Identification of Odor Active Compounds in Physalis peruviana L.
Abstract
1. Introduction
2. Results
2.1. Sensory Characterization of Cape Gooseberry Fruit (Physalis peruviana L.)
2.2. Screening the Cape Gooseberry Volatiles for Aroma-Active Compounds by the Means of GC-O AEDA Analysis
3. Discussion
4. Materials and Methods
4.1. Fruit Samples
4.2. Chemical Standards
4.3. Isolation Method
4.4. Gas Chromatography-Olfactometry (GC-O)
4.5. Gas Chromatography/Mass Spectrometry
4.6. Aroma Extract Dilution Analysis (AEDA)
4.7. Quantitation of Odorants
4.8. Aroma Recombination
4.9. Sensory Evaluation
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, Y. (Ed.) Berry Fruit: Value-Added Products for Health Promotion; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Steven, G.; Pratt, M.D.; Matthews, K. Super Foods Rx: Fourteen Foods that Will Change Your Life; Harper Collins Publishers: New York, NY, USA, 2005. [Google Scholar]
- Ciftci, O.; Ozdemir, I.; Tanyildizi, S.; Yildiz, S.; Oguzturk, H. Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol. Ind. Health 2011, 27, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Vuuren, S.F.; Van Viljoen, A.M. Antimicrobial activity of limonene enantiomers and 1,8-cineole alone and in combination. Flavour Frag. J. 2007, 22, 540–544. [Google Scholar] [CrossRef]
- Roberto, D.; Micucci, P.; Sebastian, T.; Graciela, F.; Anesini, C. Antioxidant activity of limonene on normal murine lymphocytes: Relation to H2O2 modulation and cell proliferation. Basic Clin. Pharmacol. Toxicol. 2010, 106, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Murali, R.; Saravanan, R. Antidiabetic effect of d-limonene, a monoterpene in streptozotocin-induced diabetic rats. Biomed. Prev. Nutr. 2012, 2, 269–275. [Google Scholar] [CrossRef]
- Jamin, E. Superfruits: Are they authentic? Fruit Process. 2009, 19, 170–175. [Google Scholar]
- Crozier, S.J.; Preston, A.G.; Hurst, J.W.; Payne, M.J.; Mann, J.; Hainly, L.; Miller, D.L. Cacao seeds are a “Super Fruit”: A comparative analysis of various fruit powders and products. Chem. Cent. J. 2011, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Tenorio, M.L.; Dekker, M.; Verkerk, R.; van Boekel, A.J.S. Health-Promoting compounds in cape gooseberry (Physalis peruviana L.): Review from a supply chain perspective. Trends Food Sci. Techn. 2016, 57, 83–92. [Google Scholar] [CrossRef]
- Puente, L.A.; Pinto-Muñoz, C.A.; Castro, E.S.; Cortés, M. Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review. Food Res. Int. 2011, 44, 1733–1740. [Google Scholar] [CrossRef]
- Rodríguez, S.; Rodríguez, E. Efecto de la ingesta de Physalisperuviana (aguaymanto) sobre la glicemia postprandial enadultosjóvenes. Rev. Médica Val. 2007, 4, 43–52. [Google Scholar]
- Salazar, M.; Jones, J.; Chaves, B.; Cooman, A. A model for the potential production and dry matter distribution of cape gooseberry (Physalis peruviana L.). Sci. Hortic. 2008, 115, 142–148. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Moersel, J.T. Impact of enzymatic treatment on chemical composition, physicochemical properties and radical scavenging activity of golden berry (Physalis peruviana L.) juice. J. Sci. Food Agric. 2007, 87, 452–460. [Google Scholar] [CrossRef]
- Kupska, M.; Jeleń, H.H. In-tube extraction for the determination of the main volatile compounds in Physalis peruviana L. J. Sep. Sci. 2017, 40, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Kupska, M.; Wasilewski, T.; Jędrkiewicz, R.; Gromadzka, J.; Namieśnik, J. Determination of terpene profiles in potential superfruits. Int. J. Food Prop. 2016, 19, 2726–2738. [Google Scholar] [CrossRef]
- Schieberle, P.; Hofmann, T. Mapping the Combinatorial Code of Food Flavors by Means of Molecular Sensory Science Approach. In Food Flavors. Chemical, Sensory and Technological Properties; Jeleń, H., Ed.; CRC Press: Boca Raton, FL, USA, 2012; pp. 413–438. [Google Scholar]
- Li, J.-X.; Schieberle, P.; Steinhaus, M. Characerization of the major odor-active compounds in Thai durian (Durio zibethinus L. ‘Monthong’) by aroma extract dilution analysis and headspace gas chromatography-Olfactometry. J. Agric. Food Chem. 2012, 60, 11253–11262. [Google Scholar] [CrossRef] [PubMed]
