One Pot Synthesis of Micromolar BACE-1 Inhibitors Based on the Dihydropyrimidinone Scaffold and Their Thia and Imino Analogues
Abstract
1. Introduction
2. Results and Discussion
3. Docking Analysis
4. Materials and Methods
4.1. General Experimental Information
4.2. Synthesis and Characterization
4.2.1. General Method for the Synthesis of 3,4-Diihydropyrimidin-2(1H)-Ones 1a–16a and 3,4-Dihydropyrimidin-2(1H)-Thiones 1b–3b; 9b,10b; 13b
4.2.2. General Method for the Synthesis 3,4-Diihydropyrimidin-2(1H)-Imines 1c–3c, 9c, and 10c
4.2.3. Synthesis of 5-Carboxy-4-Phenyl-6-Methyl-3,4-Dihydropyrimidine-2(1H)-Imine 16c
- (a)
- Synthesis of 5-benzyloxycarbonyl-6-methyl-4-phenyl-3,4-dihydropyrimidin-2(1H)-imine17c. From benzaldehyde, benzylacetoacetate, guanidine hydrochloride under the same conditions as above [38]; 0.151 g, 47%; white solid, m.p. 168–170 °C; IR: 3359, 3500–2500 (broad), 1701, 1629, cm−1; 1H-NMR (500 MHz, CDCl3) (Figure S14): δ 2.20 (s, 3H, C(6)CH3), 4.92, 4.98 (AB system, J = 12.6 Hz, PhCH2), 5.22 (s, 1H, H-4), 6.21 (bs, 2H, H-1 and C=NH), 7.09-7.29 (m, 10H, 2xPhH) 7.33 (s, 1H, H-3) ppm; 13C-NMR (125.68 MHz, CDCl3) (Figure S15): δ 24.2, 53.0, 64.3, 96.9, 126.4, 127.4, 127.7, 127.8, 128.6, 137.6 146.8, 156.0, 162.4, 166.2 ppm; HRMS-ESI, m/z (Figure S16): Found: 322.1544 [M+H]+; Calcd for [C19H20N3O2]+ 322.1550.
- (b)
- Hydrogenolysis of 17c. A MeOH solution of the benzylester 17c (0.100 g, 3.1 mmol) was added of 20 mg 10% Pd/C. The mixture was stirred overnight under a H2 atmosphere, then the solvent was removed in vacuo, to give the corresponding carboxylic acid 18c (0.109 g) in a quantitative yield, m.p. 175–176 °C. IR: 3700–2300 (broad), 1700–1600 (multiple bands) cm−1; 1H-NMR (500 MHz, MeOD) (Figure S17): δ 2.22 (s, 3H, C(6)CH3), 5.50 (s, 1H, H-4), 6.16 (br, 2H, H-3 and C=NH), 7.15–7.30 (m, 5H, PhH), 7.39 (s, 1H, H-1) ppm; 13C-NMR (125.68 MHz, MeOD) (Figure S18): δ 21.5, 55.2, 109.0, 126.4, 127.8, 128.5, 145.6, 153.3, 160.0, 175.0 ppm; HRMS-ESI, m/z: Found: 232.1082 [M+H]+; Calcd for [C12H14N3O2]+ 232.1081; Anal. Calcd. for C12H13N3O2 C, 62.33; H, 5.67; N, 18.17; Found C, 62.37; H, 5.80; N, 18.08.
