Phytochemical Investigation and Anti-Inflammatory Activity of the Leaves of Machilus japonica var. kusanoi
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. General Experiment Procedures
4.2. Plant Material
4.3. Extraction and Isolation
4.3.1. Machinolide A (1)
4.3.2. Machinolide B (2)
4.3.3. Machinolide C (3)
4.3.4. Machinolide D (4)
4.3.5. Machinolide E (5)
4.3.6. Machinolide F (6)
4.4. X-Ray Crystallographic Data for Machinolide A (1), Machinolide B (2), and Machinolide C (3)
4.5. Preparation of (S)-MTPA and (R)-MTPA Esters of 4a, 4b, 5a, 5b, 6a, and 6b from 4, 5, and 6
4.6. Superoxide Anion and Elastase Release Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chiang, C.-C.; Cheng, W.-J.; Korinek, M.; Lin, C.-Y.; Hwang, T.-L. Neutrophils in Psoriasis. Front. Immunol. 2019, 10, 2376. [Google Scholar] [CrossRef]
- Hwang, T.-L.; Su, Y.-C.; Chang, H.-L.; Leu, Y.-L.; Chung, P.-J.; Kuo, L.-M.; Chang, Y.-J. Suppression of superoxide anion and elastase release by C18 unsaturated fatty acids in human neutrophils. J. Lipid Res. 2009, 50, 1395–1408. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, B.; Horwitz, M.; Jenne, D.E.; Gauthier, F. Neutrophil Elastase, Proteinase 3, and Cathepsin G as Therapeutic Targets in Human Diseases. Pharmacol. Rev. 2010, 62, 726–759. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-S.; Chen, I.-S. Chemical constituents and bioactivity of Formosan lauraceous plants. J. Food Drug Anal. 2016, 24, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.C. Lauraceae in Flora of Taiwanm, 2nd ed.; Editorial Committee of the Flora of Taiwan: Taipei, Taiwan, 1996; Volume 2, pp. 1433–1499. [Google Scholar]
- Masao, T.; Yang, T.H.; Teh, L.S. Studies on the alkaloids of Formosan Lauraceous plants. I. Alkaloids of Machilus kusanoi Hayata. (1). The isolation of L-(-)-N-norarmepavine. Yakugaku Zasshi 1963, 83, 15–18. [Google Scholar] [CrossRef][Green Version]
- Teh, L.S. Studies on the alkaloids of Formosan Louraceous plants. II. Alkaloids of Machilus Kusanoi Hayata. (2). The isolation of dl-coclaurine. Yakugaku Zasshi 1963, 83, 19–21. [Google Scholar] [CrossRef]
- Lee, S.-S.; Lin, Y.-S.; Chen, C.-K. Three Adducts of Butenolide and Apigenin Glycoside from the Leaves of Machilus Japonica. J. Nat. Prod. 2009, 72, 1249–1252. [Google Scholar] [CrossRef]
- Ho, C.-L.; Hsu, K.-P.; Tseng, Y.-H.; Wang, E.I.-C.; Liao, P.-C.; Chou, J.-C.; Lin, C.-N.; Su, Y.-C. Composition and antimicrobial activities of the leaf essential oil of Machilus kusanoi from Taiwan. Nat. Prod. Commun. 2011, 6. [Google Scholar] [CrossRef]
- Du, Y.; Abedi, A.K.; Valenciano, A.L.; Fernaández-Murga, M.L.; Cassera, M.B.; Rasamison, V.E.; Applequist, W.L.; Miller, J.S.; Kingston, D.G.I. Isolation of the New Antiplasmodial Butanolide, Malleastrumolide A, from Malleastrum sp. (Meliaceae) from Madagascar. Chem. Biodivers. 2017, 14, e1700331. [Google Scholar] [CrossRef]
- Lorenzo, M.; Brito, I.; Cueto, M.; D’Croz, L.; Darias, J. 13C NMR-Based Empirical Rules to Determine the Configuration of Fatty Acid Butanolides. Novel γ-Dilactones from Pterogorgia spp. Org. Lett. 2006, 8, 5001–5004. [Google Scholar] [CrossRef]
