Physicochemical, Spectroscopic, and Chromatographic Analyses in Combination with Chemometrics for the Discrimination of the Geographical Origin of Greek Graviera Cheeses
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Conventional Quality Parameters (CQPs)
2.2. Determination of Mineral Content
2.3. Semi-Quantitative Determination of Volatile Compounds (VCs)
2.4. Determination of Fatty Acid (FA) Composition
2.5. Discrimination of Graviera Cheeses Based on CQP
2.6. Discrimination of Graviera Cheeses Based on Minerals
2.7. Discrimination of Graviera Cheeses Based on VCs
2.8. Discrimination of Graviera Cheeses Based on FAs
2.9. Discrimination of Graviera Cheeses Based on the Combination of FA Compositions and Minerals
2.10. Discrimination of Graviera Cheeses Based on the Combination of FA Compositions and CQPs
2.11. Discrimination of Graviera Cheeses Based on the Combination of Minerals and CQPs
2.12. Geographical Origin Discrimination of All Eleven Graviera Cheese Samples (Etoloakarnania, Arta, Thessaloniki, Messinia, Naxos, Rethymno, Ioannina, Trikala, Lesvos, Tinos, and Chania) Based on Analytical Parameters
3. Materials and Methods
3.1. Sample Collection
3.2. Sample Preparation and Handling
3.3. Determination of CQP
3.4. Determination of Mineral Content Using Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES)
3.5. Semi-Quantitative Determination of VCs Using Solid Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS)
3.6. Determination of FA Composition Using Gas Chromatography/Flame Ionization Detector (GC/FID)
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Union. No. 2081/92 of 14 July 1992 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. Off. J. Eur. Union 1992, 208, 1–8. [Google Scholar]
- Hellenic Ministry of Rural Development. List of the Greek PDO and PGI Products and Specifications. Available online: http://www.minagric.gr/index.php/en/citizen-menu/pdo-pgi-tsg-products-menu (accessed on 29 October 2019).
- Litopoulou-Tzanetaki, E.; Tzanetakis, N. The Microfloras of Traditional Greek Cheeses. Cheese Microbes 2014, 2, 177–218. [Google Scholar]
- Morand-Fehr, P.; Fedele, V.; DeCandia, M.; Le Frileux, Y. Influence of farming and feeding systems on composition and quality of goat and sheep milk. Small Rumin. Res. 2007, 68, 20–34. [Google Scholar] [CrossRef]
- European Union. No. 2082/92 of 14 July 1992 on certificates of specific character for agricultural products and food stuffs. Off. J. Eur. Union 1992, 208, 9–14. [Google Scholar]
- European Union. No. 510/2006 of 20 March 2006 on the protection of geographical indications and designations of origin for agricultural products and foodstuffs. Off. J. Eur. Union 2006, 93, 12–25. [Google Scholar]
- Gatzias, I.S.; Karabagias, I.K.; Kontakos, S.P.; Kontominas, M.G.; Badeka, A. Characterization and differentiation of sheep’s milk from Greek breeds based on physicochemical parameters, fatty acid composition and volatile profile. J. Sci. Food Agric. 2018, 98, 3935–3942. [Google Scholar] [CrossRef] [PubMed]