4.3. BACE1 Inhibition Assay
4.4. Docking Studies
4.5. Prediction of ADME Properties
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Biginelli, P. Aldureides of ethylic acetoacetate and ethylic oxaloacetate. Gazz. Chim. Ital. 1893, 23, 360–413. [Google Scholar]
- Kappe, C.O.; Stadler, A. The Biginelli dihydropyrimidinone synthesis. Org. React. 2004, 63, 1–116. [Google Scholar] [CrossRef]
- Nagarajaiah, H.; Mukhopadhyay, A.; Narasimha Moorth, J. Biginelli reaction: An overview. Tetrahedron Lett. 2016, 57, 5135–5148. [Google Scholar] [CrossRef]
- Kaur, R.; Sandeep, C.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem. 2017, 132, 108–134. [Google Scholar] [CrossRef] [PubMed]
- Neto, B.A.D.; de Fernandes, T.A.; Correia, M.V. Chemistry and Biology of 3,4-Dihydropyrimidin-2(1H)-one (or thione) derivatives obtained by the Biginelli Multicomponent Reaction. Targets Heterocycl. Syst. 2018, 22, 356–376. [Google Scholar] [CrossRef]
- Naidu, B.N.; Sorenson, M.E.; Patel, M.; Ueda, Y.; Banville, J.; Beaulieu, F.; Bollini, S.; Dicker, I.B.; Higley, H.; Lin, Z. Synthesis and evaluation of C2-carbon-linked heterocyclic-5-hydroxy-6-oxo-dihydropyrimidine-4-carboxamides as HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett. 2015, 25, 717–720. [Google Scholar] [CrossRef]
- Dragovich, P.S.; Fauber, B.P.; Corson, L.B.; Ding, C.Z.; Eigenbrot, C.; Ge, H.; Giannetti, A.M.; Hunsaker, T.; Labadie, S.; Liu, Y. Identification of substituted 2-thio-6-oxo-1,6-dihydropyrimidines as inhibitors of human lactate dehydrogenase. Bioorg. Med. Chem. Lett. 2013, 23, 3186–3194. [Google Scholar] [CrossRef]
- Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, B.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem. 1991, 34, 806–811. [Google Scholar] [CrossRef]
- Mayer, U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 1999, 286, 971–974. [Google Scholar] [CrossRef]
- Chang, R.S.; Chen, T.B.; O’Malley, S.S.; Pettibone, D.J.; DiSalvo, J.; Francis, B.; Bock, M.G.; Freidinger, R.; Nagarathnam, D.; Miao, S.W.; et al. In vitro studies on L-771,688 (SNAP 6383), a new potent and selective α1A-adrenoceptor antagonist. Eur. J. Pharmacol. 2000, 409, 301–312. [Google Scholar] [CrossRef]
- Lauro, G.; Strocchia, M.; Terracciano, S.; Bruno, I.; Fischer, K.; Pergola, C.; Werz, O.; Riccio, R.; Bifulco, G. Exploration of the dihydropyrimidine scaffold for the development of new potential anti-inflammatory agents blocking prostaglandin E2 synthase-1 enzyme (mPGES-1). Eur. J. Med. Chem. 2014, 80, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Kappe, C.O. Biologically active dihydropyrimidones of the Biginelli type—A literature survey. Eur. J. Med. Chem. 2000, 35, 1043–1052. [Google Scholar] [CrossRef]
- Safari, S.; Ghavimi, R.; Razzaghi-Asl, N.; Sepehri, S. Synthesis, biological evaluation and molecular docking study of dihydropyrimidine derivatives as potential anticancer agents. J. Heterocycl. Chem. 2020, 57, 1023–1033. [Google Scholar] [CrossRef]
- Graebin, C.S.; Ribeiro, F.V.; Rogerio, K.R.; Kummerle, A.E. Multicomponent Reactions for the Synthesis of Bioactive Compounds: A Review. Curr. Org. Synth. 2019, 16, 855–899. [Google Scholar] [CrossRef] [PubMed]
- Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 2012, 112, 3083–3135. [Google Scholar] [CrossRef]
- Costanzo, P.; Nardi, M.; Oliverio, M. Similarity and Competition between Biginelli and Hantzsch Reactions: An Opportunity for Modern Medicinal Chemistry. Eur. J. Org. Chem. 2020, 2020, 3954–3964. [Google Scholar] [CrossRef]
- Hsiao, C.-C.; Rombouts, F.; Gijsen, H.J.M. New evolutions in the BACE1 inhibitor field from 2014 to 2018. Bioorg. Med. Chem. Lett. 2019, 29, 761–777. [Google Scholar] [CrossRef]
- Silvestri, R. Boom in the development of non-peptidic β-secretase (BACE1) inhibitors for the treatment of Alzheimer’s disease. Med. Res. Rev. 2009, 29, 295–338. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Osswald, H.L. BACE1 (β-secretase) inhibitors for the treatment of Alzheimer’s disease. Chem. Soc. Rev. 2014, 43, 6765–6813. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Cárdenas, E.L.; Osswald, H.L. The design, development, and evaluation of BACE1 inhibitors for the treatment of Alzheimer’s disease. In Topics in Medicinal Chemistry; Wolfe, M.S., Ed.; Springer International Publishing: Berlin, Germany, 2017; Volume 24, pp. 27–86. [Google Scholar]
- Calugia, L.; Lencia, E.; Innocenti, R.; Trabocchi, A. Synthesis of morpholine derivatives using the Castagnoli-Cushman reaction as BACE1 inhibitors: Unexpected binding activity of cyclic thioamides. Bioorg. Med. Chem. Lett. 2020, 30, 127211–127214. [Google Scholar] [CrossRef]
- Pettus, L.H.; Bourbeau, M.P.; Bradley, J.; Bartberger, M.D.; Chen, K.; Hickman, D.; Johnson, M.; Liu, Q.; Manning, J.R.; Nanez, A.; et al. Discovery of AM-6494: A Potent and Orally Efficacious β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) Inhibitor with in Vivo Selectivity over BACE2. J. Med. Chem. 2020, 63, 2263–2281. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, A.D.; Kondekar, N.B.; Hung, P.-Y.; Hsieh, C.-E.; Yang, C.-R.; Chen, G.S.; Cher, J.-W. 4-Substituted 2-amino-3,4-dihydroquinazolines with a 3-hairpin turn side chain as novel inhibitors of BACE-1. Bioorg. Chem. 2020, 95, 103135–103149. [Google Scholar] [CrossRef] [PubMed]
- Iraji, A.; Khoshneviszadeh, M.; Firuzi, O.; Khoshneviszadeh, M.; Edraki, N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg. Chem. 2020, 97, 103649–103678. [Google Scholar] [CrossRef] [PubMed]
- Finder, V.H.J. Alzheimer’s disease: A general introduction and pathomechanism. Alzheimer’s Dis. 2010, 22, 5–19. [Google Scholar] [CrossRef] [PubMed]
- Moussa-Pacha, N.M.; Abdin, S.N.; Omar, H.A.; Alniss, H.; Al Tel, T.H. BACE1 inhibitors: Current Status and future directions in treating Alzheimer’s disease. Med. Res. Rev. 2020, 40, 339–384. [Google Scholar] [CrossRef]
- Panza, F.; Lozupone, M.; Watling, M.; Imbimbo, B.P. Do BACE inhibitor failures in Alzheimer patients challenge the amyloid hypothesis of the disease? Expert Rev. Neurother. 2019, 19, 599–602. [Google Scholar] [CrossRef]
- Maia, M.A.; Sousa, E. BACE-1 and γ-Secretase as Therapeutic Targets for Alzheimer’s Disease. Pharmaceuticals 2019, 12, 41. [Google Scholar] [CrossRef]
- Felluga, F.; Benedetti, F.; Berti, F.; Drioli, S.; Regini, G. Efficient Biginelli Synthesis of 2-Aminopyrimidines under Microwave Irradiation. Synlett 2018, 29, 1047–1054. [Google Scholar] [CrossRef]
