The Physical Vapor Transport Method for Bulk AlN Crystal Growth
Abstract
1. Introduction
2. Mechanism
3. Different PVT Methods
3.1. Selected Growth at Conical Zone
3.2. Separate Freestanding Growth on Perforated Sheet
3.3. Inverse Temperature-Gradient Growth on Crucible Lid
4. Results and Discussion
4.1. Method Comparison
4.2. Characterization
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Slack, G.A.; Tanzilli, R.A.; Pohl, R.O.; Vandersande, J.W. The intrinsic thermal conductivity of AIN. J. Phys. Chem. Solids. 1987, 48, 641–647. [Google Scholar] [CrossRef]
- Ambacher, O. Growth and applications of Group III-nitrides. J. Phys. D Appl. Phys. 1998, 31, 2653–2710. [Google Scholar] [CrossRef]
- Kneissl, M.; Yang, Z.-H.; Teepe, M.; Knollenberg, C.; Schmidt, O.; Kiesel, P.; Johnson, N.M.; Schujman, S.; Schowalter, L.J. Ultraviolet semiconductor laser diodes on bulk AlN. J. Appl. Phys. 2007, 101. [Google Scholar] [CrossRef]
- Kinoshita, T.; Hironaka, K.; Obata, T.; Nagashima, T.; Dalmau, R.; Schlesser, R.; Moody, B.; Xie, J.-Q.; Inoue, S.; Kumagai, Y. Deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl. Phys. Express 2012, 5. [Google Scholar] [CrossRef]
- Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 1986, 48, 353–355. [Google Scholar] [CrossRef]
- Songmuang, R.; Landré, O.; Daudin, B. From nucleation to growth of catalyst-free GaN nanowires on thin AlN buffer layer. Appl. Phys. Lett. 2007, 91. [Google Scholar] [CrossRef]
- Taniyasu, Y.; Kasu, M.; Makimoto, T. An aluminum nitride light-emitting diode with a wavelength of 210 nanometres. Nature 2006, 441, 325–328. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, F.; Zheng, R.-S.; Wu, H.-L. Low-Dimensional Structure Vacuum-Ultraviolet-Sensitive (λ <200 nm) Photodetector with Fast-Response Speed Based on High-Quality AlN Micro/Nanowire. Adv. Mater. 2015, 27, 3921–3927. [Google Scholar]
- Kovalenkov, O.; Soukhoveev, V.; Ivantsov, V.; Usikov, A.; Dmitriev, V. Thick AlN layers grown by HVPE. J. Cryst. Growth 2005, 281, 87–92. [Google Scholar] [CrossRef]
- Slack, G.A.; Mcnelly, T.F. Growth of high purity AlN crystals. J. Cryst. Growth 1976, 34, 263–279. [Google Scholar] [CrossRef]
- Herro, Z.G.; Zhuang, D.; Schlesser, R.; Sitar, Z. Growth of AlN single crystalline boules. J. Cryst. Growth 2010, 312, 2519–2521. [Google Scholar] [CrossRef]
- Wu, H.-L.; Zheng, R.-S.; Li, M.-M.; Yan, Z. Growth of Nonpolar m-plane AlN Single Crystals by Sublimation. J. Synth. Cryst. 2012, 41, 1534–1537. [Google Scholar]
- Hartmann, C.; Wollweber, J.; Dittmar, A.; Irmscher, K.; Kwasniewski, A.; Langhans, F.; Neugut, T.; Bickermann, M. Preparation of Bulk AlN Seeds by Spontaneous Nucleation of Freestanding Crystals. Jpn. J. Appl. Phys. 2013, 52. [Google Scholar] [CrossRef]
- Kohn, J.A.; Cotter, P.G.; Potter, R.A. Synthesis of aluminum nitride monocrystals. Am. Mineral. 1956, 41, 355–359. [Google Scholar]
- Schujman, S.B.; Schowalter, L.J.; Bondokov, R.T.; Morgan, K.E.; Liu, W.; Smart, J.A.; Bettles, T. Structural and surface characterization of large diameter, crystalline AlN substrates for device fabrication. J. Cryst. Growth 2008, 310, 887–890. [Google Scholar] [CrossRef]
- Chemekova, T.Y.; Avdeev, O.V.; Barash, I.S.; Mokhov, E.N.; Nagalyuk, S.S.; Roenkov, A.D.; Segal, A.S.; Makarov, Y.N.; Ramm, M.G.; Davis, S. Sublimation growth of 2 inch diameter bulk AlN crystals. Phys. Status Solidi C 2008, 5, 1612–1614. [Google Scholar] [CrossRef]
- Li, Y.X.; Brenner, D.W. First principles prediction of the gas-phase precursors for AlN sublimation growth. Phys. Rev. Lett. 2004, 92. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.X.; Brenner, D.W. Influence of trace precursors on mass transport and growth rate during sublimation deposition of AlN crystal. J. Appl. Phys. 2006, 100. [Google Scholar] [CrossRef]