- Fontenele, M.A.; Bastos, M.S.; Dos Santos, K.M.; Bemquerer, M.; Egito, A.S.D. Peptide profile of Coalho cheese: A contribution for Protected Designation of Origin (PDO). Food Chem. 2017, 219, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, N.; Benetti, G.; Haouet, N.M.; Sergi, M.; Grotta, L.; Marchetti, S.; Castellani, F.; Martino, G. A rapid high-performance liquid chromatography-tandem mass spectrometry assay for unambiguous detection of different milk species employed in cheese manufacturing. J. Dairy Sci. 2015, 98, 8405–8413. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mung, D.; Li, L. Development of Chemical Isotope Labeling LC-MS for Milk Metabolomics: Comprehensive and Quantitative Profiling of the Amine/Phenol Submetabolome. Anal. Chem. 2017, 89, 4435–4443. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Saona, L.; Allendorf, M. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annu. Rev. Food Sci. Technol. 2011, 2, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Parra, H.A.; Pustjens, A.; Hettinga, K.; Mongondry, P.; Van Ruth, S.M. Evaluation of portable near-infrared spectroscopy for organic milk authentication. Talanta 2018, 184, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Sacco, D.; Brescia, M.; Sgaramella, A.; Casiello, G.; Buccolieri, A.; Ogrinc, N.; Sacco, A. Discrimination between Southern Italy and foreign milk samples using spectroscopic and analytical data. Food Chem. 2009, 114, 1559–1563. [Google Scholar] [CrossRef]
- Camin, F.; Wehrens, R.; Bertoldi, D.; Bontempo, L.; Ziller, L.; Perini, M.; Nicolini, G.; Nocetti, M.; Larcher, R. H, C, N and S stable isotopes and mineral profiles to objectively guarantee the authenticity of grated hard cheeses. Anal. Chim. Acta 2012, 711, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, P.; Piccolo, A. 1H HRMAS-NMR metabolomic to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chem. 2012, 132, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bello-Pérez, E.; Gómez-Cortés, P.; Geldsetzer-Mendoza, C.; Morales, M.S.; Toro-Mujica, P.; Fellenberg, M.A.; Ibáñez, R. Authentication of retail cheeses based on fatty acid composition and multivariate data analysis. Int. Dairy J. 2018, 85, 280–284. [Google Scholar] [CrossRef]
- Cunha, J.; Ribeiro, T.B.; Rocha, J.B.; Nunes, J.; Teixeira, J.A.; Domingues, L. RAPD and SCAR markers as potential tools for detection of milk origin in dairy products: Adulterant sheep breeds in Serra da Estrela cheese production. Food Chem. 2016, 211, 631–636. [Google Scholar] [CrossRef][Green Version]
- Curioni, P.; Bosset, J. Key odorants in various cheese types as determined by gas chromatography-olfactometry. Int. Dairy J. 2002, 12, 959–984. [Google Scholar] [CrossRef]
- Pillonel, L.; Luginbühl, W.; Picque, D.; Schaller, E.; Tabacchi, R.; Bosset, J. Analytical methods for the determination of the geographic origin of Emmental cheese: Mid- and near-infrared spectroscopy. Eur. Food Res. Technol. 2003, 216, 174–178. [Google Scholar] [CrossRef]
