Synthesis, Antibacterial Activities, Mode of Action and Acute Toxicity Studies of New Oxazolidinone-Fluoroquinolone Hybrids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antibacterial Activities
2.2.1. In Vitro Activities of Oxazolidinone-Fluoroquinolone Hybrids
2.2.2. In Vitro Activities of Hybrids OBP-4 and OBP-5 against Clinical Isolates
2.3. Mode of Action of Hybrids OBP-4 and OBP-5
2.3.1. In Vitro Enzyme Assays of Hybrids OBP-4 and OBP-5
2.3.2. Molecular Docking of Hybrids OBP-4 and OBP-5
2.4. Acute Toxicity Test
3. Materials and Methods
3.1. General
3.2. Chemistry
3.2.1. Preparation of Hybrids OBP-1, OBP-2 and OBP-3
3.2.2. Preparation of Hybrid OBP-4
3.2.3. Preparation of Hybrid OBP-5
3.2.4. Preparation of Hybrids OBP-6 and OBP-7
3.3. Antibacterial Activities
3.3.1. Bacterial Strains
3.3.2. Susceptibility Testing
3.4. Modes of Action
3.4.1. DNA Gyrase Supercoiling Assay
3.4.2. Topo IV Relaxation Assay
3.4.3. In Vitro Transcription/Translation Assay
3.4.4. Molecular Docking Stusy
3.5. Acute Toxicity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zinner, S.H. Antibiotic use: Present and future. New Microbiol. 2007, 30, 321–325. [Google Scholar] [PubMed]
- Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 2018, 36, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-resistant bacteria and alternative methods to control them: An overview. Microb. Drug Resist. 2019. [Google Scholar] [CrossRef]
- Watkins, R.R.; Bonomo, R.A. Overview: Global and local impact of antibiotic resistance. Infect. Dis. Clin. N. Am. 2016, 30, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Ciorba, V.; Odone, A.; Veronesi, L.; Pasquarella, C.; Signorelli, C. Antibiotic resistance as a major public health concern: Epidemiology and economic impact. Ann. Iq. 2015, 27, 562–579. [Google Scholar]
- Thabit, A.K.; Crandon, J.L.; Nicolau, D.P. Antimicrobial resistance: Impact on clinical and economic outcomes and the need for new antimicrobials. Expert Opin. Pharmacother. 2015, 16, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Tillotson, G.S.; Zinner, S.H. Burden of antimicrobial resistance in an era of decreasing susceptibility. Expert Rev. Anti Infect. Ther. 2017, 15, 663–676. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the number of human and bacteria cells in the body. PLoS. Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef]
- Parkes, A.L.; Yule, I.A. Hybrid antibiotics—Clinical progress and novel designs. Expert Opin. Drug Discov. 2016, 11, 665–680. [Google Scholar] [CrossRef]
- Barbachyn, M.R. Recent advances in the discovery of hybrid antibacterial agents. Annu. Rep. Med. Chem. 2008, 43, 281–290. [Google Scholar]
