Mentha piperita L. Micropropagation and the Potential Influence of Plant Growth Regulators on Volatile Organic Compound Composition
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vitro Cultures
2.2. Peppermint’s Volatile Organic Compound (VOC) Composition
3. Materials and Methods
3.1. Micropropagation
3.2. Aroma Profiling
3.3. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Santoro, M.V.; Nievas, F.; Zygadlo, J.; Giordano, W.; Banchio, E. Effects of Growth Regulators on Biomass and the Production of Secondary Metabolites in Peppermint (Mentha piperita) Micropropagated in Vitro. Am. J. Plant Sci. 2013, 4, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, J.C.; de Oliveira, M.E.B.; Cardoso, F.D.C. Advances and challenges on the in vitro production of secondary metabolites from medicinal plants. Hortic. Bras. 2019, 37, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Tisserat, B.; Vaughn, S.F. Essential oils enhanced by ultra-high carbon dioxide levels from Lamiaceae species grown in vitro and in vivo. Plant Cell Rep. 2001, 20, 361–368. [Google Scholar] [CrossRef]
- Bertoli, A.; Leonardi, M.; Krzyzanowska, J.; Oleszek, W.; Pistelli, L. In vitro production of M. × piperita not containing pulegone and menthofuran. Acta. Biochim. Pol. 2012, 59, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Mckay, D.L.; Blumberg, J.B. A Review of the Bioactivity and Potential Health Benefits of Peppermint Tea (Mentha piperita L.). Phyther. Res. 2006, 20, 619–633. [Google Scholar] [CrossRef]
- Zuzarte, M.R.; Dinis, A.M.; Cavaleiro, C.; Salgueiro, L.R.; Canhoto, J.M. Trichomes, essential oils and in vitro propagation of Lavandula pedunculata (Lamiaceae). Ind. Crop. Prod. J. 2010, 32, 580–587. [Google Scholar]
- Prins, C.L.; Vieira, I.J.C.; Freitas, S.P. Growth regulators and essential oil production. Brazilian Soc. Plant Physiol. 2010, 22, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Talankova-Sereda, T.E.; Kolomiets, J.V.; Holubenko, A.V.; Nuzhyna, N.V. The influence of clonal micropropagation on productivity and differentiation of Mentha piperita plant tissues. Regul. Mech. Biosyst. 2019, 10, 337–344. [Google Scholar] [CrossRef]
- Mystkowska, I.; Zarzecka, K.; Baranowska, A.; Gugala, M. Mięta pieprzowa (Mentha piperita L.)-roślina zielarska o różnorodnych właściwościach biologicznych i leczniczych. Herbalism 2016, 1, 1–10. [Google Scholar] [CrossRef]
- Lis, A. Olejki miętowe. Aromaterapia 2012, 2, 1–15. [Google Scholar]
- Wijaya, B.K.; Hardjo, P.H.; Emantoko, S. Menthol from the stem and leaf in-vitro Mentha piperita Linn. In Proceedings of the 2nd International Conference on Natural Resources and Life Sciences (NRLS); IOP Conference Series: Earth and Environmental Science 293; IOP Publishing: Surabaya, Indonesia, 2019; pp. 1–8. [Google Scholar]
- Wojciechowska, I.; Wojciechowska, A.; Wieszczycka, K. Fitofarmakologia w leczeniu chorób żołądka. Kosmos. Probl. Nauk Biol. 2016, 3, 383–387. [Google Scholar]