- Brescia, M. Characterisation of the geographical origin of buffalo milk and mozzarella cheese by means of analytical and spectroscopic determinations. Food Chem. 2005, 89, 139–147. [Google Scholar] [CrossRef]
- Suhaj, M.; Korenovska, M. Study of some European cheeses geographical traceability by pattern recognition analysis of multielemental data. Eur. Food Res. Technol. 2008, 227, 1419–1427. [Google Scholar] [CrossRef]
- Rodriguez, N.; Ortiz, M.; Sarabia, L.; Gredilla, E. Analysis of protein chromatographic profiles joint to partial least squares to detect adulterations in milk mixtures and cheeses. Talanta 2010, 81, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Bozoudi, D.; Pavlidou, S.; Kotzamanidis, C.; Georgakopoulos, P.; Torriani, S.; Kondyli, E.; Claps, S.; Belibasaki, S.; Litopoulou-Tzanetaki, E. Graviera Naxou and Graviera Kritis Greek PDO cheeses: Discrimination based on microbiological and physicochemical criteria and volatile organic compounds profile. Small Rumin. Res. 2016, 136, 161–172. [Google Scholar] [CrossRef]
- Bontempo, L.; Barbero, A.; Bertoldi, D.; Camin, F.; Larcher, R.; Perini, M.; Sepulcri, A.; Zicarelli, L.; Piasentier, E. Isotopic and elemental profiles of Mediterranean buffalo milk and cheese and authentication of Mozzarella di Bufala Campana PDO: An initial exploratory study. Food Chem. 2019, 285, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Danezis, G.; Theodorou, C.; Massouras, T.; Zoidis, E.; Hadjigeorgiou, I.; Georgiou, C.A. Greek Graviera Cheese Assessment through Elemental Metabolomics-Implications for Authentication, Safety and Nutrition. Molecules 2019, 24, 670. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Vatavali, K.; Kosma, I.; Louppis, A.; Gatzias, I.; Badeka, A.V.; Kontominas, M.G. Characterization and differentiation of geographical origin of Graviera cheeses produced in Greece based on physico-chemical, chromatographic and spectroscopic analyses, in combination with chemometrics. Int. Dairy J. 2020, in press. [Google Scholar] [CrossRef]
- Zerfiridis, G.K.; Vafopoulou-Mastrogiannaki, A.; Litopoulou-Tzanetaki, E. Changes During Ripening of Commercial Gruyère Cheese. J. Dairy Sci. 1984, 67, 1397–1405. [Google Scholar] [CrossRef]
- Samelis, J.; Kakouri, A.; Pappa, E.; Bogovic Matijasic, B.; Georgalaki, M.D.; Tsakalidou, E.; Rogelf, I. Microbial stability and safety of traditional Gtreek Graviera cheese: Characterization of Lactic acid bacterial flora and culture-independent detection of bacteriocin genes in the ripened cheeses and their microbial consortia. J. Food Prot. 2010, 73, 1294–1303. [Google Scholar] [CrossRef]
- Martín, I.R.; Hernández-Hierro, J.M.; Revilla, I.; Vivar-Quintana, A.M.; Lobos-Ortega, I.; Gonzalez-Perez, C. Changes in the Mineral Content in Cheeses of Different Compositions during 6 Months of Ripening. Czech J. Food Sci. 2009, 27, S114–S118. [Google Scholar] [CrossRef][Green Version]