- Karpov, S.Y.; Zimina, D.V.; Makarov, Y.N.; Mokhov, E.N.; Roenkov, A.D.; Ramm, M.G.; Vodakov, Y.A. Sublimation Growth of AlN in Vacuum and in a Gas Atmosphere. Phys. Status Solidi A 1999, 176, 435–438. [Google Scholar] [CrossRef]
- Noveski, V.; Schlesser, R.; Mahajan, S.; Beaudoin, S.; Sitar, Z. Mass transfer in AlN crystal growth at high temperatures. J. Cryst. Growth 2004, 264, 369–378. [Google Scholar] [CrossRef]
- Guo, W.; Kundin, J.; Bickermann, M.; Emmerich, H. A study of the step-flow growth of the PVT-grown AlN crystals by a multi-scale modeling method. Crystengcomm 2014, 16, 6564–6577. [Google Scholar] [CrossRef]
- Averyanova, M.V.; Karpov, S.Y.; Makarov, Y.N.; Przhevalskii, I.N.; Ramm, M.S.; Talalaev, R.A. Theoretical Model for Analysis and Optimization of Group III-Nitrides Growth by Molecular Beam Epitaxy. MRS Internet J. Nitride Semicond. Res. 1996, 1. [Google Scholar] [CrossRef]
- Segal, A.S.; Karpov, S.Y.; Makarov, Y.N.; Mokhov, E.N.; Roenkov, A.D.; Ramm, M.G.; Vodakov, Y.A. On Mechanisms of Sublimation Growth of AlN Bulk Crystals. J. Cryst. Growth 2000, 211, 68–72. [Google Scholar] [CrossRef]
- Liu, L.H.; Edgar, J.H. A Global Growth Rate Model for Aluminum Nitride Sublimation. J. Electrochem. Soc. 2002, 149, G12–G15. [Google Scholar] [CrossRef]
- Epelbaum, B.M.; Bickermann, M.; Nagata, S.; Heimann, P.; Filip, O.; Winnacker, A. Similarities and differences in sublimation growth of SiC and AlN. J. Cryst. Growth 2007, 305, 317–325. [Google Scholar] [CrossRef]
- Hartmann, C.; Dittmar, A.; Wollweber, J.; Bickermann, M. Bulk AlN growth by physical vapour transport. Semicond. Sci. Technol. 2014, 29. [Google Scholar] [CrossRef]
- Wang, Q.-K.; Huang, J.-L.; Wang, Z.-H.; He, G.-D.; Lei, D.; Gong, J.-W.; Wu, L. Anisotropic Three-Dimensional Thermal Stress Modeling and Simulation of Homoepitaxial AlN Single Crystal Growth by the Physical Vapor Transport Method. Cryst. Growth Des. 2018, 18, 2998–3007. [Google Scholar] [CrossRef]
- Schowalter, L.J.; Slack, G.A.; Rojo, J.C.; Bondokov, R.T.; Morgan, K.E.; Smart, J.A. Crystal IS, Inc. Method and Apparatus for Producing Large, Single-Crystals of Aluminum Nitride. US Patent 9,970,127, 8 August 2016. [Google Scholar]
- Mueller, S.G.; Bondokov, R.T.; Morgan, K.E.; Slack, G.A.; Schujman, S.B.; Grandusky, J.; Smart, J.A.; Schowalter, L.J. The progress of AlN bulk growth and epitaxy for electronic applications. Phys. Status Solidi A 2009, 206, 1153–1159. [Google Scholar] [CrossRef]
- Hartmann, C.; Wollweber, J.; Sintonen, S.; Dittmar, A.; Kirste, L.; Kollowa, S.; Irmscher, K.; Bickermann, M. Preparation of deep UV transparent AlN substrates with high structural perfection for optoelectronic devices. Crystengcomm 2016, 18, 3488–3497. [Google Scholar] [CrossRef]
- Raghothamachar, B.; Dalmau, R.; Moody, B.; Craft, S.; Schlesser, R.; Xie, J.-Q.; Collazo, R.; Dudley, M.; Sitar, Z. Low Defect Density Bulk AlN Substrates for High Performance Electronics and Optoelectronics. Mater. Sci. Forum 2012, 717, 1287–1290. [Google Scholar] [CrossRef]
- Wittmer, M. Interfacial reactions between aluminum and transition-metal nitride and carbide films. J. Appl. Phys. 1982, 53, 1007–1012. [Google Scholar] [CrossRef]
- Schlesser, R.; Dalmau, R.; Zhuang, D.; Collazo, R.; Sitar, Z. Crucible materials for growth of aluminum nitride crystals. J. Cryst. Growth 2005, 281, 75–80. [Google Scholar] [CrossRef]
- Toth, L. Transition Metal Carbides and Nitrides; Academic Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Slack, G.A.; Schowalter, L.J.; Morelli, D.; Freitas, J.A., Jr. Some effects of oxygen impurities on AlN and GaN. J. Cryst. Growth 2002, 246, 287–298. [Google Scholar] [CrossRef]
