GC-MS Composition and Olfactory Profile of Concretes from the Flowers of Four Nicotiana Species
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Obtaining of Nicotiana Flower Concretes
4.3. Olfactory Evaluation of the Concretes
4.4. GC-MS analysis of Nicotiana Flower Concretes
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Knapp, S.; Chase, M.; Clarkson, J. Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon 2004, 53, 73–82. [Google Scholar] [CrossRef]
- Jassbi, A.R.; Zare, S.; Asadollahi, M.; Schuman, M. Ecological roles and biological activities of specialized metabolites from the genus Nicotiana. Chem. Rev. 2017, 117, 12227–12280. [Google Scholar] [CrossRef] [PubMed]
- Goodspeed, T. On the evaluation of the genus Nicotiana. Proc. Natl. Acad. Sci. USA 1947, 33, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Chase, M.; Knapp, S.; Cox, A.; Clarkson, J.; Butsko, Y.; Joseph, J.; Savolainen, V.; Parokonny, A. Molecular systematic, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Ann. Bot. 2003, 92, 107–127. [Google Scholar] [CrossRef] [PubMed]
- Kishore, K. Monograph of tobacco (Nicotiana tabacum). Ind. J. Drugs 2014, 2, 5–23. [Google Scholar]
- Lücker, J.; Schwab, W.; van Hautum, B.; Blaas, J.; van der Plas, L.; Bouwmeester, H.; Verhoeven, H. Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. Plant Physiol. 2004, 134, 510–519. [Google Scholar]
- Nugroho, L.H.; Verpoorte, R. Secondary metabolism in tobacco. Plant Cell Tiss. Org. 2002, 68, 105–125. [Google Scholar] [CrossRef]
- Rodgman, A.; Perfetti, T. The Chemical Components of Tobacco and Tobacco Smoke, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Leffingwell, J. Basic chemical constituents of tobacco leaf and differences among tobacco types. In Tobacco: Production, Chemistry and Technology; Davis, D., Nielsen, M., Eds.; Blackwell Science: London, UK, 1999; pp. 265–284. [Google Scholar]
- Loughrin, J.; Hamilton-Kemp, T.; Andersen, R.; Hildebrand, D. Circadian rhythm of volatile emission from flowers of Nicotiana sylvestris and N suaveolens. Physiologia Plantarium 1991, 83, 492–496. [Google Scholar] [CrossRef]
- Loughrin, J.; Hamilton-Kemp, T.; Burton, H.; Andersen, R.; Hildebrand, D. Glycosidically bound volatile components of Nicotiana sylvestris and N suaveolens flowers. Phytochemistry 1992, 31, 1537–1540. [Google Scholar] [CrossRef]
- Raguso, R.; Levin, R.; Foose, S.; Holmberg, M.; McDade, L. Fragrance chemistry, nocturnal rhythms and pollination ‘‘syndromes’’ in Nicotiana. Phytochemistry 2003, 63, 265–284. [Google Scholar] [CrossRef]
- Zha, H.-G.; Flowers, V.L.; Yang, M.; Chen, L.-Y.; Sun, H. Acidic α-galactosidase is the most abundant nectarin in floral nectar of common tobacco (Nicotiana tabacum). Ann. Bot. 2012, 109, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Piechulla, B.; Bartelt, R.; Brosemann, A.; Effmert, U.; Bouwmeester, H.; Hippauf, F.; Brandt, W. The a-terpineol to 1,8-cineole cyclization reaction of tobacco terpene synthases. Plant Physiol. 2016, 172, 2120–2131. [Google Scholar] [CrossRef] [PubMed]
- Raguso, R.; Schlumpberger, B.; Kaczorowski, R.; Holtsford, T. Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes. Phytochemistry 2006, 67, 1931–1942. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.H.; Braymer, H.D.; Murphy, E.L.; Chobnet, W.; Scully, N.; Wender, S.H. Methyl ethers of quercetin in tobacco flowers. J. Org. Chem. 1960, 25, 2063–2064. [Google Scholar] [CrossRef]
- Snook, M.; Chortyk, O.; Sisson, V.; Costell, C. The flower flavonols of Nicotiana species. Phytochemistry 1992, 31, 1639–1647. [Google Scholar] [CrossRef]
- Sakai, K.-I.; Shimamoto, Y. Developmental instability in leaves and flowers of Nicotiana tabacum. Genetics 1965, 51, 801–815. [Google Scholar]
- Zhu, C.; Gerjets, T.; Sandmann, G. Nicotiana glauca engineered for the production of ketocarotenoids in flowers and leaves by expressing the cyanobacterial crtO ketolase gene. Transgenic Res. 2007, 16, 813–821. [Google Scholar] [CrossRef]
- Shitan, N. Secondary metabolites in plants: Transport and self-tolerance mechanisms. Biosci. Biotechnol. Biochem. 2016, 80, 1283–1293. [Google Scholar] [CrossRef]
- Dewey, R.E.; Xie, J. Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 2013, 94, 10–27. [Google Scholar] [CrossRef]
- Loughrin, J.; Hamilton-Kemp, T.; Andersen, R.; Hildebrand, D. Volatiles from flowers of Nicotiana sylvestris, N otophora and Malus × domestica: Headspace components and day/night changes in their relative concentrations. Phytochemistry 1990, 29, 2473–2477. [Google Scholar] [CrossRef]
- Fähnrich, A.; Krause, K.; Piechulla, B. Product variability of the ‘cineole cassette’ monoterpene synthases of related Nicotiana species. Mol. Plant 2011, 4, 965–984. [Google Scholar] [CrossRef] [PubMed]
- Fähnrich, A.; Brosemann, A.; Teske, L.; Neumann, M. Synthesis of ‘cineole cassette’ monoterpenes in Nicotiana section Alatae: Gene isolation, expression, functional characterization and phylogenetic analysis. Plant Mol. Biol. 2012, 79, 537–553. [Google Scholar] [CrossRef] [PubMed]
- Loughrin, J.; Hamilton-Kemp, T.; Andersen, R.; Hildebrand, D. Headspace compounds from flowers of Nicotiana tabacum and related species. J. Agric. Food Chem. 1990, 38, 455–460. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, Y.; Li, M.; Zhao, S.; Hu, Z. Composition, antioxidative and antimicrobial activities of tobacco flower bud oil. Tob. Sci. Technol. 2015, 48, 76–80. [Google Scholar]
- Xu, C.; Zhao, S.; Li, M.; Dai, Y.D.; Tan, L.; Liu, Y. Chemical composition, antimicrobial and antioxidant activities of essential oil from flue-cured tobacco flower bud. Biotechnol. Biotechnol. Equip. 2016, 30, 1026–1030. [Google Scholar] [CrossRef]
- Schlotzhauer, W.; Horvat, R.; Chortyk, O.; Jackson, D. Volatile constituents from the flowers of Nicotiana longiflora. J. Essent. Oil Res. 1994, 6, 195–197. [Google Scholar] [CrossRef]
- Schlotzhauer, W.; Horvat, R.; Chortyk, O.; Nottigham, S.; Jackson, D. Comparison of the volatile flower oils of Nicotiana rustica and N forgetiana. J. Essent. Oil Res. 1995, 7, 265–269. [Google Scholar] [CrossRef]
- Duan, S.; Du, Y.; Hou, X.; Yan, N.; Dong, W.; Mao, X.; Zhang, Z. Chemical basis of the fungicidal activity of tobacco extracts against Valsa mali. Molecule 2016, 21, 1743. [Google Scholar] [CrossRef]
- Lay, F.T.; Brugliera, F.; Anderson, M.A. Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol. 2003, 131, 1283–1293. [Google Scholar] [CrossRef]
- Fragrantica Inc, San Diego, CA, USA Tobacco Blossom White Tobacco. Available online: https://wwwfragranticacom/notes/ (accessed on 14 May 2020).
- Cosmetic Ingredient Database (CosIng) of the European Commission. Available online: https://eceuropaeu/growth/sectors/cosmetics/cosing_en (accessed on 14 May 2020).
