Antityrosinase Activity of Combretum micranthum, Euphorbia hirta and Anacardium occidentale Plants: Ultrasound Assisted Extraction Optimization and Profiling of Associated Predominant Metabolites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fitting the Models
2.2. Effect of Process Variables
2.2.1. Effect of Ethanol Concentration and Extraction Time on TPC and TTC
2.2.2. Effect of Extraction Temperature and Ethanol Concentration on TPC and TTC
2.2.3. Effect of Extraction Time and Extraction Temperature on TPC and TTC
2.3. Determination of Optimum Conditions
2.4. In-Tubo Tyrosinase Activity Assay
2.5. Identification of Metabolic Compounds
3. Materials and Methods
3.1. Materials
3.2. Ultrasound-Assisted Extraction
3.3. Preliminary Study
3.4. Total Phenolic Content
3.5. Total Triterpenoid Content
3.6. Antityrosinase Activity
3.7. LC-MS [UPLC-(ESI)-QToFMS] Analysis of Metabolic Compounds
3.8. Data Analysis
3.9. Experimental Design
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lim, W.Y.; Wong, C.W. Inhibitory effect of chemical and natural anti-browning agents on polyphenol oxidase from ginger (Zingiber officinale Roscoe). J. Food Sci. Technol. 2018, 55, 3001–3007. [Google Scholar] [CrossRef] [PubMed]
- Loizzo, M.R.; Tundis, R.; Menichini, F. Natural and Synthetic Tyrosinase Inhibitors as Antibrowning Agents: An Update. Compr. Rev. Food Sci. Food Saf. 2012, 11, 378–398. [Google Scholar] [CrossRef]
- Lim, W.Y.; Cheun, C.F.; Wong, C.W. Inhibition of enzymatic browning in sweet potato (Ipomoea batatas (L.)) with chemical and natural anti-browning agents. J. Food Process. Preserv. 2019, 43, 1–8. [Google Scholar] [CrossRef]
- Paudel, P.; Seong, S.H.; Wagle, A.; Min, B.S.; Jung, H.A.; Choi, J.S. Antioxidant and anti-browning property of 2-arylbenzofuran derivatives from Morus alba Linn root bark. Food Chem. 2020, 309, 125739. [Google Scholar] [CrossRef]
- Botterweck, A.A.M.; Verhagen, H.; Goldbohm, R.A.; Kleinjans, J.; Van Den Brandt, P.A. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: Results from analyses in the Netherlands Cohort Study. Food Chem. Toxicol. 2000, 38, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Zolghadri, S.; Bahrami, A.; Tareq, M.; Khan, H.; Munoz-munoz, J.; Garcia-molina, F. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [Green Version]
- Afaq, F.; Katiyar, S.K. Polyphenols: Skin Photoprotection and Inhibition of Photocarcinogenesis. Mini. Rev. Med. Chem. 2011, 11, 1200–1215. [Google Scholar]
- Chang, T. An Updated Review of Tyrosinase Inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [Green Version]
- Lyu, X.; Lee, J.; Chen, W.N. Potential natural food preservatives and their sustainable production in yeast: Terpenoids and polyphenols. J. Agric. Food Chem. 2019, 67, 4397–4417. [Google Scholar] [CrossRef]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C.F.R. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef]
- Faustino, M.; Veiga, M.; Sousa, P.; Costa, E.M.; Silva, S.; Pintado, M. Agro-food byproducts as a new source of natural food additives. Molecules 2019, 24, 1056. [Google Scholar] [CrossRef] [Green Version]
- Boutanaev, A.M.; Moses, T.; Zi, J.; Nelson, D.R.; Mugford, S.T.; Peters, R.J.; Osbourn, A. Investigation of terpene diversification across multiple sequenced plant genomes. Proc. Natl. Acad. Sci. USA 2014, 112, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.S. Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials 2012, 5, 1661–1685. [Google Scholar] [CrossRef] [Green Version]
- Rouf, A.; Naik, H.R.; Beigh, M.A.; Kanojia, V.; Mir, S.A.; Aafia, S.; Ayaz, Q.; Altaf, U. Enzymatic browning of apple and its control by chemical treatment: A review. Int. J. Food Sci. Nutr. 2018, 3, 81–88. [Google Scholar]
- Jdey, A.; Falleh, H.; Ben Jannet, S.; Mkadmini Hammi, K.; Dauvergne, X.; Ksouri, R.; Magné, C. Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. South African J. Bot. 2017, 112, 508–514. [Google Scholar] [CrossRef]
- Haliloglu, Y.; Ozek, T.; Tekin, M.; Goger, F.; Baser, K.H.C.; Ozek, G. Phytochemicals, antioxidant, and antityrosinase activities of Achillea sivasica Çelik and Akpulat. Int. J. Food Prop. 2017, 20, S693–S706. [Google Scholar] [CrossRef] [Green Version]