- Robertson, G.T.; Bonventre, E.J.; Doyle, T.B.; Du, Q.; Duncan, L.; Morris, T.W.; Roche, E.D.; Yan, D.; Lynch, A.S. In vitro evaluation of CBR-2092, a novel rifamycin-quinolone hybrid antibiotic: Studies of the mode of action in Staphylococcus aureus. Antimicrob. Agents. Chemother. 2008, 52, 2313–2323. [Google Scholar] [CrossRef]
- Pokrovskaya, V.; Belakhov, V.; Hainrichson, M.; Yaron, S.; Baasov, T. Design, synthesis, and evaluation of novel fluoroquinolone-aminoglycoside hybrid antibiotics. J. Med. Chem. 2009, 52, 2243–2254. [Google Scholar] [CrossRef]
- Blais, J.; Lewis, S.R.; Krause, K.M.; Benton, B.M. Antistaphylococcal activity of TD-1792, a multivalent glycopeptide-cephalosporin antibiotic. Antimicrob. Agents. Chemother. 2012, 56, 1584–1587. [Google Scholar] [CrossRef]
- Louie, T.; Nord, C.E.; Talbot, G.H.; Wilcox, M.; Gerding, D.N.; Buitrago, M.; Kracker, H.; Charef, P.; Cornely, O.A. Multicenter, double-blind, randomized, phase 2 study evaluating the novel antibiotic cadazolid in patients with Clostridium difficile infection. Antimicrob. Agents. Chemother. 2015, 59, 6266–6273. [Google Scholar] [CrossRef] [PubMed]
- Pokrovskaya, V.; Baasov, T. Dual-acting hybrid antibiotics: A promising strategy to combat bacterial resistance. Expert Opin. Drug Discov. 2010, 5, 883–902. [Google Scholar] [CrossRef]
- Shaw, K.J.; Barbachyn, M.R. The oxazolidinones: Past, present, and future. Ann. N. Y. Acad. Sci. 2011, 1241, 48–70. [Google Scholar] [CrossRef]
- Bender, J.K.; Fleige, C.; Lange, D.; Klare, I.; Werner, G. Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates. Int. J. Antimicrob. Agents 2018, 52, 819–827. [Google Scholar] [CrossRef] [PubMed]
- De Lastours, V.; Fantin, B. Resistance to fluoroquinolones in 2013: What are the consequences in internal medicine? Rev. Med. Interne 2014, 35, 601–608. [Google Scholar] [CrossRef]
- Hubschwerlen, C.; Specklin, J.L.; Sigwalt, C.; Schroeder, S.; Locher, H.H. Design, synthesis and biological evaluation of oxazolidinone-quinolone hybrids. Bioorg. Med. Chem. 2003, 11, 2313–2319. [Google Scholar] [CrossRef]
- Hubschwerlen, C.; Specklin, J.L.; Baeschlin, D.K.; Borer, Y.; Haefeli, S.; Sigwalt, C.; Schroeder, S.; Locher, H.H. Structure-activity relationship in the oxazolidinone-quinolone hybrid series: Influence of the central spacer on the antibacterial activity and the mode of action. Bioorg. Med. Chem. Lett. 2003, 13, 4229–4233. [Google Scholar] [CrossRef] [PubMed]
- Sabine Schubert, A.D. Low propensity for development of resistance to MCB3681, the active moiety of oxaquin (MCB3837), in Gram-positive bacteria with vancomycin-, linezolid-, methicillin- and/or ciprofloxacin resistances. In Proceedings of the 46th ICAAC, San Francisco, CA, USA, 27–30 September 2006. [Google Scholar]
