Computational Method for Quantitative Comparison of Activity Landscapes on the Basis of Image Data
Abstract
:1. Introduction
2. Results and Discussion
2.1. Activity Landscape Images
2.2. Image Similarity Analysis
2.3. Heatmaps and Grid Representations
2.4. Grid-Based Similarity Analysis
2.5. Activity Landscape Comparison
2.6. Conclusions
3. Methods
3.1. Three-Dimensional Activity Landscapes
3.2. Image Processing and Analysis
3.3. Grid Representation
3.4. Similarity Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stumpfe, D.; Bajorath, J. Methods for SAR Visualization. RSC Adv. 2012, 2, 369–378. [Google Scholar] [CrossRef]
- Medina-Franco, J.L.; Martinez-Mayorga, K.; Giulianotti, M.A.; Houghten, R.A.; Pinilla, C. Visualization of the Chemical Space in Drug Discovery. Curr. Comput.-Aided Drug Des. 2008, 4, 322–333. [Google Scholar] [CrossRef]
- Stumpfe, D.; Hu, Y.; Dimova, D.; Bajorath, J. Recent Progress in Understanding Activity Cliffs and their Utility in Medicinal Chemistry. J. Med. Chem. 2014, 57, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Monteagudo, M.; Medina-Franco, J.L.; Perez-Castillo, Y.; Nicolotti, O.; Cordeiro, M.N.D.; Borges, F. Activity Cliffs in Drug Discovery: Dr. Jekyll or Mr. Hyde? Drug Discov. Today 2014, 19, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, A.M.; Wawer, M.; Bajorath, J. Activity Landscape Representations for Structure-Activity Relationship Analysis. J. Med. Chem. 2010, 53, 8209–8223. [Google Scholar] [CrossRef]
- Medina-Franco, J.P.; Navarrete-Vázquez, G.; Méndez-Lucio, O. Activity and Property Landscape Modeling is at the Interface of Chemoinformatics and Medicinal Chemistry. Future Med. Chem. 2015, 7, 1197–1211. [Google Scholar] [CrossRef] [PubMed]
- Vogt, M. Progress with Modeling Activity Landscapes in Drug Design. Expert Opin. Drug Discov. 2018, 13, 605–615. [Google Scholar] [CrossRef]
- Shanmugasundaram, V.; Maggiora, G.M. Characterizing Property and Activity Landscapes Using an Information-Theoretic Approach. In Proceedings of the 222nd American Chemical Society National Meeting, Division of Chemical Information, Chicago, IL, USA, 26–30 August 2001; American Chemical Society: Washington, DC, USA,, 2001. Abstract no. 77. [Google Scholar]
- Yongye, A.B.; Byler, K.; Santos, R.; Martínez-Mayorga, K.; Maggiora, G.M.; Medina-Franco, J.L. Consensus Models of Activity Landscapes with Multiple Chemical, Conformer, and Property Representations. J. Chem. Inf. Model. 2011, 51, 2427–2439. [Google Scholar] [CrossRef]
- Agrafiotis, D.; Shemanarev, M.; Connolly, P.; Farnum, M.; Lobanov, V. SAR Maps: A New SAR Visualization Technique for Medicinal Chemists. J. Med. Chem. 2007, 50, 5926–5937. [Google Scholar] [CrossRef]
- Iyer, P.; Dimova, D.; Vogt, M.; Bajorath, J. Navigating High-Dimensional Activity Landscapes: Design and Application of the Ligand-Target Differentiation Map. J. Chem. Inf. Model. 2012, 52, 1962–1969. [Google Scholar] [CrossRef]
- Wawer, M.; Peltason, L.; Weskamp, N.; Teckentrup, A.; Bajorath, J. Structure−Activity Relationship Anatomy by Network-like Similarity Graphs and Local Structure−Activity Relationship Indices. J. Med. Chem. 2008, 51, 6075–6084. [Google Scholar] [CrossRef] [PubMed]
- Maggiora, G.M. On Outliers and Activity Cliffs—Why QSAR often Disappoints. J. Chem. Inf. Model. 2006, 46, 1535. [Google Scholar] [CrossRef] [PubMed]
- Peltason, L.; Iyer, P.; Bajorath, J. Rationalizing Three-dimensional Activity Landscapes and the Influence of Molecular Representations on Landscape Topology and the Formation of Activity Cliffs. J. Chem. Inf. Model. 2010, 50, 1021–1033. [Google Scholar] [CrossRef] [PubMed]