- Welch, C.; Zhen, J.; Bassène, E.; Raskin, I.; Simon, J.E.; Wu, Q. Bioactive polyphenols in kinkéliba tea (Combretum micranthum) and their glucose-lowering activities. J. Food Drug Anal. 2018, 26, 487–496. [Google Scholar] [CrossRef]
- De Morais Lima, G.R.; De Sales, I.R.P.; Filho, M.R.D.C.; De Jesus, N.Z.T.; De Sousa Falcão, H.; Barbosa-Filho, J.M.; Cabral, A.G.S.; Souto, A.L.; Tavares, J.F.; Batista, L.M. Bioactivities of the genus Combretum (Combretaceae): A review. Molecules 2012, 17, 9142–9206. [Google Scholar] [CrossRef] [Green Version]
- Kausar, J.; Muthumani, D.; Hedina, A.; Anand, V. Review of the phytochemical and pharmacological activities of Euphorbia hirta Linn. Pharmacogn. J. 2016, 8, 310–313. [Google Scholar] [CrossRef] [Green Version]
- Al-Snafi, A.E. Pharmacology and therapeutic potential of Euphorbia hirta (Syn: Euphorbia pilulifera)—A review. J. Pharm. 2017, 7, 7–20. [Google Scholar] [CrossRef]
- Dedehou, E.; Dossou, J.; Anihouvi, V.; Soumanou, M.M. A review of cashew (Anacardiumoccidentale L.) apple: Effects of processing techniques, properties and quality of juice. African J. Biotechnol. 2016, 15, 2637–2648. [Google Scholar]
- Cunha, A.G.; Brito, E.S.; Moura, C.F.H.; Ribeiro, P.R.V.; Miranda, M.R.A. UPLC–qTOF-MS/MS-based phenolic profile and their biosynthetic enzyme activity used to discriminate between cashew apple (Anacardium occidentale L.) maturation stages. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1051, 24–32. [Google Scholar] [CrossRef]
- Yi, W.; Wei, Q.; Di, G.; Jing-yu, L.; Yang-li, L. Phenols and flavonoids from the aerial part of Euphorbia hirta. Chin. J. Nat. Med. 2012, 10, 40–42. [Google Scholar]
- Radojkovi, M.; Zekovi, Z.; Joki, S.; Vidovi, S.; Milo, S. Optimization of Solid-Liquid Extraction of Antioxidants from Black Mulberry Leaves by Response Surface Methodology. Food Technol. Biotechnol. 2012, 50, 167–176. [Google Scholar]
- Liu, Y.; Zheng, Y.; Wang, A. Response Surface Methodology for Optimizing Adsorption Process Parameters for Methylene Blue Removal by a Hydrogel Composite. J. Adsorpt. Sci. Technol. 2011, 28, 913–922. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Taha, F.S.; Mohamed, G.F.; Mohamed, S.H.; Mohamed, S.S.; Kamil, M.M. Optimisation of the Extraction of Total Phenolic Compounds from Sunflower Meal and Evaluation of the Bioactivities of Chosen Extracts. Am. J. Food Technol. 2011, 6, 1002–1020. [Google Scholar] [CrossRef]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds, Antioxidants, and Anthocyanins from Grape (Vitis vinifera) Seeds. J. Agric. Food Chem. 2014, 57, 4988–4994. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, Y.; Zheng, J.; Li, S.; Li, A.; Li, H. Optimization of Ultrasound-Assisted Extraction of Natural Antioxidants from the Flower of Jatropha integerrima by Response Surface Methodology. Molecules 2016, 21, 18. [Google Scholar] [CrossRef] [Green Version]
- Amirah, D.M.; Khan, M.R. Comparison of Extraction Techniques on Extraction of Gallic Acid from Stem Bark of Jatropha curcas. J. Appl. Sci. 2012, 12, 1106–1111. [Google Scholar] [CrossRef]
- Altemimi, A.; Watson, D.G.; Choudhary, R.; Dasari, M.R. Ultrasound Assisted Extraction of Phenolic Compounds from Peaches and Pumpkins. PLoS ONE 2016, 11, e0148758. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.; Qu, B.; Zheng, N. Effects of Process Parameters on the Extraction of Quercetin and Rutin from the Stalks of Euonymus Alatus (Thumb.) Sieb and Predictive Model Based on Least Squares Support Vector Machine Optimized by an Improved Fruit Fly Optimization Algorithm. Appl. Sci. 2016, 6, 340. [Google Scholar] [CrossRef] [Green Version]
- Charpe, T.W.; Rathod, V.K. Effect of Ethanol Concentration in Ultrasound Assisted Extraction of Glycyrrhizic Acid from Licorice Root. Iran. J. Chem. Eng. 2014, 11, 21–30. [Google Scholar]
- Gutte, K.B.; Sahoo, A.K.; Ranveer, R.C. Effect of ultrasonic treatment on extraction and fatty acid profile of flaxseed oil. OCL 2015, 22, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Alzeer, J.; Abou Hadeed, K. Ethanol and its Halal status in food industries. Trends Food Sci. Technol. 2016, 58, 14–20. [Google Scholar] [CrossRef]