- Locher, H.H.; Caspers, P.; Bruyere, T.; Schroeder, S.; Pfaff, P.; Knezevic, A.; Keck, W.; Ritz, D. Investigations of the mode of action and resistance development of cadazolid, a new antibiotic for treatment of Clostridium difficile infections. Antimicrob. Agents. Chemother. 2014, 58, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Gerding, D.N.; Hecht, D.W.; Louie, T.; Nord, C.E.; Talbot, G.H.; Cornely, O.A.; Buitrago, M.; Best, E.; Sambol, S.; Osmolski, J.R.; et al. Susceptibility of Clostridium difficile isolates from a Phase 2 clinical trial of cadazolid and vancomycin in C. difficile infection. J. Antimicrob. Chemother. 2016, 31, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Correia, S.; Poeta, P.; Hebraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of quinolone action and resistance: Where do we stand? J. Med. Microbiol. 2017, 66, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Hiasa, H.; DiGate, R.J.; Marians, K.J. Decatenating activity of Escherichia coli DNA gyrase and topoisomerases I and III during oriC and pBR322 DNA replication in vitro. J. Biol. Chem. 1994, 269, 2093–2099. [Google Scholar] [PubMed]
- Baldoni, D.; Gutierrez, M.; Timmer, W.; Dingemanse, J. Cadazolid, a novel antibiotic with potent activity against Clostridium difficile: Safety, tolerability and pharmacokinetics in healthy subjects following single and multiple oral doses. J. Antimicrob. Chemother. 2014, 69, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Clewley, R.G.; Cross, G.G.; Fischer, A.; Henderson, G.N. Formation of 4-halo-4- nitrocyclohexa-2,5-dienones on nitration of p-halophenols and p-halophenyl acetates. Tetrahedron 1989, 45, 1299–1310. [Google Scholar] [CrossRef]
- Wessig, P.; Möllnitz, K.; Eiserbeck, C. Oligospiroketals as novel molecular rods. Chemistry 2007, 13, 4859–4872. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, R.; Hu, Z.; Chen, K. A new practical route to stereospecific synthesis of (S)-(-)-ofloxacin. Acta Pharm. Sin. 1998, 33, 828–831. [Google Scholar]
- Kose, E.; Karabacak, M.; Atac, A. The spectroscopic and quantum chemical studies of 3,4-difluoroaniline. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015, 143, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Segawa, J.; Kitano, M.; Kazuno, K.; Matsuoka, M.; Shirahase, I.; Ozaki, M.; Matsuda, M.; Tomii, Y.; Kise, M. Studies on pyridonecarboxylic acids. 1. Synthesis and antibacterial evaluation of 7-substituted-6-halo-4-oxo-4H-[1,3]thiazeto[3,2-a]quinoline-3-carboxylic acids. J. Med. Chem. 1992, 35, 4727–4738. [Google Scholar] [CrossRef]
