Industrial-Scale Decontamination Procedure Effects on the Content of Acaricides, Heavy Metals and Antioxidant Capacity of Beeswax
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pesticide Content
2.2. Hydrocarbons and Monoesters Content
2.3. Chemical Elements Composition
2.4. Antioxidant Capacity, Polyphenol and Flavonoid Content in Unfiltered and Filtered Beeswax Samples
3. Materials and Methods
3.1. Sample Collection
3.2. Decontamination Procedure
3.3. Extraction and Purification of Acaricide Residues
3.4. Gas Chromatography-Mass Spectrometry (GC/MS) Analysis of Hydrocarbons and Monoesters
3.5. ICP-MS Analysis of Chemical Elements
3.6. Isolation of Hydrophilic and Lipophilic Extracts
3.7. Measurement of Total Phenolic Content
3.8. Measurement of Total Flavonoid Content
3.9. Quantification of the Total Antioxidant Capacity
3.10. Statistical Analyzes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tulloch, A.P. Beeswax—composition and analysis. Bee World 1980, 61, 47–62. [Google Scholar] [CrossRef]
- Buchwald, R.; Breed, M.D.; Bjostad, L.; Hibbard, B.E.; Greenberg, A.R. The role of fatty acids in the mechanical properties of beeswax. Apidologie 2009, 40, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.J.; Bernal, J.L.; Aumente, S.; del Nozal, M.J.; Martín, M.T.; Bernal, J. Quality assurance of commercial beeswax. Part I. Gas chromatography-electron impact ionization mass spectrometry of hydrocarbons and monoesters. J. Chromatogr. A 2004, 1024, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef]
- Wilmart, O.; Legrève, A.; Scippo, M.L.; Reybroeck, W.; Urbain, B.; de Graaf, D.C.; Steurbaut, W.; Delahaut, P.; Gustin, P.; Nguyen, B.K.; et al. Residues in beeswax: A health risk for the consumer of honey and beeswax? J. Agric. Food. Chem. 2016, 64, 8425–8434. [Google Scholar] [CrossRef]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic properties of bioactive compounds from different honeybee products. Front. Pharmacol. 2017, 8, 412. [Google Scholar] [CrossRef]
- Bonvehi, J.S.; Orantes-Bermejo, F.J. Discoloration and adsorption of acaricides from beeswax. J. Food Process Eng. 2017, 40, 1–10. [Google Scholar] [CrossRef]
- Serra-Bonvehí, J.; Orantes-Bermejo, J. Acaricides and their residues in Spanish commercial beeswax. Pest Manag. Sci. 2010, 66, 1230–1235. [Google Scholar] [CrossRef]
- Calatayud-Vernich, P.; Calatayud, F.; Simó, E.; Picó, Y. Occurrence of pesticide residues in Spanish beeswax. Sci. Total Environ. 2017, 605–606, 745–754. [Google Scholar] [CrossRef]
- Calatayud-Vernich, P.; Calatayud, F.; Simó, E.; Picó, Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ. Pollut. 2018, 241, 106–114. [Google Scholar] [CrossRef] [PubMed]
- García, M.D.G.; Duque, S.U.; Fernández, A.B.L.; Sosa, A.; Fernández-Alba, A.R. Multiresidue method for trace pesticide analysis in honeybee wax comb by GC-QqQ-MS. Talanta 2017, 163, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Mullin, C.A.; Frazier, M.; Frazier, J.L.; Ashcraft, S.; Simonds, R.; vanEngelsdorp, D.; Pettis, J.S. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 2010, 5, e9754. [Google Scholar] [CrossRef] [PubMed]
- Chauzat, M.P.; Faucon, J.P. Pesticide residues in beeswax samples collected from honey bee colonies (Apis mellifera L.) in France. Pest. Manag. Sci. 2007, 63, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Ravoet, J.; Reybroeck, W.; de Graaf, D.C. Pesticides for apicultural and/or agricultural application found in Belgian honey bee wax combs. Bull Environ. Contam. Toxicol. 2015, 94, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Perugini, M.; Tulini, S.M.R.; Zezza, D.; Fenucci, S.; Conte, A.; Amorena, M. Occurrence of agrochemical residues in beeswax samples collected in Italy during 2013–2015. Sci. Total Environ. 2018, 625, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, C.B.; Chong, C.L. Acephate, methamidophos and monocrotophos residues in a laboratory-scale oil refining process. Eur. J. Lipid Sci. Technol. 2009, 111, 593–598. [Google Scholar] [CrossRef]