- Salehi, B.; Stojanovic-Radic, Z.; Matejic, J.; Sharopov, F.; Antola, H.; Kręgiel, D.; Sen, S.; Sharifi-Rad, M.; Acharya, K.; Sharifi-Rad, R.; et al. Plants of Genus Mentha: From Farm to Food Factory. Plants 2018, 7, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, V.; Hansel, R.; Blumenthal, M.; Tyler, V.E. Rational Phytotherapy. A Reference Guide for Physicians and Pharmacists, 5th ed.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Wińska, K.; Mączka, W.; Łyczko, J.; Grabarczyk, M.; Czubaszek, A.; Szumny, A. Essential Oils as Antimicrobial Agents-Myth or Real Alternative? Molecules 2019, 24, 2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arctander, S. Perfume and Flavor Materials of Natural Origin; Allured Publishing: Elizabeth, NJ, USA, 2017. [Google Scholar]
- Moghaddam, M.; Pourbaige, M.; Tabar, H.K.; Farhadi, N.; Hosseini, S.M.A. Composition and Antifungal Activity of Peppermint (Mentha piperita) Essential Oil from Iran. J. Essent. Oil Bear. Plants 2013, 16, 506–512. [Google Scholar] [CrossRef]
- de Oliveira Hashimoto, S.G.; Marinho Neto, F.; Luiza Ruiz, M.; Acchile, M.; Campos Chagas, E.; Chaves, M.F.C.; Laterça Martins, M. Essential oils of Lippia sidoides and Mentha piperita against monogenean parasites and their in fluence on the hematology of Nile tilapia. Aquaculture 2016, 450, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, S.C.C.; Menezes, A.P.P.; Barbalho, S.M.; Guiguer, É.L. Properties of Mentha Piperita: A Brief Review. World J. Pharm. Med. Res. 2017, 3, 309–313. [Google Scholar]
- Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R. (Ed.) Academic Press: London, UK, 2016. [Google Scholar]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; Masztalerz, K.; Szumny, A. HS-SPME Analysis of True Lavender (Lavandula angustifolia Mill.) Leaves Treated by Various Drying Methods. Molecules 2019, 24, 764. [Google Scholar] [CrossRef] [Green Version]
- Łyczko, J.; Jałoszyński, K.; Surma, M.; García-Garví, J.-M.; Carbonell-Barrachina, A.A.; Szumny, A. Determination of Various Drying Methods’ Impact on Odour Quality of True Lavender (Lavandula angustifolia Mill.) Flowers. Molecules 2019, 24, 2900. [Google Scholar] [CrossRef] [Green Version]
- Mahdavikia, F.; Saharkhiz, M.J. Phytotoxic activity of essential oil and water extract of peppermint (Mentha × piperita L. CV. Mitcham). J. Appl. Res. Med. Aromat. Plants 2015, 2, 146–153. [Google Scholar] [CrossRef]
- Cavalieri, A.; Caporali, F. Effects of essential oils of cinnamon lavender and peppermint on germination of Mediterranean weeds. Allelopath. J. 2010, 25, 441–452. [Google Scholar]
- Rita, P.; Animesh, D.K. An updated overview on peppermint (Mentha piperita L.). Int. Res. J. Pharm. 2011, 2, 1–10. [Google Scholar]
- Vaidya, B.N.; Asanakunov, B.; Shahin, L.; Jernigan, H.L.; Joshee, N.; Dhekney, S.A. Improving micropropagation of Mentha × piperita L. using a liquid culture system in vitro. In Vitro Cell. Dev. Biol.-Plant 2019, 55, 71–80. [Google Scholar] [CrossRef]
