Tunable Aryl Imidazolium Recyclable Ionic Liquid with Dual Brønsted–Lewis Acid as Green Catalyst for Friedel–Crafts Acylation and Thioesterification
Abstract
:1. Introduction
2. Results and Discussion
2.1. Friedel–Crafts Acylation
2.2. Thioesterification
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Natalia, V.P.; Kenneth, R.S. Application of ionic liquids in chemical industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar]
- Shi, R.; Wang, Y.-T. Dual ionic and organic nature of ionic liquids. Sci. Rep. 2016, 6, 19644. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.L.; Ding, J.; Welton, T.; Armstrong, D.W. Characterizing ionic liquids on the basis of multiple solvation interactions. J. Am. Chem. Soc. 2002, 124, 14247–14254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weyershausen, B.; Lehmann, K. Industrial application of ionic liquids as performance additives. Green. Chem. 2005, 7, 15–19. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, B.; Koo, Y.-M.; MacFarlane, D.R. Introduction: Ionic liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creary, X.; Willis, E.D.; Gagnon, M. Carbocation-forming reactions in ionic liquids. J. Am. Chem. Soc. 2005, 127, 18114–18120. [Google Scholar] [CrossRef]
- Mallakpour, S.; Dinari, M. Green Solvents II, Properties and Applications of Ionic Liquids; Inamuddin, A.M., Ed.; Springer: New York, NY, USA, 2012; pp. 1–32. [Google Scholar]
- Neves, C.M.S.S.; Freire, M.G.; Coutinho, J.A.P. Improved recovery of ionic liquids from contaminated aqueous streams using aluminium-based salts. RSC Adv. 2012, 2, 10882–10890. [Google Scholar] [CrossRef]
- Doorslaer, C.V.; Glas, D.; Peeters, A.; Odena, A.C.; Vankelecom, I.; Binnemans, K.; Mertensa, P.; Vos, D.D. Product recovery from ionic liquids by solvent-resistant nanofiltration; application to ozonation of acetals and methyl oleate. Green Chem. 2010, 12, 1726–1733. [Google Scholar] [CrossRef]
- Faßbach, T.A.; Kirchmann, R.; Behr, A.; Vorholt, A.J. Recycling of homogeneous catalysts in reactive ionic liquids-solvent-free amino functionalization of alkenes. Green Chem. 2017, 19, 5243–5249. [Google Scholar] [CrossRef]
- Ladnak, V.; Hofmann, N.; Brausch, N.; Wasserscheida, P. Continuous, ionic liquids-catalysed propylation of toluene in a liquid-liquid biphasic reaction mode using a loop reactor concept. Adv. Synth. Catal. 2007, 349, 719–726. [Google Scholar] [CrossRef]
- Canales, R.I.; Brennecke, J.F. Comparison of ionic liquids to conventional organic solvents for extraction of aromatics from aliphatics. J. Chem. Eng. Data 2016, 61, 1685–1699. [Google Scholar] [CrossRef]
- Dyson, P.J. Transition metal chemistry in ionic liquids. Transition Met. Chem. 2002, 27, 353–358. [Google Scholar] [CrossRef]
- Chinnappan, A.; Kim, H. Transition metal based ionic liquid (bulk and nanofiber composites) use as catalyst for reduction of aromatic nitro compounds under mild conditions. RSC Adv. 2013, 3, 3399–3406. [Google Scholar] [CrossRef]