- Pintus, F.; Span, D.; Corona, A.; Medda, R. Antityrosinase activity of Euphorbia characias extracts. PeerJ 2015, 3, e1305. [Google Scholar] [CrossRef]
- Yuet Ping, K.; Darah, I.; Chen, Y.; Sreeramanan, S.; Sasidharan, S. Acute and subchronic toxicity study of euphorbia hirta L. methanol extract in rats. Biomed Res. Int. 2013, 2013, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rajeh, M.A.B.; Kwan, Y.P.; Zakaria, Z.; Latha, L.Y.; Jothy, S.L.; Sasidharan, S. Acute toxicity impacts of Euphorbia hirta L extract on behavior, organs body weight index and histopathology of organs of the mice and Artemia salina. Pharmacogn. Res. 2012, 4, 170–177. [Google Scholar]
- Innocent, B.Y.; Daniel, A.; Mikponsè, D.A.A.; Frédéric, L.; Raphaël, D.; Evelyne, L.; Célestin, T.C.K.; Sachi, P.; Roseline, B.; Apollinaire, M.G. Histopathological study of toxicity mixture of cashew apple juice (Anacardium occidentale), cow milk and yogurt on the wistar rat. J. Exp. Biol. Agric. Sci. 2016, 4, 435–439. [Google Scholar]
- Kpemissi, M.; Metowogo, K.; Melila, M.; Veerapur, V.P.; Negru, M.; Taulescu, M.; Potârniche, A.V.; Suhas, D.S.; Puneeth, T.A.; Vijayakumar, S.; et al. Acute and subchronic oral toxicity assessments of Combretum micranthum (Combretaceae) in Wistar rats. Toxicol. Rep. 2020, 7, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Pióro-Jabrucka, E.; Pawełczak, A.; Przybył, J.L.; Węglarz, Z. Accumulation of phenolic and sterol compounds in Euphorbia hirta (L.). Herba Pol. 2011, 57, 30–37. [Google Scholar]
- Suênia, M.; Vilar, D.A.; De Souza, G.L.; Vilar, D.D.A.; Leite, J.A.; Raffin, F.N.; Barbosa-Filho, J.M.; Henrique, F.; Nogueira, A.; Rodrigues-Mascarenhas, S.; et al. Assessment of Phenolic Compounds and Anti-Inflammatory Activity of Ethyl Acetate Phase of Anacardium occidentale L. Bark. Molecules 2016, 21, 1–17. [Google Scholar]
- Sampaio, B.L.; Edrada-Ebel, R.; Batista, F.; Costa, D. Effect of the environment on the secondary metabolic profile of Tithonia diversifolia: A model for environmental metabolomics of plants. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Zhang, Y.; Sun, L.; Wang, Y.; Gao, X.; Cheng, Y. Analytica Chimica Acta An ultrafiltration high-performance liquid chromatography coupled with diode array detector and mass spectrometry approach for screening and characterising tyrosinase inhibitors from mulberry leaves. Anal. Chim. Acta 2012, 719, 87–95. [Google Scholar] [CrossRef]
- Wang, B.; Juang, L.; Yang, J.; Chen, L.; Tai, H.; Huang, M. Antioxidant and Antityrosinase Activity of Flemingia macrophylla and Glycine tomentella Roots. Evid.-Based Complement. Altern. Med. 2012, 2012, 1–7. [Google Scholar]
- Wang, Y.; Zhang, G.; Yan, J.; Gong, D. Inhibitory effect of morin on tyrosinase: Insights from spectroscopic and molecular docking studies. Food Chem. 2014, 163, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Asthana, S.; Zucca, P.; Vargiu, A.V.; Sanjust, E.; Ruggerone, P.; Rescigno, A. Structure—Activity Relationship Study of Hydroxycoumarins and Mushroom Tyrosinase. J. Agric. Food Chem. 2015, 63, 7236–7244. [Google Scholar] [CrossRef] [PubMed]
- Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R.; McPhee, D.J. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef] [PubMed]
- Vardanega, R.; Santos, D.T.; Meireles, M.A.A. Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacogn. Rev. 2014, 8, 88–95. [Google Scholar] [PubMed] [Green Version]
- Li, H.; Zhang, Z.; Xue, J.; Cui, L.; Hou, T.; Li, X.; Chen, T. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and rosmarinic acid from perilla leaves using response surface methodology. Food Sci. Technol. 2016, 36, 686–693. [Google Scholar] [CrossRef] [Green Version]
- Zhen-Ming, L.; Zhe, G.J.; Hong-yu, X.; Wen-fang, D.; Zheng-hong, S.J. Optimization of Extraction of Total Triterpenoids from Submergedly Cultured Antrodia camphorata using Response Surface Methodology. Nat. Prod. Res. Dev. 2011, 23, 946–951. [Google Scholar]