- Nüchter, M.; Ondruschka, B. Tools for microwave-assisted parallel syntheses and combinatorial chemistry. Mol. Divers. 2003, 7, 253–264. [Google Scholar] [CrossRef]
- Wipf, P.; Cunningham, A. A solid phase protocol of the Biginelli dihydropyrimidine synthesis suitable for combinatorial chemistry. Tetrahedron Lett. 1995, 36, 7819–7822. [Google Scholar] [CrossRef]
- Kappe, C.O. Synthesis and reactions of Biginelli compounds. Part 17. Highly versatile solid phase synthesis of biofunctional 4-aryl-3,4-dihydropyrimidines using resin-bound isothiourea building blocks and multidirectional resin cleavage. Bioorg. Med. Chem. Lett. 2000, 10, 49–51. [Google Scholar] [CrossRef]
- Gomes, C.; Vinagreiro, C.S.; Damas, L.; Aquino, G.; Quaresma, J.; Chaves, C.; Pimenta, J.; Campos, J.; Pereira, M.; Pineiro, M. Advanced Mechanochemistry Device for Sustainable Synthetic Processes. ACS Omega 2020, 5, 10868–10877. [Google Scholar] [CrossRef] [PubMed]
- Shaabani, A.; Bazgir, A.; Teimouri, F. Ammonium chloride-catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Tetrahedron Lett. 2003, 44, 857–859. [Google Scholar] [CrossRef]
- Niu, Y.; Gao, H.; Xu, F.; Wang, C.; Liu, P.; Yang, G.; Sun, Q.; Xu, P. Synthesis, in vitro biological evaluation and molecular docking studies of benzimidamides as potential BACE1 inhibitors. Chem. Biol. Drug Des. 2012, 80, 775–780. [Google Scholar] [CrossRef]
- Chiummiento, L.; Funicello, M.; Lupattelli, P.; Tramutola, F.; Berti, F. Synthesis and biological evaluation of novel small non-peptidic HIV-1 PIs: The benzothiophene ring as an effective moiety. Bioorg. Med. Chem. Lett. 2012, 22, 2948–2950. [Google Scholar] [CrossRef]
- Vanden Eynde, J.J.; Hecq, N.; Kataeva, O.; Kappe, C.O. Microwave-mediated regioselective synthesis of novel pyrimido[1,2-a]pyrimidines under solvent-free conditions. Tetrahedron 2001, 57, 1785–1791. [Google Scholar] [CrossRef]
- Ahmad, M.J.; Hassan, S.F.; Nisa, R.U.; Ayub, K.; Nadeem, M.S.; Nazir, S.; Ansari, F.L.; Qureshi, N.A.; Rashid, U. Synthesis, in vitro potential and computational studies on 2-amino-1, 4-dihydropyrimidines as multitarget antibacterial ligands. Med. Chem. Res. 2016, 25, 1877–1894. [Google Scholar] [CrossRef]
- Ahmeda, B.; Khan, R.A.; Habibullah; Keshari, M. An improved synthesis of Biginelli-type compounds via phase-transfer catalysis. Tetrahedron Lett. 2009, 50, 2889–2892. [Google Scholar] [CrossRef]
- Oehlrich, D.; Prokopcova, H.; Gijsen, J.M. The evolution of amidine-based brain penetrant BACE1 inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 2033–2045. [Google Scholar] [CrossRef]
- Rankovic, Z. CNS Drug Design: Balancing Physicochemical Properties for Optimal Brain Exposure. J. Med. Chem. 2015, 58, 2584–2608. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Baxter, E.W.; Conway, A.K.; Kennis, L.; Bischoff, F.; Mercken, M.H.; De Winter, H.L.; Reynolds, C.H.; Tounge, B.A.; Luo, C.; Scott, M.K.; et al. 2-Amino-3,4-dihydroquinazolines as Inhibitors of BACE-1 (-Site APP Cleaving Enzyme): Use of Structure Based Design to Convert a Micromolar Hit into a Nanomolar Lead. J. Med. Chem. 2007, 50, 4261–4264. [Google Scholar] [CrossRef]