- Hoye, T.R.; Jeffrey, C.S.; Shao, F. Mosher ester analysis for the determination of absolute configuration of stereogenic (chiral) carbinol carbons. Nat. Protoc. 2007, 2, 2451–2458. [Google Scholar] [CrossRef]
- Pardede, A.; Adfa, M.; Kusnanda, A.J.; Ninomiya, M.; Koketsu, M. Flavonoid rutinosides from Cinnamomum parthenoxylon leaves and their hepatoprotective and antioxidant activity. Med. Chem. Res. 2017, 26, 2074–2079. [Google Scholar] [CrossRef]
- Chang, C.-W.; Chang, H.-S.; Cheng, M.-J.; Peng, C.-F.; Chen, I.-S. Identification of Five New Minor Constituents from the Whole Plant of Amischotolype hispida. Helvetica Chim. Acta 2015, 98, 347–358. [Google Scholar] [CrossRef]
- Liu, C.-M.; Kao, C.-L.; Wu, H.-M.; Li, W.-J.; Huang, C.-T.; Li, H.-T.; Chen, C.-Y. Antioxidant and Anticancer Aporphine Alkaloids from the Leaves of Nelumbo nucifera Gaertn. cv. Rosa-plena. Molecules 2014, 19, 17829–17838. [Google Scholar] [CrossRef]
- Wu, M.-D.; Cheng, M.-J.; Lin, R.-J.; Chan, H.-Y.; Hsieh, S.-Y.; Chang, H.-S.; Lin, C.-L.; Chen, J.-J. Chemical Constituents of the Fungus Biscogniauxia cylindrospora. Chem. Nat. Compd. 2019, 55, 924–926. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Geng, Z.; Guo, S.; Cao, J.; Zhang, Z.; Pang, X.; Chen, Z.; Du, S.S.; Deng, Z. Antifeedant Activities of Lignans from Stem Bark of Zanthoxylum armatum DC. against Tribolium castaneum. Molecules 2018, 23, 617. [Google Scholar] [CrossRef]
- Holzbach, J.C.; Lopes, L.M.X. Aristolactams and Alkamides of Aristolochia gigantea. Molecules 2010, 15, 9462–9472. [Google Scholar] [CrossRef]
- Lee, S.Y.; Woo, K.W.; Kim, C.S.; Lee, D.U.; Lee, K.R. New Lignans from the Aerial Parts of Rudbeckia laciniata. Helvetica Chim. Acta 2013, 96, 320–325. [Google Scholar] [CrossRef]
- Sribuhom, T.; Sriphana, U.; Thongsri, Y.; Yenjai, C. Chemical constituents from the stems of Alyxia schlechteri. Phytochem. Lett. 2015, 11, 80–84. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, K.H.; Lee, I.K.; Lee, S.Y.; Choi, S.U.; Lee, J.H.; Lee, K.R. Phenolic constituents of Acorus gramineus. Arch. Pharmacal Res. 2011, 34, 1289–1296. [Google Scholar] [CrossRef]
- Rye, C.E.; Barker, D. Asymmetric Synthesis of (+)-Galbelgin, (−)-Kadangustin J, (−)-Cyclogalgravin and (−)-Pycnanthulignenes A and B, Three Structurally Distinct Lignan Classes, Using a Common Chiral Precursor. J. Org. Chem. 2011, 76, 6636–6648. [Google Scholar] [CrossRef] [PubMed]
- You, C.-X.; Yang, K.; Wang, C.-F.; Zhang, W.; Wang, Y.; Han, J.; Fan, L.; Du, S.S.; Geng, Z.; Deng, Z. Cytotoxic Compounds Isolated from Murraya tetramera Huang. Molecules 2014, 19, 13225–13234. [Google Scholar] [CrossRef] [PubMed]
- Collado, I.G.; Hanson, J.R.; Macías-Sánchez, A.J.; Mobbs, D. The Biotransformation of Some Clovanes by Botrytis cinerea. J. Nat. Prod. 1998, 61, 1348–1351. [Google Scholar] [CrossRef] [PubMed]
- Ashour, A.; Amer, M.; Marzouk, A.M.; Shimizu, K.; Kondo, R.; El-Sharkawy, S. Corncobs as a Potential Source of Functional Chemicals. Molecules 2013, 18, 13823–13830. [Google Scholar] [CrossRef]