- El Khoury, R.; Michael, R.; Marc, J.; Beyrouthy, E.; Baillet, A.; Toufic, G.; Ali, R.; Roger, T. Phytochemical screening and antityrosinase activity of carvacrol, thymoquinone, and four essential oils of Lebanese plants. J. Cosmet Dermatol. 2018, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kumar, T.; Khan, Z.; Oulkar, D.; Singh, B.K.; Maurya, A.; Singh, B.; Banerjee, K. High resolution LC-MS characterization of phenolic compounds and the evaluation of antioxidant properties of a tropical purple radish genotype. Arab. J. Chem. 2017, 13, 1355–1366. [Google Scholar] [CrossRef]
- Sahin, S.; Aybastıer, Ö.; Isik, E. Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology. Food Chem. 2013, 141, 1361–1368. [Google Scholar] [CrossRef] [PubMed]
- Amado, I.R.; Franco, D.; Sanchez, M.; Zapata, C.; Vazquez, J.A. Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem. 2014, 165, 290–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Run | Combretum micranthum Leaves | Euphorbia hirta Plant | Anacardium occidentale | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TPC (mg GAE/g DW) | TTC (mg UAE/g DW) | TPC (mg GAE/g DW) | TTC (mg UAE/g DW) | TPC (mg GAE/g DW) | TTC (mg UAE/g DW) | |||||||
Average Value | Standard Deviation | Average Value | Standard Deviation | Average Value | Standard Deviation | Average Value | Standard Deviation | Average Value | Standard Deviation | Average Value | Standard Deviation | |
1 | 73.01 | 2.69 | 70.30 | 4.48 | 36.89 | 1.94 | 13.40 | 0.61 | 9.91 | 0.28 | 16.22 | 0.14 |
2 | 67.44 | 0.51 | 73.06 | 2.94 | 26.32 | 1.68 | 11.43 | 0.68 | 8.38 | 0.17 | 9.15 | 0.18 |
3 | 80.29 | 1.1 | 68.36 | 6.36 | 43.33 | 4.61 | 14.46 | 0.32 | 10.83 | 0.33 | 15.94 | 0.73 |
4 | 74.37 | 2.04 | 85.60 | 3.60 | 32.49 | 2.38 | 12.44 | 1.78 | 8.93 | 0.17 | 14.46 | 1.33 |
5 | 70.97 | 0.74 | 60.70 | 0.75 | 41.11 | 4.22 | 14.52 | 0.84 | 9.82 | 0.12 | 16.34 | 1.10 |
6 | 78.09 | 1.02 | 89.82 | 8.39 | 27.55 | 2.40 | 12.29 | 0.09 | 8.54 | 0.10 | 15.85 | 0.21 |
7 | 69.37 | 1.95 | 69.35 | 3.33 | 41.37 | 2.24 | 14.92 | 0.61 | 10.65 | 0.26 | 14.67 | 0.50 |
8 | 78.73 | 1.1 | 88.57 | 2.19 | 31.39 | 1.26 | 13.76 | 0.52 | 10.00 | 0.14 | 15.58 | 0.68 |
9 | 78.61 | 0.17 | 81.44 | 2.53 | 37.13 | 3.71 | 13.10 | 0.83 | 10.19 | 0.17 | 18.46 | 1.55 |
10 | 78.09 | 0.74 | 79.03 | 3.40 | 40.27 | 1.68 | 13.15 | 0.92 | 10.29 | 0.37 | 18.18 | 1.17 |
11 | 80.98 | 1.87 | 80.56 | 1.94 | 43.15 | 3.89 | 13.15 | 0.40 | 10.74 | 0.45 | 20.15 | 1.67 |
12 | 77.93 | 1.9 | 80.95 | 2.59 | 38.64 | 2.72 | 12.49 | 0.35 | 10.26 | 0.08 | 19.98 | 2.90 |
13 | 80.17 | 0.2 | 83.10 | 1.87 | 38.70 | 3.07 | 12.70 | 0.61 | 10.08 | 0.16 | 18.40 | 0.21 |
14 | 77.97 | 0.34 | 76.83 | 2.36 | 37.73 | 0.68 | 12.49 | 0.17 | 10.43 | 0.08 | 18.06 | 1.37 |
15 | 83.78 | 0.99 | 88.43 | 3.78 | 40.56 | 2.80 | 12.70 | 0.15 | 10.41 | 0.18 | 18.03 | 0.14 |
16 | 77.81 | 0.85 | 81.88 | 1.56 | 35.06 | 0.85 | 12.55 | 0.52 | 11.71 | 0.11 | 19.55 | 1.51 |
17 | 78.89 | 0.85 | 77.80 | 2.56 | 37.78 | 1.63 | 12.34 | 0.38 | 10.25 | 0.02 | 11.61 | 1.76 |
18 | 84.46 | 0.23 | 81.51 | 2.50 | 37.99 | 1.40 | 13.86 | 0.53 | 11.43 | 0.08 | 19.25 | 0.88 |
19 | 62.08 | 1.59 | 49.93 | 3.04 | 38.96 | 2.71 | 14.36 | 0.76 | 9.14 | 0.15 | 14.49 | 0.76 |
20 | 71.01 | 0.76 | 75.84 | 2.13 | 20.93 | 0.85 | 12.60 | 0.35 | 7.35 | 0.13 | 14.15 | 0.60 |
Total Phenolic Content | Total Triterpenoid Content | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Source | SS 1 | Df 2 | MS 3 | F-Ratio | p-Value | SS | Df | MS | F-Ratio | p-Value |
Combretum micranthum | ||||||||||
A 4 | 29.314 | 1 | 29.314 | 17.32 | 0.0088 | 917.124 | 1 | 917.124 | 196.96 | <0.0001 |
B 5 | 37.4578 | 1 | 37.4578 | 22.13 | 0.0053 | 43.0225 | 1 | 43.0225 | 9.24 | 0.0288 |
C 6 | 4.67492 | 1 | 4.67492 | 2.76 | 0.1575 | 0.000796 | 1 | 0.000796 | 0 | 0.9901 |
AA | 337.811 | 1 | 337.811 | 199.54 | <0.0001 | 544.127 | 1 | 544.127 | 116.86 | 0.0001 |
AB | 0.446512 | 1 | 0.446512 | 0.26 | 0.6294 | 2.62205 | 1 | 2.62205 | 0.56 | 0.4868 |
AC | 97.7901 | 1 | 97.7901 | 57.76 | 0.0006 | 100.394 | 1 | 100.394 | 21.56 | 0.0056 |
BB | 3.71458 | 1 | 3.71458 | 2.19 | 0.1986 | 0.66977 | 1 | 0.66977 | 0.14 | 0.7201 |
BC | 28.7661 | 1 | 28.7661 | 16.99 | 0.0092 | 1.28 | 1 | 1.28 | 0.27 | 0.6225 |
CC | 0.556849 | 1 | 0.556849 | 0.33 | 0.5911 | 43.0799 | 1 | 43.0799 | 9.25 | 0.0287 |
Lack-of-fit | 42.884 | 5 | 8.57679 | 5.07 | 0.0497 | 117.926 | 5 | 23.5851 | 5.07 | 0.0497 |
Pure error | 8.46488 | 5 | 1.69298 | 23.2815 | 5 | 4.6563 | ||||
Total (corr.) | 606.903 | 19 | 1829.9 | 19 | ||||||