- Hua, K.M.; Tran, P.H.; Le, T.N. An efficient and recyclable L-proline triflate ionic liquid catalyst for one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via the multi-component Biginelli reaction. Arkivoc 2019, 6, 406–415. [Google Scholar] [CrossRef]
- Khorshidi, A.; Tabatabaeian, K.; Azizi, H.; Aghaei-Hashjin, M.; Abbaspour-Gilandeh, E. Efficient one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by a new heterogeneous catalyst based on Co-functionalized Na+-montmorillonite. RSC Adv. 2017, 7, 17732–17740. [Google Scholar] [CrossRef]
- Crespo, A.; El Maatougui, A.; Biagini, P.; Azuaje, J.; Coelho, A.; Brea, J.; Loza, M.I.; Cadavid, M.I.; García-Mera, X.; Gutierrez de Teran, H.; et al. Discovery of 3,4-Dihydropyrimidin-2(1H)-ones as a novel class of potent and selective A2B adenosine receptor antagonists. ACS Med. Chem. Lett. 2013, 4, 1031–1036. [Google Scholar] [CrossRef]
- Pasunooti, K.K.; Chai, H.; Jensen, C.N.; Gorityala, B.K.; Wang, S.; Liu, X.W. A Microwave-assisted, Copper-Catalyzed Three-Component Synthesis of Dihydropyrimidinones under Mild Conditions. Tetrahedron Lett. 2011, 52, 80–84. [Google Scholar] [CrossRef]
- Gadkari, Y.U.; Hatvate, N.T.; Takale, B.S.; Telvekar, V.N. Concentrated solar radiation as a renewable heat source for a preparative-scale and solvent-free Biginelli reaction. New J. Chem. 2020, 44, 8167–8170. [Google Scholar] [CrossRef]
- Fu, L.-H.; Xie, Z.-B.; Lan, J.; Li, H.-X.; Liu, L.-S.; Le, Z.-G. Biginelli reaction of aliphatic aldehydes catalyzed by α-chymotrypsin: One-pot biocatalytic synthesis of dihydropyrimidinones. Heterocycles 2018, 96, 1808–1820. [Google Scholar] [CrossRef]
- Couto, I.; Tellitu, I.; Domínguez, E. Searching for a direct preparation of dihydropyrimidine-5-carboxamides under Biginelli reaction conditions. Arkivoc 2011, 2, 115–126. [Google Scholar] [CrossRef]
- Soumyanarayanan, U.; Bhat, V.G.; Kar, S.S.; Mathew, J.A. Monastrol mimic Biginelli dihydropyrimidinone derivatives: Synthesis, cytotoxicity screening against HepG2 and HeLa cell lines and molecular modeling study. Org. Med. Chem. Lett. 2012, 2, 23. [Google Scholar] [CrossRef]
- Roßbach, J.; Baumeister, J.; Harms, K.; Koert, U. Regio- and Diastereoselective Crotylboration of vic-Tricarbonyl Compounds. Eur. J. Org. Chem. 2013, 6, 662–665. [Google Scholar] [CrossRef]
- Desai, B.; Dallinger, D.; Kappe, C.O. Microwave-assisted solution phase synthesis of dihydropyrimidine C5 amides and esters. Tetrahedron 2006, 62, 4651–4664. [Google Scholar] [CrossRef]
- Stachel, S.J.; Coburn, C.A.; Steele, T.G.; Jones, K.G.; Loutzenhiser, E.F.; Gregro, A.R.; Rajapakse, H.A.; Lai, M.-T.; Crouthamel, M.-C.; Xu, M.; et al. Structure-Based Design of Potent and Selective Cell-Permeable Inhibitors of Human β-Secretase (BACE-1). J. Med. Chem. 2004, 47, 6447–6450. [Google Scholar] [CrossRef] [PubMed]
- Harder, E.; Damm, W.; Maple, J.; Wu, C.; Reboul, M.; Xiang, J.Y.; Wang, L.; Lupyan, D.; Dahlgren, M.K.; Knight, J.L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2015, 12, 281–296. [Google Scholar] [CrossRef]
- Maestro. Schrödinger Release, 2016-4; Schrödinger, Inc.: New York, NY, USA, 2016. [Google Scholar]
- Chemicaliase. Available online: https://chemicalize.com/ (accessed on 30 June 2020).