- Sedhain, A.; Du, L.; Edgar, J.H.; Lin, J.Y.; Jiang, H.X. The origin of 2.78 eV emission and yellow coloration in bulk AlN substrates. Appl. Phys. Lett. 2009, 95. [Google Scholar] [CrossRef]
- Yan, Q.M.; Janotti, A.; Scheffler, M.; Van de Walle, C.G. Origins of optical absorption and emission lines in AlN. Appl. Phys. Lett. 2014, 105. [Google Scholar] [CrossRef]
- Bickermann, M.; Epelbaum, B.M.; Heimann, P.; Herro, Z.G.; Winnacker, A. Orientation-dependent phonon observation in single-crystalline aluminum nitride. Appl. Phys. Lett. 2005, 86. [Google Scholar] [CrossRef]
- Davydov, V.Y.; Kitaev, Y.E.; Goncharuk, I.N.; Smirnov, A.N.; Graul, J.; Semchinova, O.; Uffmann, D.; Smirnov, M.B.; Mirgorodsky, A.P.; Evarestov, R.A. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 1998, 58, 12899–12907. [Google Scholar] [CrossRef]
- Haboeck, U.; Siegle, H.; Hoffmann, A.; Thomsen, C. Lattice dynamics in GaN and AlN probed with first- and second-order Raman spectroscopy. Phys. Status Solidi C 2003, 0, 1710–1731. [Google Scholar] [CrossRef][Green Version]
- Prokofyeva, T.; Seon, M.; Vanbuskirk, J.; Holtz, M.; Nikishin, S.A.; Faleev, N.N.; Temkin, H.; Zollner, S. Vibrational properties of AlN grown on (111)-oriented silicon. Phys. Rev. B 2001, 63. [Google Scholar] [CrossRef]
- Liu, L.; Liu, B.; Edgar, J.H.; Rajasingam, S.; Kuball, M. Raman characterization and stress analysis of AlN grown on SiC by sublimation. J. Appl. Phys. 2002, 92, 5183–5188. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds (AlN) are available from the authors. |
Method | Selected Growth | Separate Freestanding Growth | Inverse Temperature-Gradient Growth |
---|---|---|---|
Crucible material | W | TaC | W |
Nucleation position | Conical tip | Perforated sheet | Planar crucible lid |
Key element | Nucleation site | Supersaturation | Temperature gradient |
Advantages | Conical zone for dominant growth | Low nucleation rate, N-polar growth | Single dominant growth, relative low cost |
Disadvantages | Complicated process | Carbon contamination, high manufacturing cost | High requirement of thermometry |
Phonon Symmetry | Raman Phonon Energy (cm−1) for (002) Facet a | Raman Phonon Energy (cm−1) for (100) Facet a | Raman Phonon Energy (cm−1) b | Raman Phonon Energy (cm−1) c |
---|---|---|---|---|
E2(low) | 239 | 239 | 249 | 249 |
A1(TO) | 610 | 610 | 611 | 610 |
E2(high) | 658 | 658 | 657 | 656 |
E1(TO) | - | 670 | 671 | 669 |
A1(LO) | 892 | - | 890 | 891 |
E1(LO) | - | 914 | 912 | 912 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-H.; Qin, Z.-Y.; Tian, X.-Y.; Zhong, X.-H.; Sun, Z.-H.; Li, B.-K.; Zheng, R.-S.; Guo, Y.; Wu, H.-L. The Physical Vapor Transport Method for Bulk AlN Crystal Growth. Molecules 2019, 24, 1562. https://doi.org/10.3390/molecules24081562
Chen W-H, Qin Z-Y, Tian X-Y, Zhong X-H, Sun Z-H, Li B-K, Zheng R-S, Guo Y, Wu H-L. The Physical Vapor Transport Method for Bulk AlN Crystal Growth. Molecules. 2019; 24(8):1562. https://doi.org/10.3390/molecules24081562
Chicago/Turabian StyleChen, Wen-Hao, Zuo-Yan Qin, Xu-Yong Tian, Xu-Hui Zhong, Zhen-Hua Sun, Bai-Kui Li, Rui-Sheng Zheng, Yuan Guo, and Hong-Lei Wu. 2019. "The Physical Vapor Transport Method for Bulk AlN Crystal Growth" Molecules 24, no. 8: 1562. https://doi.org/10.3390/molecules24081562
APA StyleChen, W.-H., Qin, Z.-Y., Tian, X.-Y., Zhong, X.-H., Sun, Z.-H., Li, B.-K., Zheng, R.-S., Guo, Y., & Wu, H.-L. (2019). The Physical Vapor Transport Method for Bulk AlN Crystal Growth. Molecules, 24(8), 1562. https://doi.org/10.3390/molecules24081562