R2 | 91.5392 | 92.2834 | ||||||||
R2 adjusted | 83.9245 | 85.3384 | ||||||||
Euphorbia hirta | ||||||||||
A | 414.882 | 1 | 414.882 | 87.43 | 0.0002 | 7.82864 | 1 | 7.82864 | 74.68 | 0.0003 |
B | 21.3192 | 1 | 21.3192 | 4.49 | 0.0876 | 3.09019 | 1 | 3.09019 | 29.48 | 0.0029 |
C | 3.44571 | 1 | 3.44571 | 0.73 | 0.4331 | 0.900954 | 1 | 0.900954 | 8.59 | 0.0326 |
AA | 154.863 | 1 | 154.863 | 32.63 | 0.0023 | 1.22537 | 1 | 1.22537 | 11.69 | 0.0189 |
AB | 1.36951 | 1 | 1.36951 | 0.29 | 0.6142 | 0.13005 | 1 | 0.13005 | 1.24 | 0.316 |
AC | 0.567113 | 1 | 0.567113 | 0.12 | 0.7436 | 0.045 | 1 | 0.045 | 0.43 | 0.5413 |
BB | 3.19556 | 1 | 3.19556 | 0.67 | 0.4492 | 0.356344 | 1 | 0.356344 | 3.4 | 0.1245 |
BC | 9.05251 | 1 | 9.05251 | 1.91 | 0.2258 | 0.005 | 1 | 0.005 | 0.05 | 0.8358 |
CC | 3.56558 | 1 | 3.56558 | 0.75 | 0.4257 | 0.00164 | 1 | 0.00164 | 0.02 | 0.9051 |
Lack-of-fit | 28.0986 | 5 | 5.61971 | 1.18 | 0.4287 | 1.89648 | 5 | 0.379295 | 3.62 | 0.0922 |
Pure error | 23.7274 | 5 | 4.74548 | 0.524133 | 5 | 0.104827 | ||||
Total (corr.) | 658.003 | 19 | 15.9239 | 19 | ||||||
R2 | 92.1237 | 84.7989 | ||||||||
R2 adjusted | 85.0351 | 71.1179 | ||||||||
Anacardium occidentale | ||||||||||
A | 5.1303 | 1 | 5.1303 | 96.19 | 0.0002 | 5.54457 | 1 | 5.54457 | 6.31 | 0.0537 |
B | 2.41633 | 1 | 2.41633 | 45.3 | 0.0011 | 18.6022 | 1 | 18.6022 | 21.18 | 0.0058 |
C | 0.724866 | 1 | 0.724866 | 13.59 | 0.0142 | 6.23314 | 1 | 6.23314 | 7.1 | 0.0447 |
AA | 9.73445 | 1 | 9.73445 | 182.51 | <0.0001 | 50.4501 | 1 | 50.4501 | 57.44 | 0.0006 |
AB | 0.00845 | 1 | 0.00845 | 0.16 | 0.707 | 6.10751 | 1 | 6.10751 | 6.95 | 0.0461 |
AC | 0.28125 | 1 | 0.28125 | 5.27 | 0.0701 | 10.0576 | 1 | 10.0576 | 11.45 | 0.0196 |
BB | 0.131704 | 1 | 0.131704 | 2.47 | 0.1769 | 31.5062 | 1 | 31.5062 | 35.87 | 0.0019 |
BC | 0.08405 | 1 | 0.08405 | 1.58 | 0.2648 | 6.07261 | 1 | 6.07261 | 6.91 | 0.0466 |
CC | 0.433212 | 1 | 0.433212 | 8.12 | 0.0358 | 1.21737 | 1 | 1.21737 | 1.39 | 0.2921 |
Lack-of-fit | 0.977908 | 5 | 0.195582 | 3.67 | 0.0901 | 22.1435 | 5 | 4.4287 | 5.04 | 0.0502 |
Pure error | 0.266683 | 5 | 0.0533367 | 4.39168 | 5 | 0.878337 | ||||
Total (corr.) | 20.9194 | 19 | 153.931 | 19 | ||||||
R2 | 94.0505 | 82.7616 | ||||||||
R2 adjusted | 88.696 | 67.2471 |
No. | Compound Name | Formula | R. T. (min) | Expected Mass (m/z) | Adducts | Observed Mass (m/z) | Mass Error (ppm) | Fragments (relative%) | Detector Counts | R. P. (%) |
---|---|---|---|---|---|---|---|---|---|---|
C. micranthum leaves extract | ||||||||||
Phenolic acid | ||||||||||
1. | Syringic acid | C9H10O5 | 0.59 | 198.05282 | −e | 198.05279 | 2.60 | 182.0572 (100%) | 133170.27 | 11.38 |
2. | p-Coumaric acid ethyl ester | C11H12O3 | 1.56 | 192.07864 | +H | 193.08632 | 2.06 | 175.0755 (100%) | 35086.45 | 3.00 |
3. | Sesamol | C7H6O3 | 2.02 | 138.03169 | +H | 139.03933 | 2.61 | 121.0287 (100%) | 24158.38 | 2.06 |
4. | Dihydrocaffeic acid-3-O-glucuronide | C15H18O10 | 0.62 | 358.09000 | +Na | 381.07991 | 1.81 | 198.0526 (100%) | 19538.90 | 1.67 |
5. | Prodelphinidin trimer GC-C-C | C45H38O20 | 2.28 | 898.19564 | +H, +Na | 899.20573 | 3.13 | 729.1436 (100%), 605.1285 (80%) | 14474.68 | 1.24 |
6. | p-Coumaric acid | C9H8O3 | 3.01 | 164.04734 | +H | 165.05504 | 2.56 | 147.0443 (100%), 119.0493 (60%) | 9977.19 | 0.85 |
7. | Vanillic acid | C8H8O4 | 2.03 | 168.04226 | +H | 169.04982 | 1.69 | 139.0393 (100%), 151.0393 (80% | 3730.41 | 0.32 |
8. | Eugenol 1 | C10H12O2 | 1.56 | 164.08373 | +H | 165.09132 | 1.92 | 147.0807 (100%), | 2514.33 | 0.21 |
Isoflavonoid | ||||||||||
9. | Dihydrodaidzein-7-O-glucuronide | C21H20O10 | 4.70 | 432.10565 | +H, +Na | 433.11431 | 3.20 | 415.1037 (60%), 313.0714 (100%), 283.0608 (100%) | 390762.65 | 33.38 |
Anthocyanins | ||||||||||
10. | Cyanidin-3-O-(6″-p-coumaroyl-glucoside) | C30H27O13 | 2.21 | 595.14517 | −e | 595.14572 | 1.86 | 287.0544 (100%), 425.0877 (50%) | 74911.14 | 6.40 |
11. | Pelargonidin-3-O-coumarylglucoside | C30H27O12 | 3.18 | 579.15025 | −e | 579.15211 | 4.15 | 272.0663 (100%), 563.1574 (20%) | 8481.75 | 0.72 |
12. | Delphinidin-3-O-(6″-p-coumaroyl-glucoside) | C30H27O14 | 0.78 | 611.14008 | −e | 611.14093 | 2.29 | 303.0505 (100%), 287.0553 (80%) | 5366.72 | 0.46 |
