The Business of DNA Nanotechnology: Commercialization of Origami and Other Technologies
Abstract
:1. Introduction
2. Results
2.1. Analysis of Patent Applications Related to DNA Nanotechnology
2.2. DNA Nanotechnology Start-Ups and Spinouts
2.3. Software: Delivering Impact Without Commercialization
3. Discussion
Supplementary Materials
Funding
Conflicts of Interest
References
- Seeman, N.C.; Sleiman, H.F. DNA nanotechnology. Nat. Rev. Mater. 2017, 3, 17068. [Google Scholar] [CrossRef]
- Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Chang, Y.; Liu, Y.; Zhang, C.; Chen, L.; et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 2018, 36, 258. [Google Scholar] [CrossRef] [PubMed]
- Linko, V.; Ora, A.; Kostiainen, M.A. DNA Nanostructures as Smart Drug-Delivery Vehicles and Molecular Devices. Trends Biotechnol. 2015, 33, 586–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diagne, C.T.; Brun, C.; Gasparutto, D.; Baillin, X.; Tiron, R. DNA Origami Mask for Sub-Ten-Nanometer Lithography. ACS Nano 2016, 10, 6458–6463. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Linko, V.; Tapio, K.; Pikker, S.; Lemma, T.; Gopinath, A.; Gothelf, K.V.; Kostiainen, M.A.; Toppari, J.J. Plasmonic nanostructures through DNA-assisted lithography. Sci. Adv. 2018, 4, eaap8978. [Google Scholar] [CrossRef] [Green Version]
- Marth, G.; Hartley, A.M.; Reddington, S.C.; Sargisson, L.L.; Parcollet, M.; Dunn, K.E.; Stulz, E. Precision Templated Bottom-Up Multiprotein Nanoassembly through Defined Click Chemistry Linkage to DNA. ACS Nano 2017, 11, 5003–5010. [Google Scholar] [CrossRef]
- Knudsen, J.B.; Liu, L.; Bank Kodal, A.L.; Madsen, M.; Li, Q.; Song, J.; Woehrstein, J.B.; Wickham, S.F.J.; Vinther, J.; Strauss, M.T.; et al. Routing of individual polymers in designed patterns. Nat. Nanotechnol. 2015, 10, 892–898. [Google Scholar] [CrossRef]
- Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609. [Google Scholar] [CrossRef]
- Schreiber, R.; Luong, N.; Fan, Z.; Kuzyk, A.; Nickels, P.C.; Zhang, T.; Smith, D.M.; Yurke, B.; Kuang, W.; Liedl, T.; et al. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat. Commun. 2013, 4, 2948. [Google Scholar] [CrossRef]
- Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Hart, T.; Clark, S.; Fazzani, L. Intellectual Property Law, 6th ed.; Palgrave Macmillan Law Masters; Palgrave Macmillan: London, UK, 2013. [Google Scholar]
- Intellectual Property Office. Patents Act 1977 (as amended); UK Parliament: London, UK, 2018.
- Servick, K. Draft bill reignites U.S. debate over patenting human genes. Science 2019, 364, 1017. [Google Scholar] [CrossRef] [PubMed]
- Garber, K.; Landhuis, E.; Sheridan, C.; Senior, M.; DeFrancesco, L. Nature Biotechnology’s academic spinouts of 2018. Nat. Biotechnol. 2019, 37, 601–612. [Google Scholar] [CrossRef]
- Van Wilgenburg, B.; van Wilgenburg, K.; Paisner, K.; van Deventer, S.; Rooswinkel, R.W. Mapping the European startup landscape. Nat. Biotechnol. 2019, 37, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Perkmann, M.; Tartari, V.; McKelvey, M.; Autio, E.; Brostrom, A.; D’Este, P.; Fini, R.; Geuna, A.; Grimaldi, R.; Krabel, S.; et al. Academic engagement and commercialisation: A review of the literature on university-industry relations. Res. Policy 2013, 42, 423–442. [Google Scholar] [CrossRef]
- Hey, T.; Payne, M.C. Open science decoded. Nat. Phys. 2015, 11, 367–369. [Google Scholar] [CrossRef] [Green Version]
- Marttin, E.; Derrien, A.-C. How to apply examiner search strategies in Espacenet. A case study. World Pat. Inf. 2018, 54, S33–S43. [Google Scholar] [CrossRef]
- European Patent Office. Espacenet. Available online: https://worldwide.espacenet.com/ (accessed on 26 November 2019).
