Next Article in Journal
Anticancer Ruthenium Complexes with HDAC Isoform Selectivity
Previous Article in Journal
Production and Mechanical Characterisation of TEMPO-Oxidised Cellulose Nanofibrils/β-Cyclodextrin Films and Cryogels
Previous Article in Special Issue
NMR Relaxation Measurements on Complex Samples Based on Real-Time Pure Shift Techniques
Open AccessFeature PaperArticle

NMR-Based Chemical Profiling, Isolation and Evaluation of the Cytotoxic Potential of the Diterpenoid Siderol from Cultivated Sideritis euboea Heldr.

1
Department of Pharmacognosy & Chemistry of Natural Products, School of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
2
Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
3
Hellenic Agricultural Organization DEMETER, Institute of Breeding and Plant Genetic Resources, IBPGR, Department of Medicinal and Aromatic Plants, Thermi, 57001 Thessaloniki, Greece
*
Authors to whom correspondence should be addressed.
Academic Editor: Maria Carla Marcotullio
Molecules 2020, 25(10), 2382; https://doi.org/10.3390/molecules25102382
Received: 27 April 2020 / Revised: 12 May 2020 / Accepted: 19 May 2020 / Published: 20 May 2020
Diterpenes are characteristic compounds from the genus Sideritis L., possessing an array of biological activities. Siderol is the main constituent of the ent-kaurene diterpenes in Sideritis species. In order to isolate the specific compound and evaluate for the first time its cytotoxic activity, we explored the dichloromethane extract of cultivated Sideritis euboea Heldr. To track the specific natural bioactive agent, we applied NMR spectroscopy to the crude plant extract, since NMR can serve as a powerful and rapid tool both to navigate the targeted isolation process of bioactive constituents, and to also reveal the identity of bioactive components. Along these lines, from the rapid 1D 1H NMR spectrum of the total crude plant extract, we were able to determine the characteristic proton NMR signals of siderol. Furthermore, with the same NMR spectrum, we were able to categorize several secondary metabolites into chemical groups as a control of the isolation process. Therefore, this non-polar extract was explored, for the first time, revealing eleven compounds—one fatty acid ester; 2-(p-hydroxyphenyl)ethylstearate (1), three phytosterols; β-sitosterol (2), stigmasterol (3), and campesterol (4); one triterpenoid; ursolic acid (5), four diterpenoids; siderol (6), eubol (7), eubotriol (8), 7-epicandicandiol (9) and two flavonoids; xanthomicrol (10) and penduletin (11). The main isolated constituent was siderol. The antiproliferative potential of siderol was evaluated, using the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay, on three human cancer cell lines DLD1, HeLa, and A549, where the IC50 values were estimated at 26.4 ± 3.7, 44.7 ± 7.2, and 46.0 ± 4.9 μΜ, respectively. The most potent activity was recorded in the human colon cancer cell line DLD1, where siderol exhibited the lowest IC50. Our study unveiled the beneficial potential of siderol as a remarkable cytotoxic agent and the significant contribution of NMR spectroscopy towards the isolation and identification of this potent anticancer agent. View Full-Text
Keywords: cultivated Sideritis euboea; siderol; MTT assay; cancer cell lines; NMR cultivated Sideritis euboea; siderol; MTT assay; cancer cell lines; NMR
Show Figures

Figure 1

MDPI and ACS Style

Tomou, E.-M.; Chatziathanasiadou, M.V.; Chatzopoulou, P.; Tzakos, A.G.; Skaltsa, H. NMR-Based Chemical Profiling, Isolation and Evaluation of the Cytotoxic Potential of the Diterpenoid Siderol from Cultivated Sideritis euboea Heldr.. Molecules 2020, 25, 2382.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop