Mechanically-Induced Solid-State Reaction for Fabrication of Soft Magnetic (Co75Ti25)100−xBx (x: 2, 5, 10, 15, 20, 25 at%) Metallic Glassy Nanopowders
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Crystal Structure
2.2. Thermal Stability
2.3. Magnetic Properties
3. Materials and Methods
3.1. Feedstock Materials
3.2. Preparations of Metallic Glassy Alloy Powders
3.3. Sample Characterizations
4. Conclusions
- (1)
- The GFA of (Co75Ti25)100−xBx was improved upon increasing the B molar fraction in the range between 2 at% to 25 at%.
- (2)
- The effect of elemental B of enhancing the GFA is attributed to the chemical bonding between the alloying elements (Co, Ti and B) in the alloy. This can be realized upon considering that electronegativity, which is a very important factor for glass formation, is directly related to the chemical bonding. Electrons of metalloid B element, which transferred to metallic Co-Ti may lead to the formation of very strong covalent bonding and hence led to improve the GFA of (Co75Ti25)100−xBx systems.
- (3)
- Among the as-prepared metallic glassy alloys of (Co75Ti25)100−xBx, (Co75Ti25)75B25 system revealed excellent thermodynamics properties, as indexed by its high GFA as characterized by the widest ∆Tx (121 °C), and high thermal stability, indicated by its highest Tx value (633 °C). Moreover, this glassy system revealed the highest Trg value (0.41), which indicates its high GFA when compared with other compositions in the (Co75Ti25)100−xBx systems.
- (4)
- The results have shown that when B content increased, the saturation magnetization was increased to reach to 1.1 T for (Co75Ti25)75B25 system, where coercivity was decreased to a very low level of 9.3 kA m−1.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Eskandarany, M.S. Mechanical Alloying. In Energy Storage, Protective Coatings, and Medical Applications; Elsevier: Oxford, UK, 2020. [Google Scholar]
- Klement, W.; Willens, R.H.; Duwez, P. Non-crystalline structure in solidified gold-silicon alloys. Nature 1960, 187, 869–870. [Google Scholar] [CrossRef]
- Inoue, A.; Kong, F.L.; Han, Y.; Zhu, S.L.; Churyumov, A.; Shalaan, E.; Al-Marzouki, F. Development and application of Fe-based soft magnetic bulk metallic glassy inductors. J. Alloys Compd. 2018, 731, 1303–1309. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Al-Hajji, L.A.; Al-Hazza, A. Fabrication of new metallic glassy Ti40.6Cu15.4Ni8.5Al5.5 W30 alloy powders by mechanical alloying and subsequent SPS consolidation. Adv. Powder Technol. 2017, 28, 814–819. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, M.S.; Zhang, W.W.; Yang, C.; Xie, G.Q.; Louzguine-Luzgin, D.V. Achieving super-high strength in an aluminum based composite by reinforcing metallic glassy flakes. Mater. Lett. 2020, 262, 127059. [Google Scholar] [CrossRef]
- Lai, L.; He, R.; Ding, K.; Liu, T.L.; Liu, R.; Chen, Y.; Guo, S. Ternary Co-Mo-B bulk metallic glasses with ultrahigh strength and good ductility. J. Non-Cryst. Solids 2019, 524, 119657. [Google Scholar] [CrossRef]
- Taghvaei, A.H.; Eckert, J. Development and characterization of new Co-Fe-Hf-B bulk metallic glass with high thermal stability and superior soft magnetic performance. J. Alloys Compd 2020, 823, 153890. [Google Scholar] [CrossRef]
- Kim, J.T.; Hong, S.H.; Park, J.M.; Eckert, J.; Kim, K.B. New para-magnetic (CoFeNi)(CrMo)50−x(CB)x (x = 20, 25, 30) non-equiatomic high entropy metallic glasses with wide supercooled liquid region and excellent mechanical properties. J. Mater. Sci. Technol. 2020, 43, 135–143. [Google Scholar] [CrossRef]
- Karmakar, B. Fundamentals of Glass and Glass Nanocomposites. Glass Nanocomposites: Synthesis, Properties and Applications.; Karmakar, B., Rademann, K., Stepanov, A.L., Eds.; Elsevier: Oxford, UK, 2016. [Google Scholar]
- Suryanarayana, C.; Inoue, A. Bulk Metallic Glasses; CRC Press, Taylor& Francis Group: New York, NY, USA, 2011. [Google Scholar]
- El-Eskandarany, M.S.; Itoh, F.; Aoki, K.; Suzuki, K. Preparation of AlxTa1-x amorphous alloy powder by mechanical alloying. J. Non-Cryst. Solids. 1990, 118, 729–732. [Google Scholar] [CrossRef]
- Koch, C.C.; Cavin, O.B.; McKamey, C.G.; Scarbrough, J.O. Preparation of amorphous Ni60Nb40 by mechanical alloying. Appl. Phys. Lett. 1983, 43, 1017–1019. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S.; Saida, S.; Inoue, A. Structural and calorimetric evolutions of mechanically-induced solid-state devitrificated Zr70Ni25Al15 glassy alloy powder. Acta Mater. 2003, 51, 1481–1492. [Google Scholar] [CrossRef]