- Munafo, J.P., Jr.; Didzbalis, J.; Schnell, R.J.; Steinhaus, M. Insights into the key aroma compounds of mango (Mangifera indica L. Haden) fruits by stable isotope dilution quantitation and aroma simulation experiments. J. Agric. Food Chem. 2016, 64, 4312–4318. [Google Scholar] [CrossRef] [PubMed]
- Prosen, H.; Jane, L.; Strli, M.; Rusjan, D. Analysis of free and bound aroma compounds in grape berries using headspace solid-phase microextraction with GC-MS and a preliminary study of solid-phase extraction with LC-MS. Acta Chim. Slov. 2007, 54, 25–32. [Google Scholar]
- Van Gemert, L.J.; Odour, T. Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans Punter & Partners BV: Zeist, The Netherlands, 2011. [Google Scholar]
- Berger, R.G.; Drawert, F.; Kollmannsberger, H. The flavor of cape gooseberry (Physalis peruviana L.). Z. Lebensm Unters. Forsch. 1989, 188, 122–126. [Google Scholar] [CrossRef]
- Yilmaztekin, M. Characterization of potent aroma compounds of cape gooseberry (Physalis peruviana L.) fruits grown in Antalya through the determination of odor activity values. Int. J. Food Prop. 2014, 17, 469–480. [Google Scholar] [CrossRef][Green Version]
- Yilmaztekin, M. Analysis of volatile components of cape gooseberry (Physalis peruviana L.) grown in Turkey by HS-SPME and GC-MS. Sci. World J. 2014, 796097. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
No | Compound | odor | RI Supelcowax-10 | RI SPB-5 | FD |
---|---|---|---|---|---|
1 | 2-Methylpropanal | fruity | 900 | <600 | 4 |
2 | Ethyl 2-methyl propanoate | fruity, anise-like | 950 | 750 | 4 |
3 | Butane-2,3-dione | buttery | 980 | <600 | 16 |
4 | Ethyl butanoate | fruity | 1027 | 802 | 512 |
5 | Hexanal | fresh grass | 1072 | 803 | 8 |
6 | Ethyl hexanoate | fruity | 1200 | 1002 | 16 |
7 | Octanal | rancid, citrus | 1287 | 998 | 16 |
8 | Oct-1-en-3-ol | mushroom | 1292 | 978 | 8 |
9 | 2-Acetyl-1-pyrroline | popcorn | 1350 | 911 | 8 |
10 | Ethyl octanoate | fruity | 1419 | 1195 | 128 |
11 | Methional | boiled potato | 1450 | 907 | 128 |
12 | 2,3-Diethyl-5-methyl pyrazine | earthy | 1495 | 1156 | 128 |
13 | (E)-Non-2-enal | fatty, green | 1530 | 1159 | 64 |
14 | β-Linalool | fruity | 1550 | 1101 | 256 |
15 | (E2, Z6)-Nona-2,6-dienal | cucumber | 1580 | 1150 | 64 |
16 | 2-Phenylacetaldehyde | rosy, honey-like | 1640 | 1048 | 8 |
17 | 2-Phenylethanol | flowery, honey-like | 1901 | 1118 | 64 |
18 | Furaneol | cotton candy | 2015 | 1080 | 512 |
Compound | OT a [µg/L] | Concentration b [µg/kg] | OAV c |
---|---|---|---|
Ethyl butanoate | 0.76 | 383.0 | 504 |
β-Linalol | 0.089 | 32.0 | 360 |
(E)-Non-2-enal | 0.08 | 24.0 | 300 |
(2E, 6Z)-Nona-2,6-dienal | 0.02 | 5.0 | 250 |
Hexanal | 4.50 | 450.0 | 100 |
Ethyl octanoate | 5.00 | 411.0 | 82 |
Furaneol | 30.0 | 1350.0 | 45 |
Ethyl hexanoate | 1.20 | 45.0 | 38 |
Butane-2,3-dione | 15.0 | 500.0 | 33 |
2-Methylpropanal | 1.90 | 50.0 | 26 |
Octanal | 0.70 | 15.0 | 21 |
Ethyl 2-methyl propanoate | 0.089 | 1.8 | 20 |
Methional | 0.20 | 36.0 | 18 |
2-Phenylacetaldehyde | 4.00 | 25.0 | 6 |
Oct-1-en-3-ol | 1.00 | 3.0 | 3 |
2,3-Diethyl-5-methyl pyrazine | 1.00 | <0.1 | <1 |
2-Phenylethanol | 1000 | 65.0 | <1 |
2-Acetyl-1-pyrroline | 0.1 | <0.01 | <1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majcher, M.A.; Scheibe, M.; Jeleń, H.H. Identification of Odor Active Compounds in Physalis peruviana L. Molecules 2020, 25, 245. https://doi.org/10.3390/molecules25020245
Majcher MA, Scheibe M, Jeleń HH. Identification of Odor Active Compounds in Physalis peruviana L. Molecules. 2020; 25(2):245. https://doi.org/10.3390/molecules25020245
Chicago/Turabian StyleMajcher, Małgorzata A., Magdalena Scheibe, and Henryk H. Jeleń. 2020. "Identification of Odor Active Compounds in Physalis peruviana L." Molecules 25, no. 2: 245. https://doi.org/10.3390/molecules25020245
APA StyleMajcher, M. A., Scheibe, M., & Jeleń, H. H. (2020). Identification of Odor Active Compounds in Physalis peruviana L. Molecules, 25(2), 245. https://doi.org/10.3390/molecules25020245