- UNION, PEAN. Regulation (EC) No 1223/2009 of the European Parliament and of the Council. Off. J. Eur. Union. 2009, 342, 59. [Google Scholar]
- Goossens, A. Cosmetic contact allergens. Cosmetics 2016, 3, 5. [Google Scholar] [CrossRef]
- Sarkic, A.; Stappen, I. Essential oils and their single compounds in cosmetics-a critical review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef]
- Bauer, K.; Garbe, D.; Surburg, H. Common Fragrance and Flavor Materials Preparation, Properties and Uses, 4th ed.; Wiley-VCH: Weinheim, NY, USA, 2001. [Google Scholar]
- Banožić, M.; Babić, J.; Jokić, S. Recent advances in extraction of bioactive compounds from tobacco industrial waste-a review. Ind. Crops Prod. 2020, 144, 112009. [Google Scholar] [CrossRef]
- Dimanov, D.; Dyulgersky, Y.; Zheliazkov, I. Selection of big leaf tobaccos in Bulgaria-status and perspectives (review). Agric. Sci. 2012, 11, 57–60. [Google Scholar]
- Popova, V.; Ivanova, T.; Stoyanova, A.; Nikolova, V.; Docheva, M.; Hristeva, T.; Damyanova, S.; Nikolov, N. Chemical constituents in leaves and aroma products of Nicotiana rustica L tobacco. Int. J. Food Stud. 2020, 9, 146–159. [Google Scholar] [CrossRef]
- Popova, V.; Ivanova, T.; Stoyanova, A.; Nikolova, V.; Hristeva, T.; Gochev, V.; Yonchev, Y.; Nikolov, N.; Zheljazkov, V.D. Terpenoids in the essential oil and concentrated aromatic products obtained from Nicotiana glutinosa L leaves. Molecules 2020, 25, 30. [Google Scholar] [CrossRef]
- Popova, V.; Ivanova, T.; Nikolova, V.; Stoyanova, A.; Docheva, M.; Hristeva, T.; Damyanova, S.; Nikolov, N. Biologically active and volatile compounds in leaves and extracts of Nicotiana alata Link & Otto from Bulgaria. J. Pharm. Sci. Res. 2017, 9, 2045–2051. [Google Scholar]
- Stoyanova, A.; Georgiev, E.; Atanasova, T.A. Handbook for Laboratory Practice in Essential Oils; Acad. Publ. House: Plovdiv, Bulgaria, 2007. [Google Scholar]
- Kapetanović, S. Results of extraction of tobacco flowers and inflorescences with volatile solvents with regard to yield and quality of essential oils. Tobacco 1989, 39, 91–102. [Google Scholar]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 5th ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Jackson, D.M.; Danehower, D.A. Integrated case study: Nicotiana leaf surface components and their effects on insect pests and disease. In Plant Cuticles: An Integrated Functional Approach; Kerstiens, G., Ed.; BIOS Scientific Publishers, Ltd.: Oxford, UK, 1996; pp. 231–254. [Google Scholar]
- Bailey, J.; Vincent, G.; Burden, R. Diterpenes from Nicotiana glutinosa and their effect on fungal growth. J. Gen. Microbiol. 1974, 85, 57–64. [Google Scholar] [CrossRef]
- Dudareva, N.; Pichersky, E. Floral scent metabolic pathways: Their regulation and evolution. In Biology of Floral Scent; Dudareva, N., Pichersky, E., Eds.; Taylor & Francis Group: Boca Raton, FL, USA; London, UK, 2006; pp. 55–78. [Google Scholar]
- Roberts, D.L.; Rowland, R.L. Macrocyclic diterpenes α- and β-4,8,13-duvatriene-1,3-diols from tobacco. J. Org. Chem. 1962, 27, 3989–3995. [Google Scholar] [CrossRef]
- Chang, S.Y.; Grunwald, C. Duvatrienediols in cuticular wax of Burley tobacco leaves. J. Lipid. Res. 1976, 17, 7–11. [Google Scholar] [PubMed]
- Mashkovskii, M.D.; Babayan, E.A.; Oboimakova, A.N.; Bulaeva, V.M.; Severtseva, V.A.; Lyubimova, B.I.; Tentsova, A.I. The State Pharmacopoeia of the USSR, 11th ed.; Medicina: Moscow, Russia, 1990. [Google Scholar]
- International Organization for Standardization (ISO) Homepage. Available online: https://wwwisoorg/standard/36385html (accessed on 14 May 2020).