- Sato, H.; Enomoto, S.; Oka, S.; Hosomi, K.; Ito, Y. Reports Plant regeneration from protoplasts of peppermint (Mentha piperita L.). Plant Cell Rep. 1993, 12, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Chaput, M.-H.; San, H.; De Hys, L.; Grenier, E.; David, H.; David, A. How Plant Regeneration from Mentha × piperita L. and Mentha × citrata Ehrh Leaf Protoplasts Affects their Monoterpene Composition in Field Conditions. J. Plant Physiol. 1996, 149, 481–488. [Google Scholar] [CrossRef]
- Akter, K.T.; Hoque, M.A. In Vitro Shoot Regeneration of Mint (Mentha Sp. L.) Using Different Types of Explants and Levels of Benzylaminopurine. Bangladesh J. Agril. Res. 2018, 43, 703–716. [Google Scholar]
- Krasnyanski, S.; Ball, T.M.; Sink, K.C. Somatic hybridization in mint: Identification and characterization of Mentha piperita (+) M. spicata hybrid plants. Theor. Appl. Genet. 1998, 96, 683–687. [Google Scholar] [CrossRef]
- Faure, O.; Diemer, F.; Moja, S.; Jullien, F. Mannitol and thidiazuron improve in vitro shoot regeneration from spearmint and peppermint leaf disks. Plant Cell. Tissue Organ Cult. 1998, 52, 209–212. [Google Scholar] [CrossRef]
- Samantaray, A.; Sial, P.; Kar, M. Micro-propagation and biochemical analysis of Spear Mint (Mentha spicata). Indian J. Innov. Dev. 2012, 1, 489–493. [Google Scholar]
- Sharan, A.K.; Dubey, S.R.; Kumari, S.; Chandra, V.; Singh, B.P.; Kumar, G. Effect of combination of different hormones on Micro propagation of Mentha sps. Ann. Plant Sci. 2014, 3, 837–844. [Google Scholar]
- Mehta, J.; Naruka, R.; Sain, M.; Dwivedi, A.; Sharma, D.; Mirza, J. An efficient protocol for clonal micropropagation of Mentha piperita L. (Pipperment). Asian J. Plant Sci. Res. 2012, 2, 518–523. [Google Scholar]
- Akter, K.T.; Hoque, M.A.; Yeasmin, T. Effect of IBA Concentration on In Vitro Root Regeneration of Different Mint Explants. Ann. Bangladesh Agric. 2016, 20, 49–59. [Google Scholar]
- Islam, A.T.M.R.; Islam, M.; Alam, M.F. Rapid in vitro Clonal Propagation of Herbal Spice, Mentha piperita L. Using Shoot Tip and Nodal Explants. Res. Plant Sci. 2017, 5, 43–50. [Google Scholar]
- Vasile, L.; Maria, Z.; Simona, V.; Eliza, A. Use of nodal explants in “in vitro” micro-propagation of Mentha piperita L. Fasc. Protecţia Mediu. 2011, 16, 247–251. [Google Scholar]
- Jullien, F.; Diemer, F.; Colson, M.; Faure, O. An optimising protocol for protoplast regeneration of three peppermint cultivars (Mentha × piperita). Plant Cell. Tissue Organ Cult. 1998, 54, 153–159. [Google Scholar] [CrossRef]
- Pharmacopoea Polonica Editio VII; Plata, H. (Ed.) Polskie Towarzystwo Farmaceutyczne: Warszawa, Poland, 2008; ISBN 9788388157530. [Google Scholar]
- Baser, K.; Husnu, C.; Gerhard, B. Handbook of Essential Oils. Science, Technology, and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Ludwiczuk, A.; Kiełtyka-Dadasiewicz, A.; Sawicki, R.; Golus, J.; Ginalska, G. Essential Oils of some Mentha Species and Cultivars, their Chemistry and Bacteriostatic Activity. Nat. Prod. Commun. 2016, 11, 1018. [Google Scholar] [CrossRef] [Green Version]