- Zhao, Q.; Yin, M.; Zhang, A.P.; Prescher, S.; Antonietti, M.; Yuan, J. Helically structured nanoporous poly (ionic liquids) membranes: Facile preparation and application in fiber-optic pH sensing. J. Am. Chem. Soc. 2013, 135, 5549–5552. [Google Scholar] [CrossRef] [PubMed]
- Hallett, J.P.; Pollet, P.; Liotta, C.L.; Eckert, C.A. Reversible in situ catalyst formation. Acc. Chem. Res. 2008, 41, 458–467. [Google Scholar] [CrossRef] [PubMed]
- William, S.B.; Guillaume, P.; André, B.C. Chemoselective synthesis of ketones and ketimines by addition of organometallic reagents to secondary amides. Nat. Chem. 2012, 4, 228–234. [Google Scholar]
- Maji, A.; Dahiya, A.; Lu, G.; Bhattacharya, T.; Brochetta, M.; Zanoni, G.; Liu, P.; Maiti, D. H-bonded reusable template assisted para-selective ketonization using soft electrophilic vinyl ethers. Nat. Commun. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Li, M.-H.; Shang, M.; Xu, H.; Wang, X.; Dai, H.-X.; Yu, J.-Q. Remote Para-C–H acetoxylation of electron-deficient arenes. Org. Lett. 2019, 21, 540–544. [Google Scholar] [CrossRef]
- Gmouh, S.; Yang, H.; Vaultier, M. Activation of bismuth(III) derivatives in ionic liquids: Novel and recyclable catalytic systems for Friedel—Crafts acylation of aromatic compounds. Org. Lett. 2003, 5, 2219–2222. [Google Scholar] [CrossRef]
- Prakash, G.K.S.; Farzaneh, P.; Aditya, K.; Arjun, N.; Fang, W.; Golam, R.; Thomas, M.; George, A.O. Taming of superacids: PVP triflic acid as an effective solid triflic acid equivalent for Friedel—Crafts hydroxyalkylation and acylation. J. Fluor. Chem. 2014, 171, 102–112. [Google Scholar] [CrossRef]
- Tran, P.H.; Hansen, P.E.; Hoang, H.M.; Chau, D.K.N.; Le, T.N. Indium triflate in 1-isobutyl-3-methylimidazolium dihydrogenphosphate: An efficient and green catalytic system for Friedel—Crafts acylation. Tetrahedron Lett. 2015, 56, 2187–2192. [Google Scholar] [CrossRef]
- Olah, G.A.; Malhotra, R.; Narang, S.C.; Olah, J.A. Heterogeneous Catalysis by Solid Superacids. 14. Perfluorinated Resinsulfonic Acid Catalyzed Friedel—Crafts Acylation of Benzene and Substituted Benzenes. Synthesis 1978, 672–673. [Google Scholar] [CrossRef]
- Miles, W.H.; Nutaitis, C.F.; Anderton, C.A. Iron(III) Chloride as a Lewis Acid in the Friedel—Crafts Acylation Reaction. J. Chem. Educ. 1996, 73, 272. [Google Scholar] [CrossRef]
- Li, Z.; Li, G.; Jiang, L.; Li, J.; Sun, G.; Xia, C.; Li, F.-W. Ionic liquids as precursor for efficient mesoporous iron-nitrogen doped oxygen reduction electrocatalyst. Angew. Chem. Int. Ed. 2015, 54, 1494–1498. [Google Scholar] [CrossRef]
- Han, X.-X.; Du, H.; Hung, C.-T.; Liu, L.-L.; Wu, P.-H.; Ren, D.-H.; Huang, S.-J.; Liu, S.-B. Syntheses of novel halogen-free Brønsted—Lewis acidic ionic liquid catalysts and their applications for synthesis of methyl caprylate. Green Chem. 2015, 17, 499–508. [Google Scholar] [CrossRef]