- Miyao, T.; Funatsu, K.; Bajorath, J. Three-dimensional Activity Landscape Models of Different Design and Their Application to Compound Mapping and Potency Prediction. J. Chem. Inf. Model. 2019, 59, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Peltason, L.; Bajorath, J. SAR Index: Quantifying the Nature of Structure-Activity Relationships. J. Med. Chem. 2007, 50, 5571–5578. [Google Scholar] [CrossRef] [PubMed]
- Guha, R.; Van Drie, J.H. Structure-Activity Landscape Index: Identifying and Quantifying Activity Cliffs. J. Chem. Inf. Model. 2008, 48, 646–658. [Google Scholar] [CrossRef]
- Guha, R.; Van Drie, J.H. Assessing How Well a Modeling Protocol Captures a Structure-Activity Landscape. J. Chem. Inf. Model. 2008, 48, 1716–1728. [Google Scholar] [CrossRef]
- Stumpfe, D.; Bajorath, J. Recent Developments in SAR Visualization. Med. Chem. Commun. 2016, 7, 1045–1055. [Google Scholar] [CrossRef]
- Iqbal, J.; Vogt, M.; Bajorath, J. Activity Landscape Image Analysis Using Convolutional Neural Networks. J. Cheminform. 2000, 12, e34. [Google Scholar] [CrossRef]
- Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; et al. The ChEMBL Database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Coz, J.J.D.; Díez, J.; Bahamonde, A.; Sañudo, C.; Alfonso, M.; Berge, P.; Dransfield, E.; Stamataris, C.; Zygoyiannis, D.; Valdimarsdottir, T.; et al. Advances in Data Mining: Applications in Medicine, Web Mining, Marketing, Image and Signal Mining; Perner, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 297–309. [Google Scholar]
- Rogers, D.; Hahn, M. Extended-connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.J.; Tanimoto, T.T. A Computer Program for Classifying Plants. Science 1960, 132, 1115–1118. [Google Scholar] [CrossRef] [PubMed]
- Borg, I.; Groenen, P.J.F. Modern Multidimensional Scaling: Theory and Applications; Springer: New York, NY, USA, 2005. [Google Scholar]
- Rasmussen, C.E. Gaussian Processes in Machine Learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2003; pp. 63–71. [Google Scholar]
- Culjak, I.; Abram, D.; Pribanic, T.; Dzapo, H.; Cifrek, M. A Brief Introduction to OpenCV. In Proceedings of the 35th International Convention MIPRO, Opatija, Croatia, 21–25 May 2012; pp. 1725–1730. [Google Scholar]
- Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008. [Google Scholar]
Sample Availability: A collection of 3D AL images is freely available via the following link: https://uni-bonn.sciebo.de/s/5XSWARDjTACYvhA. |
ChEMBL Target ID | Target Name | Number of Compounds | Potency (pKi) | |
---|---|---|---|---|
Min | Max | |||
1800 | Corticotropin-Releasing Factor Receptor 1 | 673 | 4.3 | 9.7 |
3759 | Histamine H4 receptor | 887 | 2.9 | 10.4 |
1833 | 5-hydroxytryptamine receptor 2B | 695 | 5.0 | 10.0 |
238 | Sodium-dependent dopamine transporter | 850 | 2.1 | 9.4 |
AL Comparison | RE | CD |
---|---|---|
C1800/C3759 | 0.19 | 0.10 |
C1833/C238 | 0.28 | 0.24 |
C1800/C1833 | 0.22 | 0.12 |
C1800/C238 | 0.53 | 0.33 |
C3759/C1833 | 0.08 | 0.05 |
C3759/C238 | 0.09 | 0.09 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, J.; Vogt, M.; Bajorath, J. Computational Method for Quantitative Comparison of Activity Landscapes on the Basis of Image Data. Molecules 2020, 25, 3952. https://doi.org/10.3390/molecules25173952
Iqbal J, Vogt M, Bajorath J. Computational Method for Quantitative Comparison of Activity Landscapes on the Basis of Image Data. Molecules. 2020; 25(17):3952. https://doi.org/10.3390/molecules25173952
Chicago/Turabian StyleIqbal, Javed, Martin Vogt, and Jürgen Bajorath. 2020. "Computational Method for Quantitative Comparison of Activity Landscapes on the Basis of Image Data" Molecules 25, no. 17: 3952. https://doi.org/10.3390/molecules25173952
APA StyleIqbal, J., Vogt, M., & Bajorath, J. (2020). Computational Method for Quantitative Comparison of Activity Landscapes on the Basis of Image Data. Molecules, 25(17), 3952. https://doi.org/10.3390/molecules25173952