- Adams, R. Identification of Essential Oil Components by Gas. Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
Sample Availability: Not available. |
Index | N. rustica | N. glutinosa | N. alata (WF)1 | N. alata (PF)2 | N. tabacum (OR)3 | N. tabacum (FCV)4 |
---|---|---|---|---|---|---|
Moisture (fresh flowers), % | 86.61 ± 0.75 5 | 81.13 ± 0.70 | 85.14 ± 0.75 | 84.64 ± 0.73 | 84.33 ± 0.73 | 84.49 ± 0.74 |
Yield of concrete, % FW 6 | 0.21 ± 0.01 | 0.48 ± 0.01 | 0.27 ± 0.01 | 0.38 ± 0.01 | 0.57 ± 0.01 | 0.81 ± 0.01 |
Yield of concrete, % DW 7 | 1.42 ± 0.01 a | 2.46 ± 0.02 b | 1.58 ± 0.01 a | 2.65 ± 0.02 b | 3.14 ± 0.03 c | 5.24 ± 0.05 d |
Appearance of concretes 8 | Waxy, semi-solid masses with yellow-green color |
Species | Odor Description 1 |
---|---|
N. rustica | Typical green, herbaceous odor, with slight honey-like undertones |
N. glutinosa | Green, slightly floral odor with honey-like undertones |
N. alata (WF)2 | Floral, honey-like odor with sweet undertones |
N. alata (PF)3 | Typical floral odor with slight green and honey-like undertones |
N. tabacum (OR)4 | Very strong green odor with fresh undertones, reminiscent of freshly cut hay |
N. tabacum (FCV)5 | Very strong green odor with slight floral and honey-like undertones |
No | Compounds | RI 1 | Content, % of TIC 2 | |||||
---|---|---|---|---|---|---|---|---|
N. rustica | N. glutinosa | N. alata (WF)3 | N. alata (PF)4 | N. tabacum (OR)5 | N. tabacum (FCV)6 | |||
1 | Butanoic acid, 3-methyl- | 851 | 1.71 ± 0.01 7 | 0.25 ± 0.00 | nd | nd | 1.89 ± 0.01 | nd |
2 | α-3 hexene | 939 | nd 8 | nd | nd | nd | nd | 0.13 ± 0.00 |
3 | Pentanoic acid, 3-methyl | 946 | 11.11 ± 0.10 | 0.19 ± 0.00 | nd | nd | 12.22 ± 0.11 | nd |
4 | Benzaldehyde | 965 | nd | nd | nd | nd | nd | 0.29 ± 0.00 |
5 | β-Pinene | 979 | nd | nd | nd | nd | nd | 0.11 ± 0.00 |
6 | Hexanoic acid, 5-methyl- | 983 | nd | 1.24 ± 0.01 | nd | nd | nd | nd |
7 | Hexanoic acid, 4-methyl- | 1008 | 2.27 ± 0.02 | 2.58 ± 0.02 | nd | nd | 2.49 ± 0.02 | nd |
8 | Limonene | 1030 | nd | nd | nd | nd | nd | 0.51 ± 0.00 |
9 | 1,8-cineole | 1032 | nd | nd | nd | nd | nd | 0.15 ± 0.00 |
10 | Linalool | 1103 | nd | nd | nd | nd | nd | 0.17 ± 0.00 |
11 | n-Octanoic acid | 1173 | nd | nd | 3.81 ± 0.03 | 3.43 ± 0.03 | nd | nd |
12 | Naphtalene | 1181 | nd | nd | nd | nd | nd | 0.14 ± 0.00 |
13 | Linalyl acetate | 1259 | nd | nd | nd | nd | nd | 0.09 ± 0.00 |
14 | 2-Methylmaphtalene | 1295 | nd | nd | nd | nd | nd | 0.21 ± 0.00 |
15 | 1-Methylnaphtalene | 1312 | nd | nd | nd | nd | nd | 0.11 ± 0.00 |
16 | Nicotine | 1367 | 2.86 ± 0.02 | 1.63 ± 0.01 | 0.17 ± 0.00 | 0.16 ± 0.00 | 2.14 ± 0.02 | 0.31 ± 0.00 |
17 | Solanone | 1374 | nd | nd | nd | nd | nd | 0.48 ± 0.00 |