- Lopes, N.P.; Silva, D.H.S.; Kato, M.J.; Yoshida, M. Butanolides as a common feature of Iryanthera lancifolia and Virola surinamensis. Phytochemistry 1998, 49, 1405–1410. [Google Scholar] [CrossRef]
- Franco, C.M.M.; Borde, U.P.; Vijayakumar, E.K.S.; Chatterjee, S.; Blumbach, J.; Ganguli, B.N. Butalactin, a new butanolide antibiotic. Taxonomy, fermentation, isolation and biological activity. J. Antibiot. 1991, 44, 225–231. [Google Scholar] [CrossRef]
- Nihira, T.; Shimizu, Y.; Kim, H.S.; Yamada, Y. Structure-activity relationships of virginiae butanolide C, an inducer of virginiamycin production in Streptomyces virginiae. J. Antibiot. 1988, 41, 1828–1837. [Google Scholar] [CrossRef]
- Kim, H.S.; Tada, H.; Nihira, T.; Yamada, Y. Purification and characterization of virginiae butanolide C-binding protein, a possible pleiotropic signal-transducer in Streptomyces virginiae. J. Antibiot. 1990, 43, 692–706. [Google Scholar] [CrossRef]
- Hoshino, S.; Wakimoto, T.; Onaka, H.; Abe, I. Chojalactones A–C, Cytotoxic Butanolides Isolated from Streptomyces sp. Cultivated with Mycolic Acid Containing Bacterium. Org. Lett. 2015, 17, 1501–1504. [Google Scholar] [CrossRef]
- Li, F.; Chen, D.; Lu, S.; Yang, G.; Zhang, X.; Chen, Z.; Fan, S.; Wu, S.-H.; He, J. Anti-Influenza A Viral Butenolide from Streptomyces sp. Smu03 Inhabiting the Intestine of Elephas maximus. Viruses 2018, 10, 356. [Google Scholar] [CrossRef]
- Cheng, M.-J.; Tsai, I.-L.; Lee, S.-J.; Jayaprakasam, B.; Chen, I.-S. Steryl epoxide, secobutanolide and butanolides from the stem wood of Machilus zuihoensis. Phytochemical 2005, 66, 1180–1185. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.-T.; Lin, S.; Gan, M.; Liu, B.; Zi, J.; Song, W.-X.; Zhang, Y.-L.; Fan, X.-N.; Liu, Y.; Tan, W.; et al. Butanolide derivatives from the bark of Machilus yaoshansis. J. Asian Nat. Prod. Res. 2012, 14, 713–720. [Google Scholar] [CrossRef]
- Kim, W.; Lyu, H.-N.; Kwon, H.-S.; Kim, Y.S.; Lee, K.-H.; Kim, -Y.; Chakraborty, G.; Choi, K.Y.; Yoon, H.S.; Kim, K.-T. Obtusilactone B from Machilus Thunbergii Targets Barrier-to-Autointegration Factor to Treat Cancer. Mol. Pharmacol. 2012, 83, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-P.; Huang, G.-J.; Huang, H.-C.; Chen, Y.-C.; Chang, C.-I.; Wang, S.-Y.; Chen, I.-S.; Tseng, Y.-H.; Chien, S.-C.; Kuo, Y.-H. A New Butanolide Compound from the Aerial Part of Lindera akoensis with Anti-inflammatory Activity. Molecules 2012, 17, 6585–6592. [Google Scholar] [CrossRef] [PubMed]
- Tsai, I.-L.; Hung, C.-H.; Duh, C.-Y.; Chen, I.-S. Cytotoxic Butanolides and Secobutanolides from the Stem Wood of Formosan Lindera communis. Planta Medica 2002, 68, 142–145. [Google Scholar] [CrossRef]
- Cheng, M.-J.; Wang, T.-A.; Lee, S.-J.; Chen, I.-S. A new butanolide and a new secobutanolide from Litsea lii var. nunkao-tahangensis. Nat. Prod. Res. 2010, 24, 647–656. [Google Scholar] [CrossRef]