- Wang, H.B.; Yao, N.; Wang, L.; Hu, Y.L. Brønsted—Lewis dual acidic ionic liquid immobilized on mesoporous silica materials as an efficient cooperative catalyst for Mannich reactions. New J. Chem. 2017, 41, 10528–10531. [Google Scholar] [CrossRef]
- Ross, J.; Xiao, J. Friedel—Crafts acylation reactions using metal triflates in ionic liquid. Green. Chem. 2002, 4, 129–133. [Google Scholar] [CrossRef]
- Earle, M.J.; Hakala, U.; Hardacre, C.; Karkkainen, J.; McAuley, B.J.; Rooney, D.W.; Seddon, K.R.; Thompson, J.M.; Wähälä, K. Chloroindate(III) ionic liquids: Recyclable media for Friedel—Crafts acylation reactions. Chem. Commun. 2005, 903–905. [Google Scholar] [CrossRef]
- Ahrens, S.; Peritz, A.; Strassner, T. Tunable aryl alkyl ionic liquids (TAAILs): The next generation of ionic liquids. Angew. Chem. Int. Ed. 2009, 48, 7908–7910. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Lu, S.-Y.; Yi, C.-L.; Lee, C.-F. Iron-catalyzed synthesis of thioesters from thiols and aldehydes in water. J. Org. Chem. 2014, 79, 4561–4568. [Google Scholar] [CrossRef]
- Nambu, H.; Hata, K.; Matsugi, M.; Kita, Y. The direct synthesis of thioesters using an intermolecular radical reaction of aldehydes with dipentafluorophenyl disulfide in water. Chem. Commun. 2002, 1082–1083. [Google Scholar] [CrossRef]
- Nambu, H.; Hata, K.; Matsugi, M.; Kita, Y. Efficient Synthesis of thioesters and amides from aldehydes by using an intermolecular radical reaction in water. Chem. Eur. J. 2005, 11, 719–727. [Google Scholar] [CrossRef]
- Uno, T.; Inokuma, T.; Takemoto, Y. NHC-catalyzed thioesterification of aldehydes by external redox activation. Chem. Commun. 2012, 48, 1901–1903. [Google Scholar] [CrossRef] [Green Version]
- Bandgar, B.P.; Bandgar, S.B.; Korbad, B.L.; Sawant, S.S. Dess—Martin periodinane mediated synthesis of thioesters from aldehydes. Tetrahedron Lett. 2007, 48, 1287–1290. [Google Scholar] [CrossRef]
- Jhuang, H.-S.; Liu, Y.-W.; Reddy, D.M.; Tzeng, Y.-Z.; Lin, W.-Y.; Lee, C.-F. Microwave-assisted Synthesis of thioesters from aldehydes and thiols in water. Chin. Chem. Soc. 2018, 65, 24–27. [Google Scholar] [CrossRef]
- Chang, J.C.; Yang, C.H.; Sun, I.W.; Ho, W.Y.; Wu, T.-Y. Synthesis and properties of magnetic aryl-imidazolium ionic liquids with dual Brønsted/Lewis acidity. Materials 2018, 11, 2539. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.H.; Chang, J.C.; Wu, T.Y.; Sun, I.W.; Wu, J.H.; Ho, W.Y. Novel aryl-imidazolium ionic liquids with dual Brønsted/Lewis acidity as both solvents and catalysts for Friedel—Crafts alkylation. Appl. Sci. 2019, 9, 4743. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Entry | IL (equiv.) a | T | Yield b |
---|---|---|---|
1 | 1a (1.0) | 80 °C | 57% |
2 | 1b (1.0) | 80 °C | 32% |
3 | 1c (1.0) | 80 °C | 72% |
4 | 1d (1.0) | 80 °C | 74% |