- Engels, W.J.M. Volatile and Non-Volatile Compounds in Ripened Cheese: Their Formation and Their Contribution to Flavour. Ph.D. Thesis, Wageningen Agricultural University, Wageningen, The Netherlands, 16 December 1997. [Google Scholar]
- Hayaloglu, A.; McSweeney, P.; Özer, B.; Akdemir-Evrendilek, G. Primary Biochemical Events During Cheese Ripening. In Dairy Microbiology and Biochemistry; Ozer, B.H., Akdemir-Evrendiler, G., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 134–166. [Google Scholar]
- Smit, G.; Bart, A.; Smit, B.A.; Engels, W.J.M. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef]
- Engels, W.; Dekker, R.; De Jong, C.; Neeter, R.; Visser, S. A comparative study of volatile compounds in the water-soluble fraction of various types of ripened cheese. Int. Dairy J. 1997, 7, 255–263. [Google Scholar] [CrossRef]
- Balthazar, C.F.; Pimentel, T.; Ferrão, L.; Almada, C.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.; Nascimento, J.; Silva, M.; et al. Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef]
- Mallia, S.; Fernandez-Garcia, E.; Bosset, J.O. Comparison of purge and trap and solid phase microextraction techniques for studying the volatile aroma compounds of three European PDO hard cheeses. Int. Dairy J. 2005, 15, 741–758. [Google Scholar] [CrossRef]
- Markiewicz-Keszycka, M.; Czyżak-Runowska, G.; Lipińska, P.; Wójtowski, J. Fatty Acid Profile of Milk—A Review. Bull. Veter- Inst. Pulawy 2013, 57, 135–139. [Google Scholar] [CrossRef][Green Version]
- Tudisco, R.; Cutrignelli, M.I.; Calabrò, S.; Piccolo, G.; Bovera, F.; Guglielmelli, A.; Moniello, G.; Infascelli, F. Influence of organic systems on milk fatty acid profile and CLA in goats. Small Rumin. Res. 2010, 88, 151–155. [Google Scholar] [CrossRef]
- Zlatanos, S.; Laskaridis, K. Variation in the conjugated linoleic acid content of three traditional Greek cheeses during a one year period. J. Food Qual. 2009, 32, 84–95. [Google Scholar] [CrossRef]
- Osorio, M.T.; Koidis, A.; Papademas, P. Major and trace elements in milk and Halloumi cheese as markers for authentication of goat feeding regimes and geographical origin. Int. J. Dairy Technol. 2015, 68, 573–581. [Google Scholar] [CrossRef][Green Version]
- Camin, F.; Bontempo, L.; Perini, M.; Piasentier, E. Stable Isotope Ratio Analysis for Assessing the Authenticity of Food of Animal Origin. Compr. Rev. Food Sci. Food Saf. 2016, 15, 868–877. [Google Scholar] [CrossRef][Green Version]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC: Gaithersburg, MD, USA, 1998. [Google Scholar]
- IBM. SPSS IBM, V.23; IBM: Armonk, NY, USA, 2014. [Google Scholar]
- Field, A. Discovering Statistics Using SPSS; Sage Publications Ltd.: London, UK, 2009. [Google Scholar]
Sample Availability: Not available. |
Ioannina | Lesvos | Tinos | Chania | Trikala | |
---|---|---|---|---|---|
pH | 5.73 ± 0.13 b | 5.62 ± 0.05 a,b | 5.67 ± 0.04 a,b | 5.68 ± 0.08 a,b | 5.58 ± 0.02 a |
NaCl (g/L) | 3.80 ± 0.28 d | 3.05 ± 0.52 b,c | 3.55 ± 0.27 c,d | 1.82 ± 0.07 a | 2.66 ± 0.18 b |
