Synthesis and Thermal Investigations of Eleven-Membered Ring Systems Containing One of the Heavier Group 14 Element Atoms Si, Ge, and Sn
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Design and Synthesis
2.2. Structural Analysis
2.3. Thermal Analysis of the Eleven-Membered Ring Systems
3. Materials and Methods
3.1. General Information
3.2. Computational Details
3.3. Syntheses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Driess, M.; Grützmacher, H. Hauptgruppenelementanaloga von Carbenen, Olefinen und kleinen Ringen. Angew. Chem. 1996, 108, 900–929. [Google Scholar] [CrossRef]
- Weidenbruch, M. Some Silicon, Germanium, Tin, and Lead Analogues of Carbenes, Alkenes, and Dienes. Eur. J. Inorg. Chem. 1999, 1999, 373–381. [Google Scholar] [CrossRef]
- Nagendran, S.; Roesky, H.W. The Chemistry of Aluminum(I), Silicon(II), and Germanium(II). Organometallics 2008, 27, 457–492. [Google Scholar] [CrossRef]
- Hartley, G.S. The Cis-form of Azobenzene. Nature 1937, 140, 281. [Google Scholar] [CrossRef]
- Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S. Silole Derivatives as Efficient Electron Transporting Materials. J. Am. Chem. Soc. 1996, 118, 11974–11975. [Google Scholar] [CrossRef]
- Kim, D.-H.; Ohshita, J.; Lee, K.-H.; Kunugi, Y.; Kunai, A. Synthesis of π-Conjugated Oligomers Containing Dithienosilole Units. Organometallics 2006, 25, 1511–1516. [Google Scholar] [CrossRef]
- Shimizu, M.; Mochida, K.; Katoh, M.; Hiyama, T. Photophysical properties of heteroaromatic ring-fused (di)benzosiloles. Sci. China Chem. 2011, 54, 1937–1947. [Google Scholar] [CrossRef]
- Ohshita, J.; Miyazaki, M.; Tanaka, D.; Morihara, Y.; Fujita, Y.; Kunugi, Y. Synthesis of poly(dithienogermole-2,6-diyl)s. Poly. Chem. 2013, 4, 3116–3122. [Google Scholar] [CrossRef]
- Ohshita, J.; Lee, K.-H.; Kimura, K.; Kunai, A. Synthesis of Siloles Condensed with Benzothiophene and Indole Rings. Organometallics 2004, 23, 5622–5625. [Google Scholar] [CrossRef]
- Willemsens, L.C.; van der Kerk, G.J.M. Studies in group IV organometallic chemistry: XIII. Organometallic compounds with five metal atoms in neopentane configuration. J. Organometal. Chem. 1964, 2, 260–264. [Google Scholar] [CrossRef]
- Corey, J.Y.; Dueber, M.; Malaidza, M. Synthesis and characterization of 10,11-dihydro-5H-dibenzo[b,f]metallepins of group IV. J. Organometal. Chem. 1972, 36, 49–60. [Google Scholar] [CrossRef]
- Zaitsev, K.V.; Lermontova, E.K.; Churakov, A.V.; Tafeenko, V.A.; Tarasevich, B.N.; Poleshchuk, O.K.; Kharcheva, A.V.; Magdesieva, T.V.; Nikitin, O.M.; Zaitseva, G.S.; et al. Compounds of Group 14 Elements with an Element–Element (E = Si, Ge, Sn) Bond: Effect of the Nature of the Element Atom. Organometallics 2015, 34, 2765–2774. [Google Scholar] [CrossRef]
- Raut, R.K.; Amin, S.F.; Sahoo, P.; Kumar, V.; Majumdar, M. One-Pot Synthesis of Heavier Group 14 N-Heterocyclic Carbene Using Organosilicon Reductant. Inorganics 2018, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Dehnicke, K.; Wiberg, N. Hollemann-Wiberg, Lehrbuch der Anorganischen Chemie, 101st ed.; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1995; p. 2696. [Google Scholar]