18 | β-Caryophyllene | 1419 | nd | nd | nd | nd | nd | 0.07 ± 0.00 |
19 | β-Farnesene | 1448 | nd | nd | nd | nd | nd | 0.08 ± 0.00 |
20 | n-Pentadecane | 1500 | nd | nd | nd | nd | nd | 1.55 ± 0.01 |
21 | n-Hexadecane | 1600 | nd | nd | nd | nd | nd | 2.41 ± 0.02 |
22 | 4-allyl-syringol | 1614 | nd | nd | nd | nd | nd | 1.02 ± 0.01 |
23 | 4-propyl syringol | 1620 | nd | nd | nd | nd | nd | 1.36 ± 0.01 |
24 | Syringaldehyde | 1673 | nd | nd | nd | nd | nd | 0.72 ± 0.00 |
25 | n-Heptadecane | 1700 | nd | nd | nd | nd | nd | 0.52 ± 0.00 |
26 | Tetradecanoic acid | 1778 | nd | nd | nd | nd | nd | 0.30 ± 0.00 |
27 | Phenanthrene | 1790 | nd | nd | nd | nd | nd | 0.17 ± 0.00 |
28 | Athracene | 1798 | nd | nd | nd | nd | nd | 0.11 ± 0.00 |
29 | n-Octadecane | 1800 | nd | nd | nd | nd | nd | 0.13 ± 0.00 |
30 | Pentadecanoic acid | 1875 | nd | nd | nd | nd | nd | 0.38 ± 0.00 |
31 | n-Nonadecane | 1900 | nd | nd | nd | nd | nd | 0.61 ± 0.00 |
32 | Sclareoloxide | 1906 | nd | 0.30 ± 0.00 | nd | nd | nd | nd |
33 | n-Hexadecanoic acid | 1979 | 1.08 ± 0.01 | 0.21 ± 0.00 | 0.14 ± 0.00 | 0.13 ± 0.00 | 1.19 ± 0.01 | nd |
34 | 13-Epimanool | 2055 | nd | 14.95 ± 0.13 | nd | nd | nd | nd |
35 | n-Eicosane | 2000 | nd | nd | nd | nd | nd | 0.74 ± 0.00 |
36 | Thunbergol | 2065 | nd | nd | nd | nd | nd | 2.27 ± 0.02 |
37 | n-Heneicosane | 2100 | 1.63 ± 0.01 | 0.36 ± 0.00 | 1.13 ± 0.01 | 1.02 ± 0.01 | 1.79 ± 0.01 | 0.30 ± 0.00 |
38 | Methyl octadecanoate | 2128 | nd | nd | nd | nd | nd | 0.49 ± 0.00 |
39 | Duvatrienediol isomer (α) | 2163 | nd | nd | nd | nd | nd | 4.86 ± 0.04 |
40 | (Z,Z)-Linoleic acid | 2168 | 3.39 ± 0.03 | 0.56 ± 0.00 | 0.25 ± 0.00 | 0.23 ± 0.00 | 3.03 ± 0.02 | 3.52 ± 0.03 |
41 | Octadecanoic acid | 2188 | nd | nd | nd | nd | nd | 0.61 ± 0.00 |
42 | n-Docosane | 2200 | 0.25 ± 0.00 | 0.75 ± 0.00 | 0.43 ± 0.00 | 0.39 ± 0.00 | 0.27 ± 0.00 | 1.23 ± 0.01 |
43 | Duvatrienediol isomer (β) | 2214 | nd | nd | nd | nd | nd | 2.01 ± 0.01 |
44 | Sclareol | 2222 | nd | 25.89 ± 0.24 | nd | nd | 0.24 ± 0.00 | nd |
45 | 4,8,13-Duvatriene-1,3-diol isomer (α) | 2275 | nd | nd | nd | nd | nd | 4.26 ± 0.03 |
46 | 4,8,13-Duvatriene-1,3-diol isomer (β) | 2282 | nd | nd | nd | nd | nd | 2.43 ± 0.02 |
47 | Tributyl acetylcitrate | 2254 | 9.10 ± 0.08 | 0.31 ± 0.00 | 0.76 ± 0.00 | 30.69 ± 0.29 | 10.01 ± 0.09 | nd |
48 | Podocarp-7-en-3-one, 13β-methyl-13-vinyl- | 2274 | nd | 5.65 ± 0.05 | nd | nd | nd | nd |
49 | 3-α-Hydroxy manool | 2286 | nd | 16.02 ± 0.15 | nd | nd | nd | nd |
50 | n-Tricosane | 2300 | 1.35 ± 0.01 | 0.37 ± 0.00 | 0.32 ± 0.00 | 0.29 ± 0.00 | 1.48 ± 0.01 | 8.07 ± 0.07 |
51 | n-Tetracosane | 2400 | 1.79 ± 0.01 | 0.48 ± 0.00 | 0.72 ± 0.00 | 0.65 ± 0.00 | 1.97 ± 0.01 | 8.28 ± 0.07 |