Titratable Acidity (lactic acid%) | 0.61 ± 0.05 a | 0.72 ± 0.08 a | 0.92 ± 0.13 b | 0.67 ± 0.12 a | 0.65 ± 0.10 a |
Moisture (%) | 36.67 ± 2.17 b | 36.27 ± 1.10 b | 36.70 ± 1.75 b | 31.59 ± 1.28 a | 35.33 ± 2.17 b |
Ash (%) | 6.29 ± 0.50 d | 3.86 ± 0.64 a | 4.73 ± 0.45 a,b | 5.08 ± 1.14 c | 4.88 ± 0.56 a,b |
Fat dwb (%) | 51.42 ± 1.67 b | 51.57 ± 3.75 b | 45.97 ± 3.53 a | 46.37 ± 1.62 a | 46.97 ± 2.07 a |
Protein (%) | 25.20 ± 1.14 a | 26.20 ± 1.57 a | 29.35 ± 0.99 b | 30.56 ± 2.13 b | 26.08 ± 0.88 a |
Ioannina | Lesvos | Tinos | Chania | Trikala | |
---|---|---|---|---|---|
Al | 0.58 ± 0.52 a | 0.93 ± 0.54 a | 0.32 ± 0.49 a | 0.52 ± 0.61 a | 0.43 ± 0.55 a |
As | 0.07 ± 0.00 a | 0.07 ± 0.01 a | 2.48 ± 4.12 b | 0.18 ± 0.32 a | 0.07 ± 0.01 a |
Ba | 1.00 ± 0.20 a | 3.82 ± 2.30 b | 1.03 ± 0.20 a | 1.21 ± 0.53 a | 2.32 ± 0.23 a |
Be | 0.05 ± 0.00 a | 0.05 ± 0.01 a | 0.05 ± 0.01 a | 0.05 ± 0.01 a | 0.05 ± 0.01 a |
Ca | 2378.56 ± 341.56 a | 5643.82 ± 1677.95 b | 3050.43 ± 507.20 a | 3450.71 ± 360.28 a | 3038.00 ± 180.11 a |
Cd | 0.04 ± 0.00 a | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.04 ± 0.01 a | 0.04 ± 0.00 a |
Co | 0.04 ± 0.02 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a | 0.08 ± 0.14 a | 0.03 ± 0.00 a |
Cr | 0.80 ± 0.42 b | 0.57 ± 0.25 b | 0.19 ± 0.17 a | 0.12 ± 0.01 a | 0.52 ± 0.26 b |
Cu | 0.89 ± 0.48 a,b | 0.68 ± 0.27 b | 0.35 ± 0.06 a | 1.51 ± 0.51 c | 0.60 ± 0.10 a,b |
Fe | 2.76 ± 1.09 a | 6.08 ± 12.79 a | 1.45 ± 0.53 a | 3.63 ± 0.34 a | 2.95 ± 0.37 a |
Hg | 0.09 ± 0.18 a | 0.22 ± 0.30 a | 0.11 ± 0.14 a | 0.28 ± 0.10 a | 0.32 ± 0.04 a |
Mg | 130.67 ± 17.94 a,b | 165.19 ± 48.10 b | 109.01 ± 9.96 a | 140.14 ± 28.12 a,b | 143.80 ± 9.96 a,b |
Mn | 0.41 b ± 0.06 c | 0.54 ± 0.20 c | 0.11 ± 0.06 a | 0.41 ± 0.11 b,c | 0.29 ± 0.05 b |
Mo | 0.19 ± 0.05 a | 0.21 ± 0.03 a,b | 0.23 ± 0.03 a,b | 0.24 ± 0.02 b | 0.22 ± 0.02 a,b |
Ni | 0.09 ± 0.05 a,b | 0.05 ± 0.01 a | 0.09 ± 0.06 a,b | 0.05 ± 0.01 a | 0.14 ± 0.12 b |
P | 2025.67 ± 564.54 a | 6137.27 ± 2810.81 b | 2241.71 ± 829.21 a | 1651.29 ± 987.48 a | 2089.20 ± 1047.77 a |
Pb | 0.09 ± 0.06 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a | 0.08 ± 0.01 a |
Sb | 0.40 ± 0.24 a | 0.48 ± 0.16 a | 0.38 ± 0.09 a | 0.71 ± 0.11 b | 0.44 ± 0.09 a |
Se | 0.13 ± 0.08 a | 0.29 ± 0.17 b | 0.11 ± 0.02 a | 0.11 ± 0.01 a | 0.11 ± 0.01 a |
Sr | 10.14 ± 6.24 a | 17.77 ± 9.59 b | 7.57 ± 6.08 a | 23.67 ± 2.01 b,c | 25.93 ± 1.80 c |
Ti | 0.41 ± 0.40 a | 0.46 ± 0.59 a | 0.99 ± 0.93 a,b | 0.60 ± 1.40 a,b | 2.31 ± 4.04 b |
Tl | 0.98 ± 0.61 a | 1.08 ± 0.40 a | 1.02 ± 0.22 a | 1.75 ± 0.42 b | 2.06 ± 0.37 b |
Zn | 21.75 ± 4.10 a | 42.42 ± 9.60 b | 42.29 ± 9.54 b | 52.27 ± 2.89 c | 35.82 ± 3.96 b |
Na | 4358.00 ± 1776.77 b | 1599.64 ± 1232.58 a | 2643.57 ± 272.32 a | 1424.57 ± 877.20 a | 2741.20 ± 336.95 a |
Total | 8933.80 | 13621.79 | 8103.66 | 6754.21 | 8086.95 |
Ioannina | Lesvos | Tinos | Chania | Trikala | RI exp * | RI lit ** | |
---|---|---|---|---|---|---|---|
Alcohols | |||||||
