Microwave-Assisted Synthesis of Fluorescent Pyrido[2,3-b]indolizines from Alkylpyridinium Salts and Enaminones
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of Salts 1a–c
3.3. General Procedure for the Synthesis of Enaminones 2
3.4. General Procedure for the Synthesis of Compounds 3a–r
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kappert, F.; Sreeramulu, S.; Jonker, H.R.A.; Richter, C.; Rogov, V.V.; Proschak, E.; Hargittay, B.; Saxena, K.; Schwalbe, H. Structural characterization of the interaction of the fibroblast growth factor receptor with a small molecule allosteric inhibitor. Chemistry 2018, 24, 7861–7865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Q.; Yang, H.; Zhu, T.; Yu, L.; Chen, J.; Gu, L.; Huang, Z.; An, L. Synthesis, cytotoxicity and structure-activity relationship of indolizinoquinolinedione derivatives as DNA topoisomerase IB catalytic inhibitors. Eur. J. Med. Chem. 2018, 152, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, E.H.; Kim, J.; Kim, S.H.; Kim, I. Biological evaluation of indolizine-chalcone hybrids as new anticancer agents. Eur. J. Med. Chem. 2018, 144, 435–443. [Google Scholar] [CrossRef]
- Tatipamula, V.B.; Kolli, M.K.; Lagu, S.B.; Paidi, K.R.; Rsddy, R.; Yejella, R.P. Novel indolizine derivatives lowers blood glucose levels in streptozotocin-induced diabetic rats: A histopathological approach. Pharm. Rep. 2019, 71, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.H.; Jung, Y.; Kim, S.H.; Kim, I. Synthesis, characterization and biological evaluation of anti-cancer indolizine derivatives via inhibiting β-catenin activity and activating p53. Bioorg. Med. Chem. Lett. 2016, 26, 110–113. [Google Scholar] [CrossRef]
- Sardaru, M.C.; Craciun, A.M.; Al Matarneh, C.M.; Sandu, I.A.; Amarandi, R.M.; Popovici, L.; Ciobanu, C.I.; Peptanariu, D.; Pinteala, M.; Mangalagiu, I.I.; et al. Cytotoxic substituted indolizines as new colchicine site tubulin polymerisation inhibitors. J. Enzym. Inhib. Med. Chem. 2020, 35, 1581–1595. [Google Scholar] [CrossRef]
- Albaladejo, M.J.; González-Soria, M.J.; Alonso, F. Metal-free remote-site C-H alkenylation: Regio- and diastereoselective synthesis of solvatochromic dyes. Green Chem. 2018, 20, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Gayton, J.; Autry, S.A.; Meador, W.; Parkin, S.R.; Hill, G.A.; Hammer, N.I.; Delcamp, J.H. Indolizine-Cyanine dyes: Near infrared emissive cyanine dyes with increased Stokes shifts. J. Org. Chem. 2019, 84, 687–697. [Google Scholar] [CrossRef]
- Cheema, H.; Baumann, A.; Loya, E.K.; Brogdon, P.; McNamara, L.E.; Carpenter, C.A.; Hammer, N.I.; Mathew, S.; Risko, C.; Delcamp, J.H. Near-Infrared-Absorbing indolizine-porphyrin push-pull dye for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2019, 11, 16474–16489. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, Y.; Tse, A.K.W.; Zhou, X.; Chen, Y.; Tse, Y.C.; Wong, K.M.C.; Ho, C.Y. Synthesis and study of Au(iii)-indolizine derivatives: Turn-on luminescence by photo-induced controlled release. Chem. Commun. 2019, 55, 4471–4474. [Google Scholar] [CrossRef]
- Lee, Y.; Cho, W.; Sung, J.; Kim, E.; Park, S.B. Monochromophoric design strategy for tetrazine-based colorful bioorthogonal probes with a single fluorescent core skeleton. J. Am. Chem. Soc. 2018, 140, 974–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, R.; Liu, A.; Shen, S.; Cao, X.; Li, F.; Ge, Y. An indolizine-rhodamine based FRET fluorescence sensor for highly sensitive and selective detection of Hg2+ in living cells. RSC Adv. 2017, 7, 40829–40833. [Google Scholar] [CrossRef] [Green Version]
- Bayazit, M.K.; Pålsson, L.O.; Coleman, K.S. Sensing properties of light-emitting single walled carbon nanotubes prepared via click chemistry of ylides bound to the nanotube surface. RSC Adv. 2015, 5, 36865–36873. [Google Scholar] [CrossRef] [Green Version]
