W.; Zhang, L.; Su, C.Y. Catalytic space engineering of porphyrin metal-organic frameworks for combined CO2 capture and conversion at a low concentration. ChemSusChem 2018, 11, 2340–2347. [Google Scholar] [CrossRef]
- He, L.; Natha, J.K.; Lin, Q. Robust multivariate metal-porphyrin frameworks for efficient ambient fixation of CO2 to cyclic carbonates. Chem. Commun. 2019, 55, 412. [Google Scholar] [CrossRef] [PubMed]
- Boroujeni, M.B.; Laeini, M.S.; Nazeri, M.T.; Shaabani, A. A novel and green in situ strategy for the synthesis of metallophthalocyanines on chitosan and investigation their catalytic activity in the CO2 fixation. Catal. Lett. 2019, 149, 2089–2097. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, X.; Huang, X.; Liao, Y.; Che, J. Bifunctional catalyst of a metallophthalocyanine carbon nitride hybrid for chemical fixation of CO2 to cyclic carbonate. RSC Adv. 2016, 6, 2810–2818. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available. |
TXRF | Elemental Analysis | Porosity Parameters | TGA | UV-Vis * | 13C-NMR * | |||
---|---|---|---|---|---|---|---|---|
Fe(%) | C(%) | H(%) | N(%) | SBET (m2 g−1) | ΔPore Size (nm) | Tdonset | Abs (nm) | 110–140 ppm (C=X) |
5.4 | 69.6 | 4.1 | 10.4 | 427 | 1.18 | 340 °C | 684, 876 | 35 ppm (-CH2-) |
FT-IR | 1331, 1288, 1117, 1078, 729 cm−1 (FePc units) 1610 and 1720 (biphenyl groups) | |||||||
Raman | 487, 592, 682, 752, 782, 828, 952, 1013, 1114, 1149, 1192, 1215, 1314, 1346, 1458 and 1525 (FePc ring); 1407 (C=CH bending) and 1446 (C-H deformation) |
Entry | Epoxide | Epoxide:DMAP:Fe | PCO2 (bar) | T (°C) | Time (h) | Conv. (%) 2 | TON 3 |
---|---|---|---|---|---|---|---|
1 | 1000:10:1 | 3 | 70 | 3 | 59 | 590 | |
2 | 1000:10:1 | 3 | 90 | 3 | 94 | 940 | |
3 | 2000:10:1 | 3 | 90 | 3 | 93 | 1860 | |
4 | ECH | 3000:10:1 | 3 | 90 | 3 | 90 | 2700 |
5 | 3000:10:0 | 3 | 90 | 3 | 30 | 900 | |
6 | 3000:0:1 | 3 | 90 | 3 | 2 | 60 | |
7 4 | 3000:10:1 | 3 | 90 | 3 | 33 | 990 | |
8 | SO | 3000:10:1 | 3 | 90 | 24 | 29 | 870 |
9 | CHO | 3000:10:1 | 3 | 90 | 24 | 10 | 300 |
Entry | Catalysts | ECH/M 1 | PCO2 (bar) | T (°C) | t (h) | Conv. (%) | TON 2 | Ref |
---|---|---|---|---|---|---|---|---|
1 | Mg-por/pho@POP | 20,000 | 30 | 140 | 1 | 67 | 13,400 | 19 |
2 | Mg–Por\DVB@POPs | 20,000 | 30 | 120 | 5 | 97 | 19,400 | 20 |
3 | Al-HCP/TBAB | 400 | 10 | 40 | 2.5 | 97 | 388 | 21 |
4 | Al-iPOP | 1000 | 10 | 40 | 6 | 99 | 990 | 22 |
5 | Co/POP-TPP/TBAB | 463 | 1 | 29 | 24 | 95.6 | 442 | 38 |
6 | [Zn(II)NMeTPyP]4+[I−]4 | 833 | 8 | 90 | 24 | >99 | 825 | 39 |
7 | Rh-PMOF-1/TBAB | 500 | 1 | 100 | 24 | 96 | 480 | 40 |
8 | FTPFs-Cu-Nb-Ni/TBAB | 200 | 1 | r.t. | 48 | 93 | 186 | 41 |
9 | POP-PBnCl-TPPMg-12 | 2000 | 1 | 50 | 48 | >99 | 1980 | 23 |
10 | CuPc@CS/TBAB | 285 | 1 | 80 | 4.5 | 95 | 270 | 42 |
11 | CoPc/g-C3N4 | 303 | 30 | 130 | 24 | 97.6 | 296 | 43 |
12 | FePc-POP/DMAP | 3000 | 3 | 90 | 3 | 90 | 2700 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maya, E.M.; Valverde-González, A.; Iglesias, M. Conversion of CO2 into Chloropropene Carbonate Catalyzed by Iron (II) Phthalocyanine Hypercrosslinked Porous Organic Polymer. Molecules 2020, 25, 4598. https://doi.org/10.3390/molecules25204598
Maya EM, Valverde-González A, Iglesias M. Conversion of CO2 into Chloropropene Carbonate Catalyzed by Iron (II) Phthalocyanine Hypercrosslinked Porous Organic Polymer. Molecules. 2020; 25(20):4598. https://doi.org/10.3390/molecules25204598
Chicago/Turabian StyleMaya, Eva M., Antonio Valverde-González, and Marta Iglesias. 2020. "Conversion of CO2 into Chloropropene Carbonate Catalyzed by Iron (II) Phthalocyanine Hypercrosslinked Porous Organic Polymer" Molecules 25, no. 20: 4598. https://doi.org/10.3390/molecules25204598
APA StyleMaya, E. M., Valverde-González, A., & Iglesias, M. (2020). Conversion of CO2 into Chloropropene Carbonate Catalyzed by Iron (II) Phthalocyanine Hypercrosslinked Porous Organic Polymer. Molecules, 25(20), 4598. https://doi.org/10.3390/molecules25204598