- Güntert, M.; Krammer, G.; Lambrecht, S.; Sommer, H.; Surburg, H.; Werkhoff, P. Flavor Chemistry of Peppermint Oil (Mentha piperita L.) in Aroma Active Compounds in Foods; Takeoka, G., Guntert, M., Engel, K.-H., Eds.; American Chemical Society: Washington, DC, USA, 2001. [Google Scholar]
- Shigeto, A.; Wada, A.; Kumazawa, K. Identification of the novel odor active compounds “p-menthane lactones” responsible for the characteristic aroma of fresh peppermint leaf. Biosci. Biotechnol. Biochem. 2019, 84, 421–427. [Google Scholar] [CrossRef]
- Díaz-Maroto, M.C.; Castillo, N.; Castro-Vázquez, L.; de Torres, C.; Pérez-Coello, M.S. Authenticity Evaluation of Different Mints based on their Volatile Composition and Olfactory Profile. J. Essent. Oil Bear. Plants 2008, 11, 1–16. [Google Scholar] [CrossRef]
- Frérot, E.; Bagnoud, A.; Vuilleumier, C. Menthofurolactone: A new p-menthane lactone in Mentha piperita L.: Analysis, synthesis and olfactory properties. Flavour Fragr. J. 2002, 17, 218–226. [Google Scholar] [CrossRef]
- Picard, M.; de Revel, G.; Marchand, S. First identification of three p-menthane lactones and their potential precursor, menthofuran, in red wines. Food Chem. 2017, 217, 294–302. [Google Scholar] [CrossRef]
- Tisserat, B.; Vaughn, S.F. Growth, morphogenesis, and essential oil production in Mentha spicata L. plantlets in vitro. In Vitr. Cell. Dev. Biol.-Plant 2008, 44, 40–50. [Google Scholar]
- Tavares, E.S.; Lopes, D.; Bizzo, H.R.; Lage, C.L.S.; Leitao, S.G. Kinetin Enhanced Linalool Production by in vitro Plantlets of Lippia alba. J. Essent. Oil Res. 2004, 16, 405–408. [Google Scholar] [CrossRef]
- Khanam, D.; Mohammad, F. Effect of Structurally Different Plant Growth Regulators (PGRs) on th Concentration, Yield, and Constituents of Peppermint Essential Oil. J. Herbs. Spices Med. Plants 2018, 23, 26–35. [Google Scholar] [CrossRef]
- Stoeva, T.; Iliev, L. Influence of some phenylurea cytokinins on spearmint essential oil composition. Bulg. J. Plant Physiol. 1997, 23, 66–71. [Google Scholar]
- Murasnige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Agsays with Tohaoco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oils by Ion Trap Mass Spectroscopy; Academic Press: San Diego, CA, USA, 2012. [Google Scholar]
- Abdi, H.; Williams, L.J. Tukey’s honestly significant difference (HSD) test. Encycl. Res. Des. Thousand Oaks, CA Sage 2010, 1–5. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Medium | Explant Type | Plant Height (cm) | No. of New Nodal Segments | No. of New Lateral Shoots | Length of the Smallest Lateral New Shoots (cm) | Length of the Largest Lateral New Shoots | Average Root Length (cm) |
---|---|---|---|---|---|---|---|
MS-K | Apical meristem | 11.5 ± 0.16 a | 5.1 ± 0.21 ns | 1.9 ± 0.12 ns | 2.2 ± 0.20 f | 5.0 ± 0.60 ns | 3.5 ± 0.15 e |
MS-1 | 5.8 ± 0.20 h | 4.1 ± 0.36 ns | 1.8 ± 0.54 ns | 2.3 ± 0.15 f | 2.8 ± 0.97 ns | 3.4 ± 0.24 e | |
MS-2 | 6.7 ± 0.13 fg | 4.9 ± 0.06 ns | 1.8 ± 0.54 ns | 3.1 ± 0.24 bc | 4.1 ± 1.41 ns | 3.0 ± 0.29 e | |
MS-3 | 10.1 ± 0.12 b | 5.5 ± 0.67 ns | 2.6 ± 0.57 ns | 2.6 ± 0.14 ef | 4.1 ± 0.29 ns | 1.9 ± 0.07 f | |