- Matuszak, N.; Muccioli, G.G.; Labar, G.; Lambert, D.M. Synthesis and in vitro evaluation of N-substituted maleimide derivatives as selective monoglyceride lipase inhibitors. J. Med. Chem. 2009, 52, 7410–7420. [Google Scholar] [CrossRef] [PubMed]
- Wan, P.H.; Kee, J.L. Baylis-Hillman route to several quinolone antibiotic intermediates. Chem. Inform. 2006, 37, 963–968. [Google Scholar]
- Egawa, H.; Kataoka, M.; Shibamori, K.I.; Miyamato, T.; Nakano, J.; Matsumoto, J.I. A new synthetic route to 7-halo-1-cyclopropyl-6-fluoro-1,4-dihydro-4oxoquinoline-3- carboxylic acid, an intermediate for the synthesis of quinolone antibacterial agents. J. Heterocyclic. Chem. 1987, 18, 181–185. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 26th Informational Supplement; CLSI document M100-S26; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2016. [Google Scholar]
- Eyal, Z.; Matzov, D.; Krupkin, M.; Wekselman, I.; Paukner, S.; Zimmerman, E.; Rozenberg, H.; Bashan, A.; Yonath, A. Structural insights into species-specific features of the ribosome from the pathogen Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2015, 112, E5805–E5814. [Google Scholar] [CrossRef]
- Taher, E.S.; Ibrahim, T.S.; Fares, M.; Al-Mahmoudy, A.M.M.; Radwan, A.F.; Orabi, K.Y.; El-Sabbagh, O.I. Novel benzenesulfonamide and 1,2-benzisothiazol-3(2H)-one-1,1- dioxide derivatives as potential selective COX-2 inhibitors. Eur. J. Med. Chem. 2019, 171, 372–382. [Google Scholar] [CrossRef]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef]
- OECD 425 Guideline for Testing of Chemical. Acute Oral Toxicity-Up-and-Down Procedure; OECD: Paris, France, 2001. [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Organism (No.) | MIC (µg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
OBP-1 | OBP-2 | OBP-3 | OBP-4 | OBP-5 | OBP-6 | OBP-7 | CZD | LZD | MXF | |
S. pneumoniae (ATCC49619) | 0.25 | 0.25 | 0.5 | 0.031 | 0.062 | 0.5 | 2 | 0.062 | 1 | 0.062 |
S. agalactiaeR (13B317) | 0.5 | 0.25 | 0.5 | 0.031 | 0.031 | 2 | 4 | 0.125 | 1 | 4 |
E. faecalis (ATCC29212) | 1 | 1 | 1 | 0.25 | 1 | 4 | 1 | 0.5 | 4 | 0.125 |
VRE (13B330) | 1 | 1 | 2 | 0.25 | 0.5 | 64 | 128 | 0.25 | 2 | 64 |
MRSA (13B262) | 2 | 1 | 2 | 0.5 | 0.5 | 64 | 128 | 0.5 | 4 | 8 |
S. aureus (ATCC29213) | 1 | 0.25 | 2 | 0.016 | 0.25 | 0.062 | 0.25 | 0.5 | 4 | 0.031 |
H. influenzae (ATCC49247) | 1 | 0.5 | 2 | 0.25 | 0.25 | 0.016 | 0.031 | 1 | 8 | 0.008 |
P. Aeruginosa (ATCC27853) | 64 | 64 | 128 | 64 | 64 | 16 | 64 | 64 | 128 | 4 |
E. coli (ATCC25922) | 4 | 4 | 64 | 4 | 4 | 1 | 0.5 | 8 | 128 | 0.016 |
Organism (No. Tested) | Agents | MIC (µg/mL) | CLSI a %S/%R | ||
---|---|---|---|---|---|
MIC50 | MIC90 | Range | |||