Flavonol | ||||||||||
13. | Dihydroquercetin | C15H12O7 | 3.44 | 304.05830 | +H | 305.06674 | 3.82 | 163.0395 (100%) 153.0185 (80%) | 3683.11 | 0.31 |
Flavans | ||||||||||
14. | Leucocyanidin 4 | C15H14O7 | 2.02 | 306.07395 | +H, +Na | 307.08202 | 2.56 | 291.0877 (100%), 181.0501 (30%) | 52544.44 | 4.49 |
15. | Leucopelargonidin | C15H14O6 | 3.00 | 290.07904 | +H | 291.08711 | 2.75 | 229.0504 (20%), 165.0551 (100%) | 43785.59 | 3.74 |
16. | (-)−epigallocatechin | C15H14O7 | 1.82 | 306.07395 | +H, +Na | 307.08240 | 3.81 | 263.0532 (100%), 153.0546 (80%) | 29619.58 | 2.53 |
17. | 6-Geranylnaringenin | C25H28O5 | 4.59 | 408.19367 | +Na | 431.18347 | 1.34 | 273.0768 (100%), 250.820 (80%) | 10237.19 | 0.87 |
18. | Naringenin-4′-O-glucuronide | C21H20O11 | 4.08 | 448.10056 | +H | 449.10878 | 2.09 | 271.0604 (100%), 257.0824 (80%) | 10048.21 | 0.86 |
19. | Naringenin | C15H12O5 | 6.21 | 272.06847 | +H | 273.07601 | 0.97 | 153.0183 (100%) | 3875.93 | 0.33 |
20. | (+)-Catechin-3-O-gallate | C22H18O10 | 2.21 | 442.09000 | +H | 443.09772 | 1.00 | 287.0554 (100%), 291.0875 (80%) | 3315.07 | 0.28 |
Flavone | ||||||||||
21. | Myricetin-3-O-glucoside | C21H20O13 | 4.48 | 480.09039 | +H, +Na | 481.09885 | 2.46 | 153.0183 (100%), 319.0456 (90%) | 18064.01 | 1.54 |
22. | Baicalin hydrate | C21H20O12 | 3.51 | 464.09548 | +H | 465.10369 | 2.02 | 285.0766 (100%), 325.0667 (30%) | 1838.75 | 0.16 |
Triterpenoid | ||||||||||
23. | Micromeric acid | C30H46O3 | 11.22 | 454.34470 | +H | 455.35284 | 1.90 | 383.3285 (100%), 393.3519 (100%), 437.3421 (50%) | 194168.06 | 16.59 |
24. | Cucurbitacin P | C30H48O7 | 9.32 | 520.34000 | −e | 520.34081 | 2.60 | 455.3519 (100%), 337.2736 (80%) | 53383.81 | 4.56 |
25. | Cucurbitacin F2 | C30H46O7 | 9.70 | 518.32435 | −e | 518.32157 | −4.32 | 471.3466 (100%), 355.2645 (30%) | 15060.36 | 1.29 |
Amino acid | ||||||||||
26. | Tryptophan | C11H12N2O2 | 1.80 | 204.08988 | +H | 205.09785 | 3.42 | 188.0714 (100%), 144.0808 (50%) | 8815.60 | 0.75 |
E. hirta plant extract | ||||||||||
Phenolic acids | ||||||||||
27. | 4-Hydroxycoumarin | C9H6O3 | 1.76 | 162.03169 | +H | 163.03911 | 0.85 | 145.0286 (100%) | 279416.51 | 11.14 |
28. | Caffeoylquinic acid | C16H18O9 | 2.58 | 354.09508 | +Na, +H | 377.08446 | 0.43 | 163.0391 (100%), 145.0287 (40%), 177.0548 (30%) | 53371.32 | 2.13 |
29. | Chlorogenic acid | C16H18O9 | 1.76 | 354.09508 | +Na, +H | 377.08440 | 0.25 | 163.0391 (100%), 215.0530 (10%) | 40229.57 | 1.60 |
30. | 3,4-Dihydro-1-benzopyran-2-one | C9H8O2 | 1.65 | 148.05243 | +H | 149.05981 | 0.73 | 105.0336 (100%), 123.0441 (30%) | 29274.70 | 1.17 |
31. | 2-S-Glutathionyl caftaric acid | C23H27N3O15S | 4.58 | 617.11629 | −e | 617.11476 | −1.59 | 153.0184 (100%), 307.0608 (60%), 529.1350 (10%), 409.0923 (10%), | 25104.15 | 1.00 |
32. | Punicalin | C34H22O22 | 2.42 | 782.06027 | +H | 783.06859 | 1.33 | 277.0346 (100%), 303.0141 (80%) | 19495.48 | 0.78 |
33. | 4,5-Dicaffeoylquinic acid | C25H24O12 | 4.67 | 516.12678 | +Na, +H | 539.11657 | 1.07 | 163.0392 (100%), 499.1239 (50%), 287.0555 (30%) | 16282.13 | 0.65 |
34. | Feruloyl tartaric acid | C14H14O9 | 2.25 | 326.06378 | +H | 327.07182 | 2.31 | 153.0185 (100%), 309.0611 (10%) | 13817.19 | 0.55 |
35. | Feruloyl malic acid | C14H14O8 | 0.84 | 310.06887 | −e | 310.06978 | 4.71 | 200.0449 (100%), 135.0294 (70%) | 11092.96 | 0.44 |
Isoflavonoids | ||||||||||
36. | Genistin | C21H20O10 | 4.81 | 432.10565 | +H, +Na | 433.11317 | 0.56 | 415.1020 (100%), 397.0920 (80%), 379.0814 (90%) | 91534.53 | 3.65 |
37. | Dihydrodaidzein-7-O-glucuronide | C21H20O10 | 4.48 | 432.10565 | +H | 433.11318 | 0.59 | 415.1021 (100%), 255.0646 (80%), 367.0811 (80%) | 15379.65 | 0.61 |
Anthocyanins | ||||||||||
38. | Pelargonidin-3-O-sambubioside | C26H29O14 | 4.14 | 565.15573 | −e | 565.15593 | 1.32 | 547.1449 (100%), 379.0816 (80%) | 87443.37 | 3.49 |
39. | Pelargonidin-3-O-sophoroside | C27H31O15 | 3.89 | 595.16630 | −e | 595.16623 | 0.81 | 577.1547 (100%), 271.0596 (90%), 529.1332 (70%), 559.1457 (30%) | 58442.79 | 2.33 |
40. | Peonidin-3-O-arabinoside | C21H21O11 | 5.58 | 449.10839 | −e | 449.10960 | 3.93 | 303.0508 (100%), 287.0557 (20%), 413.08617 (10%), | 34687.76 | 1.38 |