MS-4 | 6. 5 ± 0.15 fg 1 | 4.7 ± 0.57 ns 2 | 2.2 ± 0.73 ns | 2.2 ± 0.19 f | 3.3 ± 1.26 ns | 4.2 ± 0.17 d | |
Average | 8.1 ± 2.31 a | 4.9 ± 0.61 b | 2.1 ± 0.54 ns | 2.5 ± 0.40 b | 3.9 ± 1.13 ns | 3.4 ± 0.77 b | |
MS-K | Nodal segment | 6.9 ± 0.23 ef | 5.0 ± 0.32 ns | 1.4 ± 0.29 ns | 4.4 ± 0.13 a | 4.6 ± 0.23 ns | 4.7 ± 0.23 cd |
MS-1 | 6.4 ± 0.10 g | 4.7 ± 0.55 ns | 2.3 ± 1.01 ns | 3.3 ± 0.09 bc | 4.5 ± 0.38 ns | 5.2 ± 0.14 c | |
MS-2 | 7.7 ± 0.25 cd | 5.5 ± 0.21 ns | 2.9 ± 0.81 ns | 3.6 ± 0.10 b | 5.2 ± 0.75 ns | 7.0 ± 0.23 a | |
MS-3 | 7.2 ± 0.13 de | 6.3 ± 0.61 ns | 1.4 ± 0.30 ns | 4.5 ± 0.20 a | 4.9 ± 0.60 ns | 4.3 ± 0.28 d | |
MS-4 | 7.8 ± 0.15 c | 6.1 ± 0.40 ns | 2.2 ± 0.78 ns | 2.8 ± 0.12 de | 4.6 ± 0.88 ns | 6.0 ± 0.31 b | |
Average | 7.2 ± 0.54 b | 5.5 ± 0.73 a | 2,0 ± 0.84 ns | 3.7 ± 0.68 a | 4.8 ± 0.58 ns | 5.4 ± 1.01 a |
Compound | LRIexp 1 | LRIlit 2 | MS-K | MS-1 | MS-2 | MS-3 | MS-4 | Odor Description 4 |
---|---|---|---|---|---|---|---|---|
(mg/100 g 3) | ||||||||
Butanoic acid, 3-methyl-, ethyl ester | 857 | 849 | tr 5 | 0.013 | tr | 0.014 | tr | |
Butanoic acid, 2-methyl-, ethyl ester | 861 | 851 | 0.011 a 6 | 0.045 b | tr | 0.041 b | 0.011 a | fruity, strawberry-like |
Butanoic acid, propyl ester | 899 | 899 | tr | 0.013 | tr | - 7 | tr | |
α-Thujene | 930 | 929 | 0.011 | 0.026 | tr | 0.021 | 0.018 | |
α-Pinene | 932 | 937 | 0.112 a | 0.282 c | 0.196 e | 0.331 b | 0.239 d | terpene-like, pinene-like |
Camphene | 953 | 952 | tr | tr | tr | tr | tr | |
Sabinene | 976 | 974 | 0.118 | 0.314 | 0.191 | 0.314 | 0.247 | |
β-Pinene | 979 | 979 | 0.198 | 0.509 | 0.334 | 0.524 | 0.445 | |
1-Octen-3-ol | 982 | 980 | 0.060 a | 0.276 b | 0.079 ad | 0.138 c | 0.095 d | mushroom-like |
3-Octanone | 987 | 986 | tr | tr | - | - | tr | |
β-Myrcene | 992 | 991 | 0.449 | 1.771 | 0.915 | 1.897 | 0.947 | |
3-Octanol | 997 | 994 | 0.025 | 0.066 | 0.038 | 0.045 | 0.042 | |
α-Phellandrene | 1004 | 1005 | tr | 0.028 | 0.015 | 0.014 | tr | |
Isovaleric acid, isobutyl ester | 1006 | 1005 | tr | 0.019 | tr | tr | tr | |
α-Terpinene | 1018 | 1017 | 0.010 a | 0.013 a | tr | 0.014 a | 0.016 a | floral |
Unknown | 1021 | tr | tr | - | tr | - | ||
p-Cymene | 1025 | 1025 | 0.071 | 0.079 | 0.062 | 0.055 | 0.116 | |
Limonene+Eucalyptol | 1031 | 1030 | 4.432 a | 6.030 b | 2.065 d | 7.703 c | 6.574 b | herbal, camphor, minty, balsamic, eucalyptus |
β-cis-Ocimene | 1041 | 1038 | 0.357 | 1.385 | 0.783 | 1.531 | 1.018 | |
β-trans-Ocimene | 1052 | 1049 | 0.043 a | 0.160 b | 0.088 d | 0.162 b | 0.118 c | medicinal |
γ-Terpinene | 1062 | 1060 | 0.039 | 0.049 | 0.029 | 0.031 | 0.071 | |
cis-Sabinene hydrate | 1070 | 1070 | 0.033 | 0.203 | 0.082 | 0.148 | 0.055 | |
cis-Linalool oxide | 1075 | 1074 | tr | - | tr | - | tr | |
trans-Linalool oxide (furanoid) | 1083 | 1085 | tr | 0.013 | 0.012 | tr | tr | |
1-Nonen-3-ol | 1083 | 1080 | tr | tr | 0.012 | tr | tr | |
p-Cymenene | 1090 | 1090 | 0.039 | 0.128 | 0.085 | 0.124 | 0.055 | |
Linalool | 1099 | 1099 | 0.148 a | 0.397 b | 0.302 d | 0.348 c | 0.245 e | floral, citrus-like |
Butanoic acid, 3-methyl-, 3-methylbutyl ester | 1099 | 1104 | 0.020 | 0.041 | 0.032 | 0.041 | 0.039 | |