5 | 1d (1.0) | 100 °C | 74% |
6 | 1d (1.0) | 120 °C | 71% |
7 | 1d (0.9) | 100 °C | 78% |
8 | 1d (0.8) | 100 °C | 73% |
Entry | Aryl Alkane | Acyl Chloride | t (h) | P (yield) |
---|---|---|---|---|
1 | 2a | 3b | 4.0 | 4b (73%) |
2 | 2a | 3c | 4.0 | 4c (68%) |
3 | 2b | 3a | 2.0 | 4d (83%) |
4 | 2b | 3b | 3.5 | 4e (79%) |
5 | 2b | 3c | 2.0 | 4f (89%) |
6 | 2c | 3a | 3.0 | 4g (81%) |
7 | 2c | 3b | 3.5 | 4h (71%) |
8 | 2c | 3c | 3.0 | 4i (70%) |
Entry | IL (equiv.) a | T | t (h) | Yield b |
---|---|---|---|---|
1 | 1a (0.025) | 120 °C | 2 h | 33% |
2 | 1b (0.025) | 120 °C | 2 h | 43% |
3 | 1c (0.025) | 120 °C | 2 h | 56% |
4 | 1d (0.025) | 120 °C | 2 h | 70% |
5 | 1d (0.025) | 100 °C | 2 h | 68% |
6 | 1d (0.025) | 140 °C | 2 h | 69% |
7 | 1d (0.010) | 120 °C | 2 h | 68% |
8 | 1d (0.030) | 120 °C | 2 h | 61% |
Entry | IL (eq) a | RCHO | Thiol | T | Yield b |
---|---|---|---|---|---|
1 | 1d (0.025) | 5a | 6b | 120 °C | 7b (88%) |
2 | 1d (0.025) | 5a | 6c | 120 °C | 7c (55%) |
3 | 1d (0.025) | 5b | 6a | 120 °C | 7d (73%) |
4 | 1d (0.025) | 5b | 6b | 120 °C | 7e (73%) |
5 | 1d (0.025) | 5c | 6a | 120 °C | 7f (76%) |
6 | 1d (0.025) | 5c | 6b | 120 °C | 7g (73%) |
7 | 1d (0.025) | 5c | 6c | 120.°C | 7h (51%) |
8 | 1d (0.025) | 5d | 6a | 120 °C | 7i (80%) |
9 | 1d (0.025) | 5d | 6b | 120 °C | 7j (71%) |
10 | 1d (0.025) | 5e | 6a | 120 °C | 7k (73%) |
11 | 1d(0.025) | 5e | 6b | 120 °C | 7l (64%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-J.; Wu, Y.-P.; Thul, M.; Hung, M.-W.; Chou, S.-H.; Chen, W.-T.; Lin, W.; Lin, M.; Reddy, D.M.; Wu, H.-R.; et al. Tunable Aryl Imidazolium Recyclable Ionic Liquid with Dual Brønsted–Lewis Acid as Green Catalyst for Friedel–Crafts Acylation and Thioesterification. Molecules 2020, 25, 352. https://doi.org/10.3390/molecules25020352
Lin Y-J, Wu Y-P, Thul M, Hung M-W, Chou S-H, Chen W-T, Lin W, Lin M, Reddy DM, Wu H-R, et al. Tunable Aryl Imidazolium Recyclable Ionic Liquid with Dual Brønsted–Lewis Acid as Green Catalyst for Friedel–Crafts Acylation and Thioesterification. Molecules. 2020; 25(2):352. https://doi.org/10.3390/molecules25020352
Chicago/Turabian StyleLin, Yi-Jyun, Yao-Peng Wu, Mayur Thul, Ming-Wei Hung, Shih-Huan Chou, Wen-Tin Chen, Wesley Lin, Michelle Lin, Daggula Mallikarjuna Reddy, Hsin-Ru Wu, and et al. 2020. "Tunable Aryl Imidazolium Recyclable Ionic Liquid with Dual Brønsted–Lewis Acid as Green Catalyst for Friedel–Crafts Acylation and Thioesterification" Molecules 25, no. 2: 352. https://doi.org/10.3390/molecules25020352
APA StyleLin, Y.-J., Wu, Y.-P., Thul, M., Hung, M.-W., Chou, S.-H., Chen, W.-T., Lin, W., Lin, M., Reddy, D. M., Wu, H.-R., Ho, W.-Y., & Luo, S.-Y. (2020). Tunable Aryl Imidazolium Recyclable Ionic Liquid with Dual Brønsted–Lewis Acid as Green Catalyst for Friedel–Crafts Acylation and Thioesterification. Molecules, 25(2), 352. https://doi.org/10.3390/molecules25020352