Ethanol | 0.049 ± 0.059 a | 0.338 ± 0.308 a,b | 0.053 ± 0.045 a | 0.507 ± 0.382 b | 0.014 ± 0.009 a | <500 | <500 |
1-Propanol | 0.001 ± 0.002 a | 0.003 ± 0.003 a | 0.000 ± 0.001 a | 0.017 ± 0.028 a | - | 552 | 554 |
2-Butanol | 0.017 ± 0.043 a,b | 0.069 ± 0.045 b | 0.011 ± 0.023 a | 0.047 ± 0.042 a,b | - | 603 | 608 |
1-Butanol | -*** | 0.000 ± 0.001 a | 0.016 ± 0.017 b | 0.009 ± 0.005 a,b | - | 660 | 669 |
2-Pentanol | - | 0.003 ± 0.004 a | 0.002 ± 0.004 a | 0.426 ± 0.269 b | - | 702 | 738 |
2,3-Butanediol | 0.122 ± 0.048 c | 0.113 ± 0.029 c | 0.023 ± 0.023 a,b | 0.051 ± 0.027 b | - | 796 | - |
2-Methyl-3-pentanol | 0.064 ± 0.048 b | - | 0.027 ± 0.026 a,b | 0.015 ± 0.040 a,b | 0.060 ± 0.025 b | 802 | - |
1-Hexanol | - | 0.004 ± 0.006 a,b | 0.003 ± 0.005 a,b | 0.007 ± 0.005 b | - | 868 | 862 |
2-Heptanol | - | 0.011 ± 0.024 a | - | 0.125 ± 0.072 b | - | 900 | 896 |
Total | 0.253 | 0.540 | 0.135 | 1.204 | 0.073 | ||
Aldehydes | |||||||
3-Methylbutanal | - | - | 0.008 ± 0.009 a,b | 0.014 ± 0.008 b | 0.006 ± 0.010 a,b | 657 | 650 |
2-Methylbutanal | 0.015 ± 0.018 a | - | 0.003 ± 0.008 a | 0.034 ± 0.054 a | 0.020 ± 0.044 a | 666 | 660 |
Heptanal | 0.001 ± 0.001 a | 0.004 ± 0.009 a | - | - | 0.004 ± 0.004 a | 766 | 899 |
Nonanal | 0.002 ± 0.002 a | 0.013 ± 0.035 a | - | 0.003 ± 0.002 a | 0.003 ± 0.003 a | 1108 | 1099 |
Total | 0.018 | 0.017 | 0.011 | 0.051 | 0.032 | ||
Ketones | |||||||
2-Propanone | 0.022 ± 0.012 a,b | 0.011 ± 0.019 a | 0.012 ± 0.010 a | 0.052 ± 0.038 b | 0.018 ± 0.005 a | <500 | <500 |
2,3-Butanedione | 0.009 ± 0.009 a | 0.007 ± 0.012 a | 0.009 ± 0.008 a | 0.009 ± 0.019 | 0.031 ± 0.009 b | 588 | 584 |
2-Butanone | 0.149 ± 0.310 a | 0.153 ± 0.167 a | 0.017 ± 0.015 a | 0.103 ± 0.224 a | 0.006 ± 0.004 a | 595 | 600 |
2-Pentanone | 0.013 ± 0.005 a | 0.023 ± 0.037 a | 0.014 ± 0.005 a | 0.911 ± 1.045 b | 0.013 ± 0.005 a | 686 | 684 |
3-Hydroxy-2-butanone | 0.236 ± 0.164 a,b | 0.081 ± 0.045 a | 0.094 ± 0.066 a | 0.099 ± 0.227 a | 0.396 ± 0.092 b | 709 | 707 |
2-Heptanone | 0.023 ± 0.011 a | 0.091 ± 0.236 a | 0.085 ± 0.059 a | 0.559 ± 0.254 b | 0.039 ± 0.027 a | 890 | 899 |
2-Nonanone | 0.008 ± 0.004 a | 0.131 ± 0.392 a | 0.015 ± 0.010 a | 0.284 ± 0.290 a | 0.008 ± 0.005 a | 1092 | 1093 |
Total | 0.459 | 0.496 | 0.246 | 2.017 | 0.512 | ||
Carboxylic Acids | |||||||
Acetic acid | 0.127 ± 0.091 a,b | 0.251 ± 0.056 a,b | 0.046 ± 0.062 a | 0.709 ± 0.941 b | 0.027 ± 0.032 a | 571 | 606 |
2-Methylpropanoic acid | 0.006 ± 0.006 a,b | 0.035 ± 0.053 b | - | - | - | 737 | 753 |
Butanoic acid | 0.753 ± 0.496 a | 0.282 ± 0.160 a | 0.544 ± 0.470 a | 1.529 ± 2.745 a | 0.659 ± 0.615 a | 774 | 784 |
Pentanoic acid | 0.020 ± 0.016 a | 0.129 ± 0.197 a | - | - | - | 825 | 841 |
3-Methylbutanoic acid | 0.015 ± 0.022 a | 0.000 ± 0.001 a | 0.020 ± 0.035 a | 0.008 ± 0.021 a | - | 825 | 842 |
2-Methylbutanoic acid | 0.012 ± 0.008 a | 0.054 ± 0.080 a | - | 0.033 ± 0.086 a | - | 835 | 853 |
Hexanoic acid | 0.525 ± 0.341 a | 0.030 ± 0.059 a | 0.008 ± 0.011 a | 1.574 ± 3.786 a | 0.362 ± 0.389 a | 966 | 970 |