Butanoic acid, 3-methyl-, pentyl ester | 1099 | 1100 | 0.028 | 0.062 | 0.059 | 0.093 | 0.050 | |
Fenchol | 1114 | 1116 | 0.013 | 0.024 | 0.023 | 0.028 | 0.032 | |
Unknown | 1121 | tr | tr | tr | tr | tr | ||
Cosmene | 1127 | 1131 | tr | 0.011 | 0.021 | 0.024 | 0.026 | |
cis-Limonene oxide | 1139 | 1134 | 0.017 | 0.032 | 0.021 | 0.031 | tr | |
trans-Verbenol | 1152 | 1148 | tr | 0.015 | tr | 0.017 | tr | |
α-Terpineol | 1177 | 1177 | 0.026 | 0.085 | 0.059 | 0.076 | 0.037 | |
Terpinen-4-ol | 1183 | 1189 | 0.020 | 0.047 | 0.038 | 0.038 | tr | |
cis-Dihydro carvone | 1194 | 1192 | tr | 0.015 a | 0.012 a | 0.010 a | tr | sweet spices |
Myrtenal | 1196 | 1193 | 0.010 | 0.013 | 0.015 | 0.010 | 0.011 | |
trans-Isopiperitenol | 1204 | 1210 | 0.015 | 0.017 | 0.038 | 0.038 | 0.024 | |
Cumic aldehyde | 1229 | 1239 | 0.020 | 0.032 | 0.062 | 0.024 | 0.021 | |
Butanoic acid, 3-methyl-, 3-cis-hexenyl ester, | 1240 | 1238 | 0.026 | 0.032 | 0.076 | 0.034 | 0.066 | |
Butanoic acid, 3-methyl-, hexyl ester | 1245 | 1244 | tr | tr | tr | tr | tr | |
Carvone | 1253 | 1247 | tr | 0.011 a | 0.015 a | 0.014 a | tr | fresh, minty, herbal |
cis-Carvone oxide | 1261, | 1263 | 0.348 a | 1.280 b | 0.713 d | 0.824 c | 0.600 e | minty spearmint |
cis-2-decen-1-ol | 1271 | 1271 | 0.025 | tr | 0.053 | 0.145 | 0.026 | |
Perillal | 1277 | 1272 | 0.027 | 0.058 | 0.144 | 0.076 | 0.068 | |
Pentanoic acid, 3-cis-hexenyl ester, | 1282 | 1281 | 0.018 | 0.060 | 0.126 | 0.062 | 0.074 | |
Piperitenone | 1339 | 1340 | 0.016 a | 0.030 a | 0.120 b | 0.055 c | 0.068 c | cumin, anise-like |
Menthofurolactone | 1376 | 1367 | 3.845 a | 5.276 e | 19.727 b | 15.903 c | 11.753d | coumarin, phenolic, minty, very powerful |
Caryophyllene | 1415 | 1419 | 0.032 | 0.145 | 0.091 | 0.221 | 0.087 | |
cis-Muurola-4(15),5-diene | 1464 | 1463 | 0.148 | 0.397 | 0.396 | 0.528 | 0.484 | |
Germacrene D | 1481 | 1481 | 0.139 | 0.303 | 0.343 | 0.503 | 0.442 | |
Valencene | 1499 | 1496 | 0.271 | 0.541 | 0.806 | 1.193 | 1.011 | |
11.220 ± 0.428 | 20.344 ± 0.606 | 28.276 ± 1.038 | 33.445 ± 1.134 | 25.232 ± 0.989 | ||||
0.303 | 0.452 | 0.707 | 0.778 | 0.47 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łyczko, J.; Piotrowski, K.; Kolasa, K.; Galek, R.; Szumny, A. Mentha piperita L. Micropropagation and the Potential Influence of Plant Growth Regulators on Volatile Organic Compound Composition. Molecules 2020, 25, 2652. https://doi.org/10.3390/molecules25112652
Łyczko J, Piotrowski K, Kolasa K, Galek R, Szumny A. Mentha piperita L. Micropropagation and the Potential Influence of Plant Growth Regulators on Volatile Organic Compound Composition. Molecules. 2020; 25(11):2652. https://doi.org/10.3390/molecules25112652
Chicago/Turabian StyleŁyczko, Jacek, Krystian Piotrowski, Kornelia Kolasa, Renata Galek, and Antoni Szumny. 2020. "Mentha piperita L. Micropropagation and the Potential Influence of Plant Growth Regulators on Volatile Organic Compound Composition" Molecules 25, no. 11: 2652. https://doi.org/10.3390/molecules25112652