- Shen, K.-H.; Lin, E.-S.; Kuo, P.-L.; Chen, C.-Y.; Hsu, Y.-L. Isolinderanolide B, a Butanolide Extracted From the Stems of Cinnamomum subavenium, Inhibits Proliferation of T24 Human Bladder Cancer Cells by Blocking Cell Cycle Progression and Inducing Apoptosis. Integr. Cancer Ther. 2011, 10, 350–358. [Google Scholar] [CrossRef]
- Yang, S.-Y.; Wang, H.-M.; Wu, T.-W.; Chen, Y.-J.; Shieh, J.-J.; Lin, J.-H.; Ho, T.-F.; Luo, R.-J.; Chen, C.-Y.; Chang, C.-C. Subamolide B Isolated from Medicinal Plant Cinnamomum subavenium Induces Cytotoxicity in Human Cutaneous Squamous Cell Carcinoma Cells through Mitochondrial and CHOP-Dependent Cell Death Pathways. Evid. Based Complement Alternat. Med. 2013, 2013, 1–13. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Hsu, Y.-L.; Chen, Y.-Y.; Hung, J.-Y.; Huang, M.-S.; Kuo, P.-L. Isokotomolide A, a new butanolide extracted from the leaves of Cinnamomum kotoense, arrests cell cycle progression and induces apoptosis through the induction of p53/p21 and the initiation of mitochondrial system in human non-small cell lung cancer A549 cells. Eur. J. Pharmacol. 2007, 574, 94–102. [Google Scholar] [CrossRef]
- Le Dang, Q.; Kwon, H.R.; Choi, Y.H.; Choi, G.J.; Jang, K.S.; Park, M.S.; Lim, C.H.; Ngoc, L.H.; Kim, J.-C. Nematicidal activity against Bursaphelenchus xylophilus of isoobtusilactone A isolated from Persea americana. Nematology 2010, 12, 247–253. [Google Scholar] [CrossRef]
- Kuo, P.; Hung, H.-Y.; Nian, C.-W.; Hwang, T.-L.; Cheng, J.-C.; Kuo, D.-H.; Lee, E.-J.; Tai, S.-H.; Wu, T.-S. Chemical Constituents and Anti-inflammatory Principles from the Fruits of Forsythia suspensa. J. Nat. Prod. 2017, 80, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.-L.; Li, G.-L.; Lan, Y.-H.; Chia, Y.-C.; Hsieh, P.-W.; Wu, Y.-H.; Wu, Y.-C. Potent inhibition of superoxide anion production in activated human neutrophils by isopedicin, a bioactive component of the Chinese medicinal herb Fissistigma oldhamii. Free. Radic. Boil. Med. 2009, 46, 520–528. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of all compounds are available from the authors. |
Position | 1 a | 2 b | 3 b | |||
---|---|---|---|---|---|---|
δH (m, J in Hz) | δC | δH (m, J in Hz) | δC | δH (m, J in Hz) | δC | |
1 | 177.5 | 177.4 | 177.4 | |||
2 | 2.57, dt (9.8, 4.8) | 47.6 | 2.57, dt (10.2, 4.6) | 47.6 | 2.57, dt (8.7, 4.8) | 47.6 |
3 | 4.31, dd (4.8, 3.2) | 71.2 | 4.31, dd (4.6, 3.2) | 71.3 | 4.31, dd (4.8, 3.2) | 71.3 |
4 | 4.45, qd, (6.6, 3.2) | 78.8 | 4.45, qd (6.6, 3.2) | 78.7 | 4.45, qd (6.6, 3.2) | 78.7 |
5 | 1.43, d (6.6) | 13.7 | 1.44, d (6.6) | 13.7 | 1.44, d (6.6) | 13.7 |
6 | 1.82, m 1.66, m | 23.1 | 1.84, m 1.67, m | 23.2 | 1.84, m 1.65, m | 23.3 |
7 | 1.26~1.47, m | 27.5 | 1.32~1.51, m | 27.6 | 1.30~1.49, m | 27.5 |
8 | 1.26~1.47, m | 29.4 | 1.32~1.51, m | 29.4 | 1.30~1.49, m | 29.3 c |
9 | 1.26~1.47, m | 25.1 | 1.32~1.51, m | 25.1 c | 1.30~1.49, m | 29.4 c |
10 | 1.26~1.47, m | 37.16 c | 1.32~1.51, m | 37.2 d | 1.30~1.49, m | 25.5 |
11 | 3.59, m | 71.9 | 3.59, m | 71.9 | 1.30~1.49, m | 37.4 |
12 | 1.26~1.47, m | 37.19 c | 1.32~1.51, m | 37.4 d | 3.60, m | 71.8 |
13 | 1.26~1.47, m | 27.8 | 1.32~1.51, m | 25.2 c | 1.30~1.49, m | 39.7 |