41. | Pelargonidin-3-O-coumarylglucoside | C30H27O12 | 1.67 | 579.15025 | −e | 579.15016 | 0.79 | 149.0598 (100%), 275.0559 (80%) | 15007.82 | 0.60 |
Flavonols | ||||||||||
42. | Quercetin-3-O-(6″-malonylglucoside) | C24H22O15 | 5.24 | 550.09587 | +H, +Na | 551.10419 | 1.90 | 303.0502 (100%), 345.0609 (20%) | 282214.49 | 11.25 |
43. | Quercetin-7-O-glucoside | C21H20O12 | 5.02 | 464.09548 | +H, +Na | 465.10365 | 1.93 | 303.0502 (100%), 433.1132 (30%) | 107974.95 | 4.30 |
44. | Quercetin-3-O-glucuronide | C21H18O13 | 2.25 | 478.07474 | +H | 479.08307 | 2.19 | 309.0611 (100%), 303.0521 (805) | 58211.34 | 2.32 |
45. | Quercetin-3-O-rhamnosyl-galactoside | C27H30O16 | 3.44 | 610.15338 | +H, +Na | 611.16197 | 2.14 | 153.0184 (100%), 303.0550 (40%) | 24565.15 | 0.98 |
46. | Quercetin-3-O-xylosylglucuronide | C26H26O17 | 3.85 | 610.11700 | +Na | 633.10908 | 4.52 | 315.0512 (100%), 319.0457 (90%) | 10086.09 | 0.40 |
47. | Methylgalangin | C15H10O6 | 5.81 | 286.04774 | +H | 287.05573 | 2.50 | 213.0547 (100%), 163.0394 (80%) | 9976.99 | 0.40 |
Flavans | ||||||||||
48. | Naringenin-7-O-glucuronide | C21H20O11 | 2.85 | 448.10056 | +H | 449.10811 | 0.60 | 287.0552 (100%) | 206146.03 | 8.22 |
49. | Naringenin-4′-O-glucuronide | C21H20O11 | 5.58 | 448.10056 | +Na, +H | 471.09085 | 2.26 | 303.0508 (100%), 274.0477 (30%), 287.0557 (10%) | 59330.32 | 2.36 |
Flavones | ||||||||||
50. | Morin | C15H10O7 | 5.57 | 302.04265 | +H | 303.05090 | 3.21 | 153.0187 (100%), 285.0402 (40%), | 737073.25 | 29.38 |
51. | Kaempferol | C15H10O6 | 6.09 | 286.04774 | +H | 287.05597 | 3.32 | 231.0640 (100%), 229.0497 (80%) | 68887.11 | 2.75 |
52. | Apigenin-7-O-apiosyl-glucoside | C26H28O14 | 4.60 | 564.14791 | +H, +Na | 565.15639 | 2.14 | 547.1458 (100%), 529.1350 (60%), 303.0503 (40%), 337.0486 (30%) | 43427.69 | 1.73 |
53. | Luteolin-7-O-malonyl-glucoside | C24H22O14 | 5.82 | 534.10096 | +H, +Na | 535.11030 | 3.86 | 287.0559 (100%), 163.0394 (40%) | 27471.22 | 1.09 |
54. | 6-Hydroxyluteolin-7-glucoside | C20H18O13 | 2.86 | 466.07474 | +H | 467.08270 | 1.46 | 287.0552 (100%), 321.0242 (90%) | 9781.46 | 0.39 |
55. | Kaempferol-3-O-rhamnoside | C21H20O10 | 6.09 | 432.10565 | +Na, +H | 455.09458 | −0.64 | 287.0559 (100%), 153.0186 (60%) | 9303.30 | 0.37 |
Triterpenoids | ||||||||||
56. | Cucurbitacin E | C32H44O8 | 8.37 | 556.30362 | +Na | 579.29556 | 4.71 | 301.1419 (100%), 277.2167 (50%), 317.2063 (30%) | 30532.85 | 1.22 |
57. | Cucurbitacin R6 | C30H46O7 | 8.89 | 518.32435 | −e | 518.32630 | 4.82 | 453.2625 (100%), 184.0736 (80%), 442.2353 (60%), 335.2584 (30%) | 9589.35 | 0.38 |
Amino acid | ||||||||||
58. | Tryptophan | C11H12N2O2 | 1.90 | 204.08988 | +H | 205.09736 | 1.00 | 188.0707 (100%), 170.0601 (90%) | 23930.23 | 0.95 |
A. occidentale fruits extract | ||||||||||
Phenolic acid | ||||||||||
59. | Dihydrocaffeic acid-3-O-glucuronide | C15H18O10 | 0.62 | 358.09000 | +Na | 381.08111 | 4.97 | 198.0526 (100%) | 114811.09 | 33.61 |
60. | o-Coumaric acid | C9H8O3 | 0.76 | 164.04734 | +H | 165.05492 | 1.81 | 147.0442 (100%), 109.0657 (70%) | 17841.73 | 5.22 |
61. | Cinnamoyl glucose | C15H18O7 | 4.89 | 310.10525 | +Na | 333.09472 | 0.74 | 204.1017 (100%), 275.0926 (50%) | 12415.40 | 3.63 |
62. | p-Coumaroyl glucose | C15H18O8 | 2.49 | 326.10017 | +Na | 349.08884 | −1.57 | 147.0437 (100%), 119.0492 (70%) | 7877.05 | 2.31 |
63. | 2-Hydroxyphenylacetic acid | C8H8O3 | 0.80 | 152.04734 | +H | 153.05465 | 0.22 | 119.0490 (100%), 107.1491 (50%) | 6340.16 | 1.86 |
64. | 4-Hydroxybenzaldehyde | C7H6O2 | 0.76 | 122.03678 | +H | 123.04446 | 3.25 | 95.0494 (100%), 107.0491 (70%) | 3808.08 | 1.11 |
65. | 3,4-Dihydro-1-benzopyran-2-one | C9H8O2 | 4.35 | 148.05243 | +H | 149.05992 | 1.45 | 131.0494 (100%), 103.0545 (80%) | 3467.34 | 1.01 |
66. | 3,4-Dihydroxyphenylglycol | C8H10O4 | 0.80 | 170.05791 | +H | 171.06566 | 2.79 | 139.0388 (100%), 153.0546 (80%) | 1729.20 | 0.51 |
67. | Salvianolic acid C | C26H20O10 | 0.73 | 492.10565 | +H | 493.11517 | 4.56 | 207.0288 (100%), 225.0389 (90%) | 1399.04 | 0.41 |
Anthocyanin | ||||||||||
68. | Delphinidin-3-O-galactoside | C21H21O12 | 4.89 | 465.10330 | −e | 465.10344 | 1.49 | 303.0502 (100%) | 2014.41 | 0.59 |
Flavonols | ||||||||||