- Airinei, A.; Tigoianu, R.; Danac, R.; Al Matarneh, C.M.; Isac, D.L. Steady state and time resolved fluorescence studies of new indolizine derivatives with phenanthroline skeleton. J. Lumin. 2018, 199, 6–12. [Google Scholar] [CrossRef]
- Kucukdisli, M.; Opatz, T. A modular synthesis of polysubstituted indolizines. Eur. J. Org. Chem. 2012, 2012, 4555–4564. [Google Scholar] [CrossRef]
- Cai, Q.; Zhu, Y.P.; Gao, Y.; Sun, J.J.; Wu, A.X. A direct method for the synthesis of indolizine derivatives from easily available aromatic ketones, pyridines, and acrylonitrile derivatives. Can. J. Chem. 2013, 91, 414–419. [Google Scholar] [CrossRef]
- Wang, W.; Han, J.; Sun, J.; Liu, Y. CuBr-Catalyzed aerobic decarboxylative cycloaddition for the synthesis of indolizines under solvent-free conditions. J. Org. Chem. 2017, 82, 2835–2842. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, X.; He, C.; Duan, C. Aminonaphthalimide-based imidazolium podands for turn-on fluo. Org. Biomol. Chem. 2010, 8, 2873–3084. [Google Scholar] [CrossRef]
- Bonte, S.; Ghinea, I.O.; Dinica, R.; Baussanne, I.; Demeunynck, M. Investigation of the pyridinium ylide-alkyne cycloaddition as a fluorogenic coupling reaction. Molecules 2016, 21, 332. [Google Scholar] [CrossRef] [Green Version]
- Yavari, I.; Ghafouri, K.; Naeimabadi, M.; Halvagar, M.R. A synthesis of functionalized 2-Indolizin-3-yl-1,3-benzothiazoles from 1-(1,3-Benzothiazol-2-ylmethyl)pyridinium Iodide and Acetylenic Esters. Synlett 2018, 29, 243–245. [Google Scholar] [CrossRef]
- Yavari, I.; Sheykhahmadi, J.; Naeimabadi, M.; Halvagar, M.R. Iodine-mediated sp3 C–H functionalization of methyl ketones: A one-pot synthesis of functionalized indolizines via the 1,3-dipolar cycloaddition reaction between pyridinium ylides and ynones. Mol. Divers. 2017, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Douglas, T.; Pordea, A.; Dowden, J. Iron-Catalyzed indolizine synthesis from pyridines, diazo compounds, and alkynes. Org. Lett. 2017, 19, 6396–6399. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Zhang, M.; Yu, S.; Ju, K.; Wang, C.; He, X. New route synthesis of indolizines via 1,3-dipolar cycloaddition of pyridiniums and alkynes. Tetrahedron Lett. 2009, 50, 6981–6984. [Google Scholar] [CrossRef]
- Fu, Q.; Yan, C.G. Molecular diversity of cycloaddition reactions of the functionalized pyridinium salts with 3-phenacylideneoxindoles. Tetrahedron 2013, 69, 5841–5849. [Google Scholar] [CrossRef]
- Zheng, P.; Li, C.; Mou, C.; Pan, D.; Wu, S.; Xue, W.; Jin, Z.; Chi, Y.R. Efficient access to 2-Pyrones via carbene-catalyzed oxidative [3+3] reactions between enals and nitrogen Ylides. Asian J. Org. Chem. 2019, 8, 1067–1070. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Duan, W.D.; Chen, J.; Hu, Y. Base-Promoted cascade reactions of 3-(1-Alkynyl)chromones with pyridinium Ylides to Chromeno[2,3-D]azepine derivatives. J. Org. Chem. 2019, 84, 4467–4472. [Google Scholar] [CrossRef]
- Kucukdisli, M.; Opatz, T. Two-step synthesis of 2-aminoindolizines from 2-alkylpyridines. Eur. J. Org. Chem. 2014, 2014, 5836–5844. [Google Scholar] [CrossRef]
- Storozhenko, O.A.; Festa, A.A.; Ndoutoume, D.R.B.; Aksenov, A.V.; Varlamov, A.V.; Voskressensky, L.G. Mn-mediated sequential three-component domino Knoevenagel/cyclization/Michael addition/oxidative cyclization reaction towards annulated imidazo[1,2-a]pyridines. Beilstein J. Org. Chem. 2018, 14, 3078–3087. [Google Scholar] [CrossRef] [Green Version]
- Voskressensky, L.G.; Storozhenko, O.A.; Festa, A.A.; Novikov, R.A.; Varlamov, A.V. Synthesis of Chromenoimidazoles, annulated with an azaindole moiety, through a base-promoted domino reaction of cyano methyl quaternary salts. Synthesis 2017, 49, 2753–2760. [Google Scholar]
- Voskressensky, L.G.; Sokolova, E.A.; Festa, A.A.; Varlamov, A.V. A novel domino condensation-intramolecular nucleophilic cyclization approach towards annulated thiochromenes. Tetrahedron Lett. 2013, 54, 5172–5173. [Google Scholar] [CrossRef]