14 | 1.26~1.47, m | 22.7 | 1.37, m | 28.9 | 1.30~1.49, m | 18.8 |
15 | 0.91, t (7.0) | 14.0 | 2.07, m | 33.7 | 0.93, t (7.2) | 14.1 |
16 | 5.81, ddt (17.1, 10.2, 6.6) | 138.9 | ||||
17 | 5.00, ddt (17.1, 3.3, 1.5) 4.94, ddt (10.2, 3.3, 1.5) | 114.4 |
Position | 4 a | 5 b | 6 b | |||
---|---|---|---|---|---|---|
δH (m, J in Hz) | δC | δH (m, J in Hz) | δC | δH (m, J in Hz) | δC | |
1 | 177.4 | 177.3 | 177.7 | |||
2 | 2.55, dt (9.9, 5.0) | 47.5 | 2.56, dt (9.8, 4.5) | 47.5 | 2.54, dt (10.0, 5.0) | 47.5 |
3 | 4.31, dd (5.0, 3.0) | 71.3 | 4.30, br t (4.5) | 71.3 | 4.30, dd (5.0, 3.1) | 71.1 |
4 | 4.45, qd (6.5, 3.0) | 78.8 | 4.54, qd (6.4, 2.9) | 78.7 | 4.44, qd (6.0, 3.1) | 79.0 |
5 | 1.44, d (6.5) | 13.7 | 1.44, d (6.4) | 13.7 | 1.42, d (6.0) | 13.7 |
6 | 1.80, m 1.67, m | 23.1 | 1.84, m 1.67, m | 23.1 | 1.79, m 1.64, m | 23.1 |
7 | 1.35~1.55, m | 27.4 | 1.33~1.58, m | 27.4 | 1.24~1.52, m | 27.3 |
8 | 1.35~1.55, m | 29.0 | 1.33~1.58, m | 29.0 | 1.24~1.52, m | 29.0 |
9 | 1.67, m | 23.2 | 1.67, m | 23.2 | 1.64, m | 23.2 |
10 | 2.40~2.54, m | 37.7 | 2.46, m | 37.7 | 2.46, m | 37.7 |
11 | 212.6 | 212.4 | 212.7 | |||
12 | 4.17, dd (7.5, 3.9) | 76.3 | 4.17, dd (7.2, 3.6) | 76.3 | 4.15, dd (7.4, 3.8) | 76.5 |
13 | 1.35~1.55, m | 35.9 | 1.84, m 1.33~1.58, m | 33.1 | 1.79, m 1.24~1.52, m | 33.7 |
14 | 1.35~1.55, m | 18.2 | 1.33~1.58, m | 24.0 | 1.24~1.52, m | 24.5 |
15 | 0.95, t (6.9) | 13.9 | 2.09, m | 33.3 | 1.24~1.52, m | 31.6 |
16 | 5.78, ddt (17.2, 10.4, 6.8) | 138.1 | 1.24~1.52, m | 22.5 | ||
17 | 5.03, m 4.98, m | 115.1 | 0.88, t (6.8) | 14.0 |
Compound | Superoxide Anion | Elastase Release |
---|---|---|
IC50 (μM) a | IC50 (μM) a | |
machinolide A (1) | >10 | >10 |
machinolide B (2) | >10 | >10 |
machinolide C (3) | >10 | >10 |
machinolide F (6) | >10 | >10 |
(+)-eudesmin (11) | 8.71 ± 0.74 | >10 |
(+)-methylpiperitol (12) | 2.23 ± 0.92 | >10 |
(+)-pinoresinol (13) | 6.81 ± 1.07 | >10 |
(+)-galbelgin (16) | 7.15 ± 2.26 | >10 |
LY294002 b | 2.17 ± 0.53 | 6.38 ± 1.72 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.-L.; Wu, H.-C.; Hwang, T.-L.; Lin, C.-H.; Yang, S.-S.; Chang, H.-S. Phytochemical Investigation and Anti-Inflammatory Activity of the Leaves of Machilus japonica var. kusanoi. Molecules 2020, 25, 4149. https://doi.org/10.3390/molecules25184149
Li S-L, Wu H-C, Hwang T-L, Lin C-H, Yang S-S, Chang H-S. Phytochemical Investigation and Anti-Inflammatory Activity of the Leaves of Machilus japonica var. kusanoi. Molecules. 2020; 25(18):4149. https://doi.org/10.3390/molecules25184149
Chicago/Turabian StyleLi, Shiou-Ling, Ho-Cheng Wu, Tsong-Long Hwang, Chu-Hung Lin, Shuen-Shin Yang, and Hsun-Shuo Chang. 2020. "Phytochemical Investigation and Anti-Inflammatory Activity of the Leaves of Machilus japonica var. kusanoi" Molecules 25, no. 18: 4149. https://doi.org/10.3390/molecules25184149
APA StyleLi, S.-L., Wu, H.-C., Hwang, T.-L., Lin, C.-H., Yang, S.-S., & Chang, H.-S. (2020). Phytochemical Investigation and Anti-Inflammatory Activity of the Leaves of Machilus japonica var. kusanoi. Molecules, 25(18), 4149. https://doi.org/10.3390/molecules25184149