Octanoic acid | 0.059 ± 0.091 a | - | - | 0.293 ± 0.774 a | 0.035 ± 0.040 a | 1156 | 1177 |
Total | 1.517 | 0.782 | 0.618 | 4.145 | 1.083 | ||
Esters | |||||||
Ethyl acetate | 0.005 ± 0.003 a | 0.015 ± 0.015 a | 0.002 ± 0.003 a | 0.055 ± 0.031 b | 0.011 ± 0.016 a | 611 | 614 |
Methyl butyrate | 0.014 ± 0.005 a | 0.016 ± 0.007 a | 0.026 ± 0.013 a | 0.023 ± 0.014 a | 0.021 ± 0.010 a | 721 | 735 |
Ethyl butyrate | 0.024 ± 0.018 a | 0.163 ± 0.188 a | 0.021 ± 0.019 a | 0.508 ± 0.308 b | - | 799 | 798 |
Ethyl pentanoate | - | 0.002 ± 0.003 a | - | 0.002 ± 0.004 a | - | 898 | 901 |
Methyl hexanoate | 0.010 ± 0.003 a | 0.018 ± 0.015 a | 0.012 ± 0.004 a | 0.025 ± 0.026 a | 0.009 ± 0.007 a | 923 | 934 |
Ethyl hexanoate | 0.005 ± 0.011 a | 0.157 ± 0.291 a,b | 0.001 ± 0.004 a | 0.357 ± 0.210 b | - | 996 | 1001 |
Methyl octanoate | 0.002 ± 0.002 a | 0.006 ± 0.009 a | 0.003 ± 0.002 a | 0.012 ± 0.017 a | 0.002 ± 0.003 a | 1122 | 1125 |
Ethyl octanoate | 0.003 ± 0.004 a | 0.040 ± 0.088 a,b | 0.001 ± 0.001 a | 0.075 ± 0.054 b | - | 1193 | 1193 |
Methyl decanoate | 0.001 ± 0.001 a | 0.004 ± 0.007 a | 0.000 ± 0.001 a | 0.003 ± 0.005 a | - | 1324 | 1326 |
Ethyl decanoate | 0.001 ± 0.002 a | 0.028 ± 0.065 a | - | 0.029 ± 0.017 a | - | 1393 | 1391 |
Total | 0.065 | 0.450 | 0.067 | 1.088 | 0.044 | ||
Hydrocarbons | |||||||
2-Methylpentane | 0.003 ± 0.005 a | - | 0.001 ± 0.002 a | 0.007 ± 0.010 a | 0.009 ± 0.013 a | 563 | 560 |
Cyclopentane | 0.001 ± 0.002 a | 0.002 ± 0.003 a | 0.001 ± 0.001 a | - | - | 563 | 563 |
Hexane | 0.014 ± 0.027 a | 0.001 ± 0.003 a | 0.013 ± 0.027 a | 0.003 ± 0.005 a | 0.013 ± 0.022 a | 600 | 600 |
Cyclohexane | 0.006 ± 0.008 a | 0.000 ± 0.001 a | - | 0.022 ± 0.039 a | 0.020 ± 0.026 a | 668 | 658 |
Heptane | 0.011 ± 0.010 a | 0.001 ± 0.002 a | 0.000 ± 0.001 a | - | 0.058 ± 0.049 b | 700 | 700 |
Octane | 0.032 ± 0.036 a | 0.024 ± 0.023 a | 0.008 ± 0.010 a | 0.009 ± 0.009 a | 0.020 ± 0.044 a | 800 | 800 |
2-Octene | 0.003 ± 0.003 a | 0.001 ± 0.002 a | - | - | 0.010 ± 0.007 b | 818 | 815 |
Ethylcyclohexane | - | 0.003 ± 0.004 a,b | - | - | 0.005 ± 0.007 b | 845 | 838 |
Nonane | 0.007 ± 0.002 b | 0.007 ± 0.005 b | 0.007 ± 0.001 b | - | 0.010 ± 0.005 b | 900 | 900 |
Decane | 0.012 ± 0.002 a | 0.011 ± 0.003 a | 0.013 ± 0.004 a | 0.029 ± 0.016 b | 0.012 ± 0.004 a | 1000 | 1000 |
Undecane | - | 0.005 ± 0.004 a | - | 0.030 ± 0.019 b | 0.006 ± 0.010 a | 1100 | 1100 |
Dodecane | - | - | - | 0.014 ± 0.008 b | 0.003 ± 0.003 a | 1200 | 1200 |
Tridecane | - | - | - | 0.011 ± 0.012 b | - | 1300 | 1300 |
Total | 0.090 | 0.055 | 0.042 | 0.125 | 0.164 | ||
Miscellaneous | |||||||
Ethyl ether | 0.011 ± 0.011 a,b | - | - | 0.024 ± 0.034 a,b | 0.037 ± 0.054 b | <500 | <500 |
Dimethyl sulfide | 0.002 ± 0.001 a,b | 0.001 ± 0.001 a,b | 0.003 ± 0.001 b | 0.001 ± 0.002 a | 0.006 ± 0.003 c | 519 | 526 |
α-Pinene | 0.041 ± 0.026 b | 0.014 ± 0.011 a | 0.010 ± 0.002 a | 0.041 ± 0.025 b | 0.050 ± 0.012 b | 947 | 943 |