S. aureus (46) | OBP-4 | ≤0.0625 | 0.125 | ≤0.0625–0.25 | -/- |
OBP-5 | ≤0.0625 | ≤0.0625 | ≤0.0625–0.25 | -/- | |
ENR | 2 | 4 | ≤0.0625–8 | ||
CIP | 16 | 32 | ≤0.0625–32 | 37.9/62.1 | |
GAFX | 1 | 2 | ≤0.0625–2 | 45.5/42.4 | |
NDFX | 0.5 | 0.5 | ≤0.0625–2 | ||
LZD | 2 | 2 | 0.5–2 | 100.0/- | |
VAN | 0.5 | 0.5 | 0.25–0.5 | 100.0/- | |
S. haemolyticus (32) | OBP-4 | 0.125 | 0.125 | ≤0.0625–0.5 | -/- |
OBP-5 | ≤0.0625 | ≤0.0625 | ≤0.0625–0.125 | -/- | |
ENR | ≤0.0625 | 0.5 | ≤0.0625–8 | ||
CIP | 0.25 | 1 | 0.125–16 | 96.2/3.8 | |
GAFX | 0.125 | 0.25 | ≤0.0625–2 | 96.2/3.8 | |
NDFX | ≤0.0625 | 0.5 | ≤0.0625–4 | ||
LZD | 0.5 | 2 | 0.125–8 | 96.2/3.8 | |
VAN | 0.5 | 2 | ≤0.0625–4 | 96.2/- | |
S. epidermidis (10) | OBP-4 | 0.125 | 0.25 | ≤0.0625–0.25 | -/- |
OBP-5 | ≤0.0625 | 0.125 | ≤0.0625–0.125 | -/- | |
ENR | 2 | 4 | 0.125–4 | ||
CIP | 8 | 16 | 0.25–16 | 20.0/60.0 | |
GAFX | 1 | 2 | 0.125–2 | 30.0/50.0 | |
NDFX | 1 | 2 | ≤0.0625–2 | ||
LZD | 1 | 1 | 0.5–1 | 100.0/- | |
VAN | 1 | 2 | 1–2 | 100.0/- | |
S. suis (9) | OBP-4 | ≤0.0625 | 0.25 | ≤0.0625–2 | -/- |
OBP-5 | ≤0.0625 | 0.125 | ≤0.0625–2 | -/- | |
ENR | 0.25 | 4 | ≤0.0625–8 | ||
CIP | 0.25 | 8 | 0.125–16 | ||
GAFX | ≤0.0625 | 4 | ≤0.0625–4 | ||
NDFX | ≤0.0625 | 2 | ≤0.0625–4 | ||
LZD | 0.5 | 4 | 0.5–4 | ||
VAN | 0.25 | 2 | 0.125–2 | ||
S. pneumoniae (13) | OBP-4 | 0.25 | 0.25 | ≤0.0625–0.5 | -/- |
OBP-5 | ≤0.0625 | 0.25 | ≤0.0625–0.25 | -/- | |
ENR | 32 | >32 | 2–>32 | ||
CIP | 16 | >32 | 4–>32 | -/100.0 | |
GAFX | 4 | 32 | 4–32 | 7.7/92.3 | |
NDFX | 16 | >32 | 8–>32 | ||
LZD | 0.5 | 0.5 | 0.5–4 | 76.9/- | |
VAN | 1 | 32 | 0.5–>32 | 53.8/- | |
E. faecalis (72) | OBP-4 | 0.25 | 0.25 | ≤0.0625–1 | -/- |
OBP-5 | 0.125 | 0.125 | ≤0.0625–0.5 | -/- | |
ENR | 0.5 | 0.5 | ≤0.0625–2 | ||
CIP | 0.5 | 1 | 0.125–2 | 97.3/- | |
GAFX | 0.25 | 0.5 | 0.125–2 | 94.6/- | |
NDFX | 0.25 | 1 | 0.125–2 | ||
LZD | 2 | 2 | 0.5–8 | 97.3/2.7 | |
E. faecium (47) | OBP-4 | 0.5 | 0.25 | 0.25–2 | -/- |
OBP-5 | 0.25 | 0.25 | ≤0.0625–1 | -/- | |
ENR | 2 | 32 | 0.5–>32 | ||
CIP | 2 | 32 | 0.25–>32 | 51.7/37.9 | |
GAFX | 1 | 8 | 0.25–8 | 86.2/13.8 | |
NDFX | 2 | 8 | 0.5–16 | ||
LZD | 2 | 4 | 0.5–16 | 82.8/13.8 | |
VAN | 2 | 4 | 0.5–4 | 100.0/- | |
H. parasuis (34) | OBP-4 | 1 | 4 | ≤0.0625–4 | -/- |
OBP-5 | 0.5 | 2 | ≤0.0625–4 | -/- | |
ENR | ≤0.0625 | 1 | ≤0.0625–1 | ||
CIP | ≤0.0625 | 1 | ≤0.0625–1 | ||
GAFX | ≤0.0625 | 1 | ≤0.0625–1 | ||
NDFX | ≤0.0625 | 1 | ≤0.0625–1 | ||
LZD | 16 | >32 | 8–>32 | ||
VAN | 8 | >32 | 2–>32 |
Organism (No. Tested) | Agents | No. of Strains (Cumulative %) Inhibited at Each MIC (µg/mL) | ||||||
---|---|---|---|---|---|---|---|---|
≤0.0625 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | ||