52 | n-Pentacosane | 2500 | 2.77 ± 0.02 | 0.33 ± 0.00 | 0.81 ± 0.00 | 0.73 ± 0.00 | 3.05 ± 0.02 | 12.86 ± 0.11 |
53 | n-Hexacosane | 2600 | 2.05 ± 0.01 | 0.46 ± 0.00 | 0.62 ± 0.00 | 0.56 ± 0.00 | 2.26 ± 0.01 | 14.13 ± 0.13 |
54 | n-Heptacosane | 2700 | 2.51 ± 0.02 | 0.59 ± 0.00 | 0.45 ± 0.00 | 0.40 ± 0.00 | 2.76 ± 0.02 | 5.14 ± 0.04 |
55 | Phthalic acid, diisooctyl ester | 2712 | 2.37 ± 0.02 | 1.03 ± 0.01 | 3.62 ± 0.03 | 3.26 ± 0.03 | 2.61 ± 0.02 | nd |
56 | n-Octacosane | 2800 | 5.52 ± 0.05 | 1.16 ± 0.01 | 0.82 ± 0.00 | 0.74 ± 0.00 | 5.07 ± 0.04 | 4.31 ± 0.03 |
57 | Terephthalic acid, di(2-ethylhexyl) ester | 2869 | nd | 9.48 ± 0.08 | 42.85 ± 0.40 | 4.56 ± 0.04 | nd | nd |
58 | n-Nonacosane | 2900 | 4.37 ± 0.04 | 3.49 ± 0.03 | 1.21 ± 0.01 | 4.09 ± 0.03 | 3.81 ± 0.03 | 3.36 ± 0.03 |
59 | n-Triacontane | 3000 | 12.07 ± 0.11 | 1.19 ± 0.01 | 6.62 ± 0.06 | 6.96 ± 0.05 | 13.28 ± 0.12 | 3.95 ± 0.03 |
60 | n-Hentriacontane | 3100 | 2.54 ± 0.02 | 0.90 ± 0.00 | 2.65 ± 0.02 | 4.38 ± 0.04 | 2.09 ± 0.02 | nd |
61 | n-Dotriacontane | 3200 | 4.31 ± 0.04 | 1.51 ± 0.01 | 11.92 ± 0.10 | 14.72 ± 0.13 | 3.15 ± 0.03 | nd |
62 | n-Tritriacontane | 3300 | 2.80 ± 0.02 | 0.84 ± 0.00 | 3.18 ± 0.03 | 5.86 ± 0.05 | 2.08 ± 0.02 | nd |
63 | n-Tetratriacontane | 3400 | 14.55 ± 0.13 | 3.49 ± 0.03 | 10.15 ± 0.09 | 9.13 ± 0.08 | 15.01 ± 0.14 | nd |
64 | n-Heptatriacontane | 3500 | 1.37 ± 0.01 | 1.16 ± 0.01 | 1.90 ± 0.01 | 2.71 ± 0.02 | 1.51 ± 0.01 | nd |
65 | n-Hexatriacontane | 3600 | 3.72 ± 0.03 | 0.45 ± 0.00 | 2.75 ± 0.02 | 2.47 ± 0.02 | 3.09 ± 0.02 | nd |
Sum of the identified | 97.49 | 97.82 | 97.28 | 97.56 | 98.49 | 95.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popova, V.; Ivanova, T.; Stoyanova, A.; Nikolova, V.; Hristeva, T.; Zheljazkov, V.D. GC-MS Composition and Olfactory Profile of Concretes from the Flowers of Four Nicotiana Species. Molecules 2020, 25, 2617. https://doi.org/10.3390/molecules25112617
Popova V, Ivanova T, Stoyanova A, Nikolova V, Hristeva T, Zheljazkov VD. GC-MS Composition and Olfactory Profile of Concretes from the Flowers of Four Nicotiana Species. Molecules. 2020; 25(11):2617. https://doi.org/10.3390/molecules25112617
Chicago/Turabian StylePopova, Venelina, Tanya Ivanova, Albena Stoyanova, Violeta Nikolova, Tsveta Hristeva, and Valtcho D. Zheljazkov. 2020. "GC-MS Composition and Olfactory Profile of Concretes from the Flowers of Four Nicotiana Species" Molecules 25, no. 11: 2617. https://doi.org/10.3390/molecules25112617
APA StylePopova, V., Ivanova, T., Stoyanova, A., Nikolova, V., Hristeva, T., & Zheljazkov, V. D. (2020). GC-MS Composition and Olfactory Profile of Concretes from the Flowers of Four Nicotiana Species. Molecules, 25(11), 2617. https://doi.org/10.3390/molecules25112617