- Jürgens, B.; Herrero-Solana, V. Espacenet, Patentscope and Depatisnet: A comparison approach. World Pat. Inf. 2015, 42, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Rothemund, P.W.K. Methods of Making Nucleic Acid Nanostructures. U.S. Patent 7,842,793 B2; granted on 30th November 2010, filed on 14th June 2006, claiming priority from provisional applicationno. 60/ 690,533 filed on 14th June 2005, 30 November 2010. [Google Scholar]
- Clarivate Analytics. Web of Science. Available online: https://wok.mimas.ac.uk/ (accessed on 26 November 2019).
- Richard, A. Blog Post: List of DNA/RNA Nanotechnology Labs. Available online: https://www.arunrichard.com/blog/dna-nano-labs (accessed on 8 January 2020).
- Zurutuza, A.; Marinelli, C. Challenges and opportunities in graphene commercialization. Nat. Nanotechnol. 2014, 9, 730–734. [Google Scholar] [CrossRef]
- Illumina. Available online: https://www.illumina.com/ (accessed on 26 November 2019).
- Oxford Nanopore. Available online: https://nanoporetech.com/ (accessed on 26 November 2019).
- Integrated DNA Technologies. Available online: https://www.idtdna.com/pages (accessed on 26 November 2019).
- Twist Bioscience. Available online: https://twistbioscience.com/ (accessed on 26 November 2019).
- NuProbe. Available online: https://www.nuprobe.com/ (accessed on 26 November 2019).
- Genisphere. Available online: https://genisphere.com/ (accessed on 26 November 2019).
- Chin, C.D.; Linder, V.; Sia, S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 2012, 12, 2118–2134. [Google Scholar] [CrossRef]
- Tilibit Nanosystems. Available online: https://www.tilibit.com/ (accessed on 26 November 2019).
- GATTAquant. Available online: http://www.gattaquant.com/ (accessed on 26 November 2019).
- Wu, L.R.; Chen, S.X.; Wu, Y.; Patel, A.A.; Zhang, D.Y. Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification. Nat. Biomed. Eng. 2017, 1, 714–723. [Google Scholar] [CrossRef]
- Eurofinsgenomics. Available online: https://www.eurofinsgenomics.eu (accessed on 26 November 2019).
- Steinhauer, C.; Jungmann, R.; Sobey, T.L.; Simmel, F.C.; Tinnefeld, P. DNA Origami as a Nanoscopic Ruler for Super-Resolution Microscopy. Angew. Chem. Int. Ed. 2009, 48, 8870–8873. [Google Scholar] [CrossRef] [PubMed]
- Argolight. Available online: http://argolight.com/ (accessed on 26 November 2019).
- Nilsen, T.W.; Grayzel, J.; Prensky, W. Dendritic Nucleic Acid Structures. J. Theor. Biol. 1997, 187, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-H.; Peng, W.; Furuuchi, N.; Gerhart, J.; Rhodes, K.; Mukherjee, N.; Jimbo, M.; Gonye, G.E.; Brody, J.R.; Getts, R.C.; et al. Delivery of Therapeutics Targeting the mRNA-Binding Protein HuR Using 3DNA Nanocarriers Suppresses Ovarian Tumor Growth. Cancer Res. 2016, 76, 1549–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FabricNano. Available online: https://fabricnano.com/ (accessed on 26 November 2019).
- Nanovery. Available online: https://www.nanovery.co.uk/ (accessed on 26 November 2019).
- Zadeh, J.N.; Steenberg, C.D.; Bois, J.S.; Wolfe, B.R.; Pierce, M.B.; Khan, A.R.; Dirks, R.M.; Pierce, N.A. NUPACK: Analysis and design of nucleic acid systems. J. Comput. Chem. 2011, 32, 170–173. [Google Scholar] [CrossRef]
- SantaLucia, J. A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 1998, 95, 1460–1465. [Google Scholar] [CrossRef] [Green Version]
- Douglas, S.M.; Bachelet, I.; Church, G.M. A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads. Science 2012, 335, 831–834. [Google Scholar] [CrossRef]
- Autodesk. Available online: https://www.autodesk.co.uk/ (accessed on 26 November 2019).
- Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.; Orponen, P.; Högberg, B. DNA rendering of polyhedral meshes at the nanoscale. Nature 2015, 523, 441. [Google Scholar] [CrossRef] [Green Version]
- Castro, C.E.; Kilchherr, F.; Kim, D.-N.; Shiao, E.L.; Wauer, T.; Wortmann, P.; Dietz, H.; Bathe, M. A primer to scaffolded DNA origami. Nat. Methods 2011, 8, 221–229. [Google Scholar] [CrossRef]
- CanDo. Available online: https://cando-dna-origami.org/about/ (accessed on 26 November 2019).
- Ouldridge, T.E.; Louis, A.A.; Doye JPK. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J. Chem. Phys. 2011, 134, 02B627. [Google Scholar] [CrossRef] [Green Version]
- Rickman, A. The commercialization of silicon photonics. Nat. Photonics 2014, 8, 579–582. [Google Scholar] [CrossRef]
- Hughes, G.A. Nanostructure-mediated drug delivery. Nanomed. Nanotechnol. Biol. Med. 2005, 1, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Auerswald, P.E.; Branscomb, L.M. Valleys of Death and Darwinian Seas: Financing the Invention to Innovation Transition in the United States. J. Technol. Transf. 2003, 28, 227–239. [Google Scholar] [CrossRef]
Company (and Year Founded) | Location (and University Connection, Where Applicable) | What It Does |
---|---|---|
NuProbe (2016) [29] | USA (Wyss Institute, Harvard & Rice University) & China | Core technology: Blocker Displacement Amplification (BDA) [34], enabling selective amplification of low abundance sequence variants |
Product: assay kits | ||
Problem addressed: identifying mutations associated with cancer, using DNA from blood or tumour samples, also working on infectious diseases. | ||
Market: researchers (not yet licensed for clinical/diagnostic use) | ||
State of development: available to order online. | ||
Other notes: Facilities in Boston, Houston and Shanghai. 6 board members, 2 additional Scientific Advisory Board members. Recently raised $11M in Series A funding | ||
Tilibit nanosystems (2012) [32] | Germany (Technische Universität München) | Core technology: DNA origami [10] |
Product: origami materials and design/build/test services | ||
Problem addressed: economical supply of DNA origami materials, assistance with nanostructure preparation | ||
Market: individuals or organizations that wish to make DNA origami | ||
State of development: taking orders online. Customers include authors of Ref. [4]. | ||
Other notes: partnerships with Eurofins Genomics [35] and IDT [27] | ||
GATTAquant (2014) [33] | Germany (Technische Universität Braunschweig) | Core technology: DNA origami |
Product: DNA nanorulers [36]—origami objects carrying fluorophores with precisely defined separation | ||
Problem addressed: quantifying resolution of microscopes | ||
Market: users of super-resolution microscopy | ||
State of development: available to order online. | ||
Other notes: Partnership with Argolight [37] for distribution | ||
GeniSphere (founded 1997, management buyout 2009, change in direction) [30] | USA (first product linked to Harvard researchers) | Core technology: 3DNA– construct consisting of a dsDNA core with double ss tails on both ends – can self-assemble into larger structures (dendrimers) [38] |
Product: early products included expression array detection kits, RNA labelling and amplification technologies; since 2009 buyout focus has been on drug delivery. Company provides materials, recommendations and services to other companies (biotech/pharma) about use of 3DNA to enhance their therapeutics | ||
Problem addressed: enhancing efficacy of therapeutics by targeted delivery of drugs or other active agents [39] | ||
Market: biotech/pharma companies | ||
Stage of development: various projects ongoing. 3DNA well-established, first patents in 1986. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dunn, K.E. The Business of DNA Nanotechnology: Commercialization of Origami and Other Technologies. Molecules 2020, 25, 377. https://doi.org/10.3390/molecules25020377
Dunn KE. The Business of DNA Nanotechnology: Commercialization of Origami and Other Technologies. Molecules. 2020; 25(2):377. https://doi.org/10.3390/molecules25020377
Chicago/Turabian StyleDunn, Katherine E. 2020. "The Business of DNA Nanotechnology: Commercialization of Origami and Other Technologies" Molecules 25, no. 2: 377. https://doi.org/10.3390/molecules25020377