- Lai, L.; Ding, K.; Liu, T.L.; Chen, Y.; Guo, S. Ternary Co-W-B bulk metallic glasses with ultrahigh strength. J. Non-Cryst. Solids 2020, 544, 120194. [Google Scholar] [CrossRef]
- Inoue, A. Soft magnetic Co-based metallic glass alloy. US. Patent 2,005,017,847,6A1, 18 August 2005. [Google Scholar]
- Zheng, H.; Zhu, L.; Jiang, S.S.; Wang, Y.G.; Liu, S.N.; Lan, S.; Chen, F.G. Role of Ni and Co in tailoring magnetic and mechanical properties of Fe84Si2B13P1 metallic glass. J. Alloys Compd. 2020, 816, 152549. [Google Scholar] [CrossRef]
- Mazaleyrat, F.; Barrué, R. Soft amorphous and nanocrystalline magnetic materials. In Handbook of Advanced Electronic and Photonic Materials and Devices, 2nd ed.; Nalwa, H.S., Ed.; Elsevier: Oxford, UK, 2001. [Google Scholar]
- El-Eskandarany, M.S.; Zhang, W.; Inoue, A. Glass forming ability and magnetic properties of mechanically solid-state reacted Co100−xTix alloy powders. J. Alloys Compd. 2002, 350, 232–245. [Google Scholar] [CrossRef]
- Shaker, H.; Taghvaei, A.H.; Ramasamy, P.; Eckert, J. Phase transformation, thermal behavior and magnetic study of new Co80−xTaxSi5C15 (x = 0.5) glassy/nanocrystalline alloys prepared by mechanical alloying. J. Alloys Compd. 2020, 843. [Google Scholar] [CrossRef]
- Matsui, I.; Omura, N. Electrodeposition of bulk nanocrystalline Ni-Fe-P alloys and their mechanical and soft magnetic properties. Materialia 2020, 12, 100766. [Google Scholar] [CrossRef]
- Loudjani, N.; Gouasmia, T.; Bououdina, M.; Bobet, J.L. Phase formation and magnetic properties of nanocrytalline Ni70Co30 alloy prepared by mechanical alloying. J. Alloys Compd. 2020, 156392. [Google Scholar] [CrossRef]
- Zhao, C.C.; Inoue, A.; Kong, F.L.; Zhang, J.Y.; Chen, C.J.; Shen, B.L.; Al-Marzoukic, F.; Greere, A.L. Novel phase decomposition, good soft-magnetic and mechanical properties for high-entropy (Fe0.25Co0.25Ni0.25Cr0.125Mn0.125)100–xBx (x = 9–13) amorphous alloys. J. Alloys Compd. 2020, 843, 155917. [Google Scholar] [CrossRef]
- Larimian, T.; Chaudhary, V.; Christudasjustus, J.; Ramanujan, R.V.; Gupta, R.; Borkar, T. Bulk-nano spark plasma sintered Fe-Si-B-Cu-Nb based magnetic alloys. Intermetallics 2020, 124, 106869. [Google Scholar] [CrossRef]
Sample Availability: not available. |
Nominal Composition of the Starting Materials (at%) | |||||||
B (x) | 2 | 5 | 10 | 15 | 20 | 25 | 30 |
Co | 73.50 | 71.25 | 67.50 | 63.75 | 60 | 56.25 | 52.50 |
Ti | 24.5 | 23.75 | 22.50 | 21.25 | 20 | 18.75 | 17.50 |
Real Composition, after MA Experiments (at%) | |||||||
B (x) | 2.01 | 5.05 | 10.05 | 15.00 | 19.98 | 24.93 | 30.02 |
Co | 73.47 | 71.22 | 67.48 | 63.72 | 59.94 | 56.28 | 52.52 |
Ti | 24.52 | 23.73 | 22.47 | 21.28 | 20.08 | 18.79 | 17.46 |
Alloying Elements (at%) | |||
---|---|---|---|
Zone | Co | Ti | B |
I | 56.24 | 18.72 | 25.04 |
II | 56.19 | 18.82 | 24.99 |
III | 56.22 | 18.73 | 25.05 |
IV | 56.29 | 18.80 | 24.91 |
V | 56.20 | 18.76 | 25.04 |
VI | 56.21 | 18.70 | 25.09 |
Alloying Elements (at%) | |||
---|---|---|---|
Zone | Co | Ti | B |
I | 45.11 | 12.51 | 42.38 |
II | 49.83 | 15.32 | 34.85 |
III | 52.07 | 13.66 | 38.41 |
IV | 52.39 | 18.92 | 28.69 |
V | 49.28 | 17.95 | 32.77 |
VI | 38.35 | 14.67 | 46.98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Eskandarany, M.S.; Ali, N. Mechanically-Induced Solid-State Reaction for Fabrication of Soft Magnetic (Co75Ti25)100−xBx (x: 2, 5, 10, 15, 20, 25 at%) Metallic Glassy Nanopowders. Molecules 2020, 25, 3338. https://doi.org/10.3390/molecules25153338
El-Eskandarany MS, Ali N. Mechanically-Induced Solid-State Reaction for Fabrication of Soft Magnetic (Co75Ti25)100−xBx (x: 2, 5, 10, 15, 20, 25 at%) Metallic Glassy Nanopowders. Molecules. 2020; 25(15):3338. https://doi.org/10.3390/molecules25153338
Chicago/Turabian StyleEl-Eskandarany, Mohamed Sherif, and Naser Ali. 2020. "Mechanically-Induced Solid-State Reaction for Fabrication of Soft Magnetic (Co75Ti25)100−xBx (x: 2, 5, 10, 15, 20, 25 at%) Metallic Glassy Nanopowders" Molecules 25, no. 15: 3338. https://doi.org/10.3390/molecules25153338
APA StyleEl-Eskandarany, M. S., & Ali, N. (2020). Mechanically-Induced Solid-State Reaction for Fabrication of Soft Magnetic (Co75Ti25)100−xBx (x: 2, 5, 10, 15, 20, 25 at%) Metallic Glassy Nanopowders. Molecules, 25(15), 3338. https://doi.org/10.3390/molecules25153338