β-Pinene | 0.007 ± 0.005 a | 0.008 ± 0.007 a | - | 0.002 ± 0.005 a,b | 0.005 ± 0.008 a,b | 994 | 978 |
o-Cymene | 0.020 ± 0.024 a,b | - | 0.000 ± 0.001 a | 0.032 ± 0.033 b | 0.021 ± 0.020 a,b | 1037 | 1041 |
dl-Limonene | 0.014 ± 0.010 a,b | 0.003 ± 0.010 a | - | 0.027 ± 0.016 b | 0.001 ± 0.001 a | 1042 | 1039 |
Total | 0.095 | 0.027 | 0.014 | 0.126 | 0.120 | ||
Total Volatile Fraction | 2.497 | 2.368 | 1.132 | 8.754 | 2.029 |
Ioannina | Lesvos | Tinos | Chania | Trikala | |
---|---|---|---|---|---|
Butyric acid | 4.78 ± 0.50 a | 4.41 ± 0.97 a | 4.57 ± 0.65 a | 4.30 ± 1.97 a | 4.76 ± 0.49 a |
Caproic acid | 2.00 ± 0.29 a,b | 2.38 ± 0.11 c | 1.79 ± 0.09 a | 2.36 ± 0.20 c | 2.16 ± 0.24 b,c |
Caprylic acid | 2.06 ± 0.36 b | 2.49 ± 0.22 c | 1.12 ± 0.06 a | 2.61 ± 0.24 c | 2.05 ± 0.30 b |
Capric acid | 6.83 ± 1.13 b,c | 7.68 ± 1.12 c,d | 2.53 ± 0.14 a | 8.29 ± 0.94 d | 5.82 ± 0.79 b |
Lauric acid | 3.97 ± 0.63 b,c | 4.62 ± 0.94 c,d | 2.91 ± 0.17 a | 4.97 ± 0.57 d | 3.40 ± 0.35 a,b |
Myristic acid | 11.33 ± 0.27 b,c | 10.90 ± 1.47 b,c | 10.30 ± 0.49 a,b | 11.69 ± 0.50 c | 9.22 ± 0.82 a |
Pentadecanoic acid | 1.21 ± 0.07 b | 0.92 ± 0.11 a | 1.12 ± 0.07 b | 1.09 ± 0.11 b | 1.21 ± 0.13 b |
Palmitic acid | 27.63 ± 1.01 c,d | 24.62 ± 0.81 b | 28.24 ± 0.37 d | 26.63 ± 0.81 c | 22.70 ± 2.10 a |
Palmitoleic acid | 1.20 ± 0.07 a,b | 1.12 ± 0.31 a | 1.46 ± 0.10 b | 1.20 ± 0.08 a,b | 1.33 ± 0.13 a,b |
Margaric acid | 1.64 ± 0.49 b | 1.29 ± 0.21 a | 1.34 ± 0.21 a,b | 1.52 ± 0.17 a,b | 1.22 ± 0.18 a |
Stearic acid | 10.50 ± 0.81 a | 11.67 ± 2.80 a,b | 15.04 ± 0.78 c | 9.58 ± 0.91 a | 13.31 ± 0.80 b,c |
Oleic acid | 22.57 ± 1.30 a | 22.94 ± 1.78 a | 25.72 ± 0.80 a | 21.70 ± 1.50 a | 27.79 ± 2.06 b |
Linoleic acid | 2.40 ± 0.22 a | 3.62 ± 0.51 b | 2.66 ± 0.28 a | 2.70 ± 0.15 a | 2.83 ± 0.32 a |
Linolenic acid | 1.01 ± 0.11 b | 0.71 ± 0.08 a | 0.66 ± 0.07 a | 0.74 ± 0.41 a,b | 1.51 ± 0.07 c |
Arachidic acid | 0.85 ± 0.21 b | 0.63 ± 0.12 a | 0.54 ± 0.05 a | 0.62 ± 0.15 a | 0.69 ± 0.07 a,b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vatavali, K.A.; Kosma, I.S.; Louppis, A.P.; Badeka, A.V.; Kontominas, M.G. Physicochemical, Spectroscopic, and Chromatographic Analyses in Combination with Chemometrics for the Discrimination of the Geographical Origin of Greek Graviera Cheeses. Molecules 2020, 25, 3507. https://doi.org/10.3390/molecules25153507
Vatavali KA, Kosma IS, Louppis AP, Badeka AV, Kontominas MG. Physicochemical, Spectroscopic, and Chromatographic Analyses in Combination with Chemometrics for the Discrimination of the Geographical Origin of Greek Graviera Cheeses. Molecules. 2020; 25(15):3507. https://doi.org/10.3390/molecules25153507
Chicago/Turabian StyleVatavali, Kornilia A., Ioanna S. Kosma, Artemis P. Louppis, Anastasia V. Badeka, and Michael G. Kontominas. 2020. "Physicochemical, Spectroscopic, and Chromatographic Analyses in Combination with Chemometrics for the Discrimination of the Geographical Origin of Greek Graviera Cheeses" Molecules 25, no. 15: 3507. https://doi.org/10.3390/molecules25153507