- Sokolova, E.A.; Festa, A.A.; Golantsov, N.E.; Lukonina, N.S.; Ioffe, I.N.; Varlamov, A.V.; Voskressensky, L.G. Highly fluorescent pyrido[2,3-b]indolizine-10-carbonitriles through pseudo three-component reactions of N-(Cyanomethyl)pyridinium salts. Eur. J. Org. Chem. 2019, 2019, 6770–6775. [Google Scholar] [CrossRef]
- Kro, R.; Mostafavi, M.; Lampre, I. Preferential solvation of coumarin 153. The role of hydrogen bonding. J. Phys. Chem. A 2002, 106, 1708–1713. [Google Scholar]
- Shen, Y.M.; Grampp, G.; Leesakul, N.; Hu, H.W.; Xu, J.H. Synthesis and emitting properties of the blue-light fluorophores indolizino[3,4,5-ab]isoindole derivatives. Eur. J. Org. Chem. 2007, 2007, 3718–3726. [Google Scholar] [CrossRef]
- Park, S.; Kwon, D.I.; Lee, J.; Kim, I. When indolizine meets quinoline: Diversity-oriented synthesis of new polyheterocycles and their optical properties. ACS Comb. Sci. 2015, 17, 459–469. [Google Scholar] [CrossRef]
- Singh, D.K.; Kim, S.; Lee, J.H.; Lee, N.K.; Kim, J.; Lee, J.; Kim, I. 6-(Hetero)arylindolizino[1,2-c]quinolines as highly fluorescent chemical space: Synthesis and photophysical properties. J. Heterocycl. Chem. 2020, 57, 3018–3028. [Google Scholar] [CrossRef]
- Sung, J.; Lee, Y.; Cha, J.H.; Park, S.B.; Kim, E. Development of fluorescent mitochondria probe based on 1,2-dihydropyrrolo[3,4-b]indolizine-3-one. Dyes Pigments 2017, 145, 461–468. [Google Scholar] [CrossRef]
- Al-Zaydi, K.M.; Borik, R.M. Microwave assisted condensation reactions of 2-aryl hydrazonopropanals with nucleophilic reagents and dimethyl acetylenedicarboxylate. Molecules 2007, 12, 2061–2079. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Not available. |
Entry a | Base | 1a: 2a: Base | Yield, % b |
---|---|---|---|
1 | NaOAc | 3: 1: 5 | 34 |
2 | 3: 1: 1 | 40 | |
3 | 3: 1: 0.5 | 46 | |
4 | 3: 1: 0.1 | 12 | |
5 | 1.5: 1: 0.5 | 50 | |
6 | 1: 1: 0.5 | 44 | |
7 | Et3N | 1.5: 1: 0.5 | 31 |
8 | DIPEA | 1.5: 1: 0.5 | 25 |
9 | NH4OAc | 1.5: 1: 0.5 | 34 |
10 | K2CO3 | 1.5: 1: 0.5 | 5 |
11 | Cs2CO3 | 1.5: 1: 0.5 | 21 |
12 c | NaOAc | 1.5: 1: 0.5 | 47 |
13 d | NaOAc | 1.5: 1: 0.5 | 33 |
14 e | NaOAc | 1.5: 1: 0.5 | 37 |
Compound | Abs [a] | ε [b] | Emission [a] | FQY [c] | Stokes Shift |
---|---|---|---|---|---|
[nm] | [(M cm)−1 (109)] | [nm] | [%] | [cm−1] | |
3a | 413 | 1.652 | 511 | 77 | 4643 |
3b | 404 | 1.616 | 505 | 82 | 4950 |
3c | 414 | 1.656 | 520 | 64 | 4923 |
3m | 418 | 1.672 | 519 | 57 | 4655 |
3n | 410 | 1.640 | 513 | 63 | 4897 |
3o | 420 | 1.680 | 528 | 55 | 4870 |
3p | 416 | 1.664 | 516 | 64 | 4658 |
3q | 409 | 1.636 | 512 | 77 | 4918 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolova, E.A.; Festa, A.A.; Subramani, K.; Rybakov, V.B.; Varlamov, A.V.; Voskressensky, L.G.; Van der Eycken, E.V. Microwave-Assisted Synthesis of Fluorescent Pyrido[2,3-b]indolizines from Alkylpyridinium Salts and Enaminones. Molecules 2020, 25, 4059. https://doi.org/10.3390/molecules25184059
Sokolova EA, Festa AA, Subramani K, Rybakov VB, Varlamov AV, Voskressensky LG, Van der Eycken EV. Microwave-Assisted Synthesis of Fluorescent Pyrido[2,3-b]indolizines from Alkylpyridinium Salts and Enaminones. Molecules. 2020; 25(18):4059. https://doi.org/10.3390/molecules25184059
Chicago/Turabian StyleSokolova, Ekaterina A., Alexey A. Festa, Karthikeyan Subramani, Victor B. Rybakov, Alexey V. Varlamov, Leonid G. Voskressensky, and Erik V. Van der Eycken. 2020. "Microwave-Assisted Synthesis of Fluorescent Pyrido[2,3-b]indolizines from Alkylpyridinium Salts and Enaminones" Molecules 25, no. 18: 4059. https://doi.org/10.3390/molecules25184059
APA StyleSokolova, E. A., Festa, A. A., Subramani, K., Rybakov, V. B., Varlamov, A. V., Voskressensky, L. G., & Van der Eycken, E. V. (2020). Microwave-Assisted Synthesis of Fluorescent Pyrido[2,3-b]indolizines from Alkylpyridinium Salts and Enaminones. Molecules, 25(18), 4059. https://doi.org/10.3390/molecules25184059