- Yang, D.; Yip, Y.-C.; Tang, M.-W.; Wong, M.-K.; Cheung, K.-K. Novel Cyclic Ketones for Catalytic Oxidation Reactions. J. Org. Chem. 1998, 63, 9888–9894. [Google Scholar] [CrossRef]
- Elliott, M.R.; Dhimane, A.-L.; Hamon, L.; Malacria, M. Efficient preparation of a highly strained eleven-membered ring. Eur. J. Org. Chem. 2000, 1, 155–163. [Google Scholar] [CrossRef]
- Dunitz, J.D. Conformations of medium rings. Perspect. Struct. Chem. 1968, 2, 1–70. [Google Scholar] [CrossRef]
- Bogdan, A.R.; Jerome, S.V.; Houk, K.N.; James, K. Strained Cyclophane Macrocycles: Impact of Progressive Ring Size Reduction on Synthesis and Structure. J. Am. Chem. Soc. 2012, 134, 2127–2138. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, J.; Kuczmera, T.J.; Lork, E.; Staubitz, A. Synthesis, Structure, Thermal Behavior and cis/trans Isomerization of 2,2′-(EMe₃)₂ (E = C, Si, Ge, Sn) Substituted Azobenzenes. Molecules 2019, 24, 303. [Google Scholar] [CrossRef] [Green Version]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Nitti, A.; Signorile, M.; Boiocchi, M.; Bianchi, G.; Po, R.; Pasini, D. Conjugated Thiophene-Fused Isatin Dyes through Intramolecular Direct Arylation. J. Org. Chem. 2016, 81, 11035–11042. [Google Scholar] [CrossRef] [PubMed]
- Ak, M.; Ak, M.S.; Kurtay, G.; Güllü, M.; Toppare, L. Synthesis and electropolymerization of 1,2-bis(thiophen-3-ylmethoxy)benzene and its electrochromic properties and electrochromic device application. Solid State Sci. 2010, 12, 1199–1204. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinnon, J.J.; Mitchell, A.S.; Spackman, M.A. Hirshfeld Surfaces: A New Tool for Visualising and Exploring Molecular Crystals. Chem. Eur. J. 1998, 4, 2136–2141. [Google Scholar] [CrossRef]
- CrystalExplorer17; University of Western Australia: Perth, Australia, 2017.
- Jayatilaka, D.; Grimwood, D.J. Tonto: A Fortran Based Object-Oriented System for Quantum Chemistry and Crystallography; Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya, A.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 142–151. [Google Scholar]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. Cryst. Eng. Commun. 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Sheldrick, G. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A.T.B.; Wormit, M.; Kussmann, J.; Lange, A.W.; Behn, A.; Deng, J.; Feng, X. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 2014, 113, 184–215. [Google Scholar] [CrossRef] [Green Version]
- Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007, 47, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Pulay, P. Convergence Acceleration of Iterative Sequences. The Case of SCF Iteration. Chem. Phys. Lett. 1980, 73, 393–398. [Google Scholar] [CrossRef]