- Daina, A.; Michielin, A.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Dihydropyrimidine | Yield (%) | IC50 (μM) | LogP2 | Dihydropyrimidine | Yield (%) | IC50 (μM) | LogP2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
1a | X=O | 82 | 2.8 ± 0.1 | 1.2 | 9a | X=O | 89 | 3.1 ± 0.4 | 2.2 | ||
1b | X=S | 85 | 1.5 ± 0.4 | 2.1 | 9b | X=S | 87 | 0.3 ± 0.1 | 3.1 | ||
1c | X=NH | 83 | 0.5 ± 0.1 | 1.5 | 9c | X=NH | 88 | 1.5 ± 0.4 | 2.5 | ||
(−0.8)3 | (0.1)3 | ||||||||||
2a | X=O | 83 | 0.32 ± 0.05 | 0.9 | 10a | X=O | 87 | 0.50 ± 0.05 | 2.2 | ||
2b | X=S | 87 | 0.85 ± 0.03 | 1.8 | 10b | X=S | 88 | 1.1 ± 0.1 | 3.1 | ||
2c | X=NH | 80 | 0.52 ± 0.11 | 1.1 | 10c | X=NH | 90 | 0.2 ± 0.1 | 2.5 | ||
(−1.2)3 | (0.2)3 | ||||||||||
11a | X=O | 73 | 71.3 ± 1.2 | 2.1 | |||||||
3a | X=O | 70 | 1.7 ± 0.4 | 1.4 | |||||||
3b | X=S | 68 | 0.24 ± 0.05 | 2.3 | |||||||
3c | X=NH | 70 | 0.30 ± 0.15 | 1.6 | |||||||
(−0.6)3 | |||||||||||
4a | X=O | 81 | 0.6 ± 0.3 | 2.1 | 12a | X=O | 85 | 1.35 ± 0.10 | 2.3 | ||
12b | X=S | 73 | 0.7 ± 0.1 | 3.1 | |||||||
5a | X=O | 78 | 0.65 ± 0.03 | 0.8 | 13a | X=O | 50 | 2.3 ± 0.2 | 1.3 | ||
6a | X=O | 58 | 3.2 ± 0.3 | 1.0 | 14a | X=O | 47 | 1.6 ± 0.1 | −0.3 | ||
7a | X=O | 61 | 2.2 ± 0.2 | 1.2 | 15a | X=O | 60 | 1.6 ± 0.1 | −0.1 | ||
8a | X=O | 50 | 1.2 ± 0.4 | 1.3 | 16a | X=O | 454 | 34.0 ± 8.0 | −2.93 | ||
16b | X=S | 804 | 1.2 ± 0.3 | −1.93 | |||||||
16c | X=NH | 475 | 0.7 ± 0.2 | −0.91 |
Inhibitor | Experimental IC50 1 (nM) | Rel ΔEb 2 (Kcal mol−1) |
---|---|---|
(R)-10c | 200 | 0 |
(S)-10c | 5.2 | |
(R)-9c | 150 | 5.6 |
(R)-1c | 500 | 2.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bais, J.; Benedetti, F.; Berti, F.; Cerminara, I.; Drioli, S.; Funicello, M.; Regini, G.; Vidali, M.; Felluga, F. One Pot Synthesis of Micromolar BACE-1 Inhibitors Based on the Dihydropyrimidinone Scaffold and Their Thia and Imino Analogues. Molecules 2020, 25, 4152. https://doi.org/10.3390/molecules25184152
Bais J, Benedetti F, Berti F, Cerminara I, Drioli S, Funicello M, Regini G, Vidali M, Felluga F. One Pot Synthesis of Micromolar BACE-1 Inhibitors Based on the Dihydropyrimidinone Scaffold and Their Thia and Imino Analogues. Molecules. 2020; 25(18):4152. https://doi.org/10.3390/molecules25184152
Chicago/Turabian StyleBais, Jessica, Fabio Benedetti, Federico Berti, Iole Cerminara, Sara Drioli, Maria Funicello, Giorgia Regini, Mattia Vidali, and Fulvia Felluga. 2020. "One Pot Synthesis of Micromolar BACE-1 Inhibitors Based on the Dihydropyrimidinone Scaffold and Their Thia and Imino Analogues" Molecules 25, no. 18: 4152. https://doi.org/10.3390/molecules25184152
APA StyleBais, J., Benedetti, F., Berti, F., Cerminara, I., Drioli, S., Funicello, M., Regini, G., Vidali, M., & Felluga, F. (2020). One Pot Synthesis of Micromolar BACE-1 Inhibitors Based on the Dihydropyrimidinone Scaffold and Their Thia and Imino Analogues. Molecules, 25(18), 4152. https://doi.org/10.3390/molecules25184152