S. aureus (46) | OBP-4 | 26(56.5) | 17(93.5) | 3(100.0) | ||||
OBP-5 | 42(91.3) | 3(97.8) | 1(100.0) | |||||
S. haemolyticus (32) | OBP-4 | 14(43.8) | 16(93.8) | 2(100.0) | ||||
OBP-5 | 30(93.4) | 2(100.0) | ||||||
S. epidermidis (10) | OBP-4 | 2(20.0) | 4(60.0) | 4(100.0) | ||||
OBP-5 | 8(80.0) | 2(20.0) | ||||||
S. suis (9) | OBP-4 | 5(55.6) | 2(77.8) | 1(88.9) | 1(100) | |||
OBP-5 | 5(55.6) | 3(88.9) | 1(100) | |||||
S. pneumoniae (13) | OBP-4 | 2(15.4) | 3(38.5) | 7(92.3) | 1(100.0) | |||
OBP-5 | 7(53.8) | 4(84.6) | 2(100.0) | |||||
E. faecalis (72) | OBP-4 | 9(12.5) | 17(36.1) | 43(95.8) | 2(98.6) | 1(100.0) | ||
OBP-5 | 17(23.6) | 49(91.7) | 5(98.6) | 1(100.0) | ||||
E. faecium (47) | OBP-4 | 8(17.2) | 37(95.7) | 1(97.9) | 1(100.0) | |||
OBP-5 | 3(6.4) | 7(21.3) | 33(91.5) | 3(97.9) | 1(100.0) | |||
H. parasuis (34) | OBP-4 | 4(11.8) | 3(20.6) | 5(35.3) | 9(61.8) | 6(79.4) | 7(100.0) | |
OBP-5 | 5(14.7) | 1(17.6) | 4(29.4) | 6(47.1) | 7(67.6) | 10(97.1) | 1(100.0) |
Organism | MIC (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
OBP-4 | OBP-5 | ENR | CIP | GAFX | NDFX | LZD | VAN | |
MRSA | 0.25 | 0.125 | 0.25 | 0.125 | 0.125 | ≤0.0625 | 4 | 1 |
MRSE | ≤0.0625 | ≤0.0625 | ≤0.0625 | 0.125 | ≤0.0625 | 0.125 | 0.25 | 1 |
S. aureusa | 0.125 | ≤0.0625 | 2 | 32 | 2 | 0.5 | 2 | 0.25 |
S. haemolyticusa | 0.5 | ≤0.0625 | 8 | 16 | 2 | 4 | 8 | 2 |
S. pneumoniaeb | 0.25 | ≤0.0625 | >32 | >32 | >32 | >32 | 0.5 | >32 |
E. faecalissc | 1 | 0.25 | 1 | 1 | 0.5 | 1 | 8 | 2 |
E. faeciumd | 0.5 | 0.125 | >32 | >32 | 8 | 16 | 16 | 4 |
E. faeciumb | 0.5 | 0.25 | >32 | >32 | 16 | 32 | 2 | 16 |
Compd. | IC50 (μM) | ||
---|---|---|---|
DNA Gyrase | Topo IV | Inhib. of Protein Synthesis | |
OBP-4 | 1–5 | 10–15 | 5 |
OBP-5 | 20 | >40 | 2 |
CIP | ˂0.75 | 3–6 | NT |
LZD | NT | NT | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Shao, L.; Li, J.; Cui, H.; Li, B.; Zhou, X.; Lv, P.; Zhang, J. Synthesis, Antibacterial Activities, Mode of Action and Acute Toxicity Studies of New Oxazolidinone-Fluoroquinolone Hybrids. Molecules 2019, 24, 1641. https://doi.org/10.3390/molecules24081641
Liu L, Shao L, Li J, Cui H, Li B, Zhou X, Lv P, Zhang J. Synthesis, Antibacterial Activities, Mode of Action and Acute Toxicity Studies of New Oxazolidinone-Fluoroquinolone Hybrids. Molecules. 2019; 24(8):1641. https://doi.org/10.3390/molecules24081641
Chicago/Turabian StyleLiu, Lili, Liping Shao, Jing Li, Haifeng Cui, Bing Li, Xuzheng Zhou, Pengyue Lv, and Jiyu Zhang. 2019. "Synthesis, Antibacterial Activities, Mode of Action and Acute Toxicity Studies of New Oxazolidinone-Fluoroquinolone Hybrids" Molecules 24, no. 8: 1641. https://doi.org/10.3390/molecules24081641