- Van Voorhis, T.; Head-Gordon, M. A geometric approach to direct minimization. Mol. Phys. 2002, 100, 1713–1721. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Chem. 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: There are no samples available. |
9b (E = Ge) | 9c (E = Sn) | |
---|---|---|
Bond Lengths/pm | ||
E1–C1 | 194.0(1) | 213.1(2) |
E1–C7 | 194.4(1) | 213.4(2) |
E1–C22 | 194.7(1) | 213.2(2) |
E1–C23 | 194.6(1) | 214.6(2) |
Bond Angels/° | ||
C1–E1–C7 | 112.56(5) | 110.78(7) |
C1–E1–C22 | 108.82(5) | 104.33(7) |
C1–E1–C23 | 109.72(5) | 109.98(7) |
C7–E1–C23 | 107.94(5) | 103.67(7) |
C22–E1–C7 | 110.65(5) | 123.99(7) |
C22–E1–C23 | 107.01(5) | 103.47(7) |
C13–O2–C18 | 114.20(1) | 117.35(1) |
O1–C12–C13 | 116.20(1) | 122.18(1) |
O1–C12–C17 | 124.10(1) | 117.70(1) |
O2–C13–C12 | 120.60(1) | 115.74(1) |
O2–C13–C14 | 119.20(1) | 124.60(1) |
O2–C18–C19 | 107.80(1) | 113.16(1) |
Torsion Angels/° | ||
C7–E1–C1–C2 | −131.7(1) | −156.3(1) |
C7–E1–C1–C6 | 50.0(1) | 27.3(2) |
C22–E1–C1–C2 | −8.7(1) | −20.7(2) |
C22–E1–C1–C6 | 173.1(1) | 162.9(2) |
C1–E1–C7–S1 | −158.5(7) | −128.3(1) |
C22–E1–C7–S1 | 79.4(8) | 106.6(1) |
C1–E1–C22–S2 | 77.6(8) | 107.1(1) |
C7–E1–C22–S2 | −158.2(7) | −125.0(1) |
C23–E1–C22–S2 | −40.8(8) | −8.0(1) |
C23–E1–C22–C19 | 147.0(1) | −172.4(2) |
C11–O1–C12–C13 | −147.2(1) | −56.9(2) |
C11–O1–C12–C17 | 39.1(2) | 129.7(2) |
C18–O2–C13–C12 | 68.5(1) | −163.8(2) |
C18–O2–C13–C14 | −116.7(1) | 14.2(3) |
Atom | C | Si | Ge | Sn |
---|---|---|---|---|
ΔE (kJ/mol), native | −312.9 | −131.8 | −65.5 | 172.8 |
ΔE (kJ/mol), methylene | −359.8 | −190.5 | −127.1 | 103.2 |
TGA (Accuracy ± 0.5 °C) | DSC (Accuracy ± 0.2 °C) | ||||||
---|---|---|---|---|---|---|---|
Sample | Td1(onset)/°C | Td1f(endset)/°C | Loss/% | Tm(onset)/°C | Tm(endset)/°C | Normalized Enthalpy | |
/(J/g) | /(kJ/mol) | ||||||
Si-Ring (6a) | 290.2 | 302.2 | 14 | 105.4 | 113.4 | 5.96 | 2.87 |
Ge-Ring (6b) | 277.6 | 300.3 | 12 | 110.8 | 116 | 46.88 | 24.71 |
Sn-Ring (6c) | 231.8 | 240.4 | 13 | 118.5 | 120.7 | 1.73 | 0.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eleya, N.; Appiah, C.; Lork, E.; Gogolin, M.; Gesing, T.M.; Stauch, T.; Staubitz, A. Synthesis and Thermal Investigations of Eleven-Membered Ring Systems Containing One of the Heavier Group 14 Element Atoms Si, Ge, and Sn. Molecules 2020, 25, 283. https://doi.org/10.3390/molecules25020283
Eleya N, Appiah C, Lork E, Gogolin M, Gesing TM, Stauch T, Staubitz A. Synthesis and Thermal Investigations of Eleven-Membered Ring Systems Containing One of the Heavier Group 14 Element Atoms Si, Ge, and Sn. Molecules. 2020; 25(2):283. https://doi.org/10.3390/molecules25020283
Chicago/Turabian StyleEleya, Nadi, Clement Appiah, Enno Lork, Mathias Gogolin, Thorsten M. Gesing, Tim Stauch, and Anne Staubitz. 2020. "Synthesis and Thermal Investigations of Eleven-Membered Ring Systems Containing One of the Heavier Group 14 Element Atoms Si, Ge, and Sn" Molecules 25, no. 2: 283. https://doi.org/10.3390/molecules25020283