69. | Quercetin-3-O-galactoside | C21H20O12 | 4.88 | 464.09548 | +Na, +H | 487.08535 | 1.34 | 153.0184 (100%), 303.0502 (20%) | 8556.56 | 2.50 |
70. | Dihydroquercetin-3-O-rhamnoside | C21H22O11 | 3.00 | 450.11621 | +Na | 473.10555 | 0.25 | 303.0517 (100%) | 1800.84 | 0.53 |
Flavans | ||||||||||
71. | 3′-O-Methyl-(-)−epicatechin-7-O-glucuronide | C22H24O12 | 4.35 | 480.12678 | +H | 481.13465 | 1.23 | 313.0710 (100%), 245.0470 (20%) | 8248.27 | 2.41 |
72. | Naringenin-5-O-glucuronide | C21H20O11 | 5.49 | 448.10056 | +Na, +H | 471.09023 | 0.96 | 303.0501 (100%), 287.0552 (30%) | 2980.31 | 0.87 |
73. | (-)−epigallocatechin | C15H14O7 | 0.82 | 306.07395 | +H | 307.08107 | −0.52 | 263.0532 (100%), 153.0546 (80%) | 2464.54 | 0.72 |
74. | 6-Prenylnaringenin | C20H20O5 | 4.00 | 340.13107 | +H | 341.13985 | 4.39 | 323.1282 (100%), 193.0859 (80%) | 2278.05 | 0.67 |
75. | Leucopelargonidin-3-O-alpha-l-rhamno-beta-d-glucopyranoside | C27H34O15 | 4.67 | 598.18977 | +H, +Na | 599.19741 | 0.60 | 495.1482 (100%), 374.1589 (30%), 290.0399 (20%) | 2086.70 | 0.61 |
Flavones | ||||||||||
76. | Myricetin | C15H10O8 | 4.67 | 318.03757 | +H | 319.04544 | 1.88 | 153.0182 (100%), 165.0183 (30%) | 9795.79 | 2.87 |
77. | Morin | C15H10O7 | 5.49 | 302.04265 | +H | 303.05049 | 1.86 | 287.0552 (90%), 153.0437 (100%) | 8258.29 | 2.42 |
78. | Isovitexin | C21H20O10 | 4.71 | 432.10565 | +H, +Na | 433.11372 | 1.85 | 337.0715 (100%), 415.1022 (90%), 283.0605 (80%) | 5879.40 | 1.72 |
79. | Myricetin-3-O-glucoside | C21H20O13 | 4.23 | 480.09039 | +Na, +H | 503.08111 | 2.97 | 319.0453 (100%) | 4580.01 | 1.34 |
Flavanone | ||||||||||
80. | Pinocembrin | C15H12O4 | 6.09 | 256.07356 | +H | 257.08090 | 0.24 | 153.0185 (100%) | 2037.62 | 0.60 |
Lactone | ||||||||||
81. | Coumarin | C9H6O2 | 0.76 | 146.03678 | +H | 147.04406 | 0.04 | 123.0442 (100%), 95.0494 (50%) | 3826.69 | 1.12 |
Chalcon | ||||||||||
82. | Phloretin | C15H14O5 | 4.59 | 274.08412 | +H | 275.09162 | 0.79 | 131.0491 (100%), 151.0390 (70%), 133.0649 (60%) | 3254.60 | 0.95 |
Triterpenoids | ||||||||||
83. | Micromeric acid | C30H46O3 | 8.55 | 454.34470 | +H | 455.35167 | -0.66 | 437.3409 (100%), 423.3296 (20%) | 54817.17 | 16.05 |
84. | Cucurbitacin E | C32H44O8 | 8.37 | 556.30362 | +Na | 579.29310 | 0.45 | 301.1407 (100%) | 24481.80 | 7.17 |
85. | Cucurbitacin F2 | C30H46O7 | 9.72 | 518.32435 | −e | 518.32215 | −3.19 | 471.3475 (100%), 454.2935 (50%) | 11253.75 | 3.29 |
86. | Cucurbitacin R6 | C30H46O7 | 8.72 | 518.32435 | −e | 518.32544 | 3.16 | 335.2584 (100%), 184.0736 (80%), 361.2357 (40%) | 6412.54 | 1.88 |
87. | Cucurbitacin P | C30H48O7 | 9.12 | 520.34000 | −e | 520.34005 | 1.14 | 337.2739 (100%), 398.2676 (30%) | 5347.24 | 1.57 |
Fatty acid | ||||||||||
88. | 3-Hydroxyphenylvaleric acid | C11H14O3 | 7.66 | 194.09429 | +H | 195.10218 | 3.10 | 95.0493 (100%) | 1556.22 | 0.46 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeitoun, H.; Khan, Z.; Banerjee, K.; Salameh, D.; Lteif, R. Antityrosinase Activity of Combretum micranthum, Euphorbia hirta and Anacardium occidentale Plants: Ultrasound Assisted Extraction Optimization and Profiling of Associated Predominant Metabolites. Molecules 2020, 25, 2684. https://doi.org/10.3390/molecules25112684
Zeitoun H, Khan Z, Banerjee K, Salameh D, Lteif R. Antityrosinase Activity of Combretum micranthum, Euphorbia hirta and Anacardium occidentale Plants: Ultrasound Assisted Extraction Optimization and Profiling of Associated Predominant Metabolites. Molecules. 2020; 25(11):2684. https://doi.org/10.3390/molecules25112684
Chicago/Turabian StyleZeitoun, Hussein, Zareen Khan, Kaushik Banerjee, Dominique Salameh, and Roger Lteif. 2020. "Antityrosinase Activity of Combretum micranthum, Euphorbia hirta and Anacardium occidentale Plants: Ultrasound Assisted Extraction Optimization and Profiling of Associated Predominant Metabolites" Molecules 25, no. 11: 2684. https://doi.org/10.3390/molecules25112684
APA StyleZeitoun, H., Khan, Z., Banerjee, K., Salameh, D., & Lteif, R. (2020). Antityrosinase Activity of Combretum micranthum, Euphorbia hirta and Anacardium occidentale Plants: Ultrasound Assisted Extraction Optimization and Profiling of Associated Predominant Metabolites. Molecules, 25(11), 2684. https://doi.org/10.3390/molecules25112684