- Van Duijn, G. Industrial experiences with pesticide removal during edible oil refining. Eur. J. Lipid Sci. Technol. 2008, 110, 982–989. [Google Scholar] [CrossRef]
- Ruiz Méndez, M.V.; Pérez De La Rosa, I.; Jiménez Márquez, A.; Uceda Ojeda, M. Elimination of pesticides in olive oil by refining using bleaching and deodorization. Food Addit. Contam. 2005, 22, 23–30. [Google Scholar] [CrossRef]
- Maia, M.; Nunes, F.M. Authentication of beeswax (Apis mellifera) by high-temperature gas chromatography and chemometric analysis. Food Chem. 2013, 136, 961–968. [Google Scholar] [CrossRef]
- Akbari, B.; Gharanfoli, F.; Khayyat, M.H.; Khashyarmanesh, Z.; Rezaee, R.; Karimi, G. Determination of heavy metals in different honey brands from Iranian markets. Food Addit. Contam. Part B Surveill. 2012, 5, 105–111. [Google Scholar] [CrossRef]
- Losfeld, G.; Saunier, J.B.; Grison, C. Minor and trace-elements in apiary products from a historical mining district (Les Malines, France). Food Chem. 2014, 146, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Zaric, N.M.; Deljanin, I.; Ilijević, K.; Stanisavljević, L.; Ristić, M.; Gržetić, I. Assessment of spatial and temporal variations in trace element concentrations using honeybees (Apis mellifera) as bioindicators. PeerJ 2018, 6, e5197. [Google Scholar] [CrossRef] [PubMed]
- Dżugan, M.; Wesołowska, M.; Zaguła, G.; Kaczmarski, M.; Czernicka, M.; Puchalski, C. Honeybees (Apis mellifera) as a biological barrier for contamination of honey by environmental toxic metals. Environ. Monit. Assess. 2018, 190, 101. [Google Scholar] [CrossRef] [PubMed]
- Hladun, K.R.; Di, N.; Liu, T.X.; Trumble, J.T. Metal contaminant accumulation in the hive: Consequences for whole-colony health and brood production in the honey bee (Apis mellifera L.). Environ. Toxicol. Chem. 2016, 35, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Tlak-Gajger, I.; Kosanović, M.; Bilandžić, N.; Sedak, M.; Čalopek, B. Variations in lead, cadmium, arsenic, and mercury concentrations during honeybee wax processing using casting technology. Arch. Ind. Hyg. Toxicol. 2016, 67, 223–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarić, N.M.; Ilijević, K.; Stanisavljević, L.; Gržetić, I. Use of honeybees (Apis mellifera L.) as bioindicators for assessment and source appointment of metal pollution. Environ. Sci. Pollut. Res. 2017, 24, 25828–25838. [Google Scholar] [CrossRef]
- Hernández, O.M.; Fraga, J.M.G.; Jiménez, A.I.; Jiménez, F.; Arias, J.J. Characterization of honey from the Canary Islands: Determination of the mineral content by atomic absorption spectrophotometry. Food Chem. 2005, 93, 449–458. [Google Scholar] [CrossRef]
- Pisani, A.; Protano, G.; Riccobono, F. Minor and trace elements in different honey types produced in Siena County (Italy). Food Chem. 2008, 107, 1553–1560. [Google Scholar] [CrossRef]
- Natrass, C.; Horwell, C.J.; Damby, D.E.; Kermanizadeh, A.; Brown, D.M.; Stone, V. The global variability of diatomaceous earth toxicity: A physicochemical and in vitro investigation. J. Occup. Med. Toxicol. 2015, 10, 23. [Google Scholar] [CrossRef] [PubMed]
- Redan, B.W.; Jablonski, J.E.; Halverson, C.; Jaganathan, J.; Abdul Mabud, Md.; Jackson, L.S. Factors affecting transfer of the heavy metals arsenic, lead, and cadmium from diatomaceous-earth filter aids to alcoholic beverages during laboratory-scale filtration. J. Agric. Food Chem. 2019, 67, 2670–2678. [Google Scholar] [CrossRef] [PubMed]
- Commission Regulation (EU) 2015/1006. Amending Regulation (EC) Nº 1881/2001 as regards maximum levels of inorganic arsenic in foodstuffs. Off. J. Eur. Union 2015, 161, 14–16. [Google Scholar]
- Søvik, E.; Perry, C.J.; Lamora, A.; Barron, A.B.; Ben-Shahar, Y. Negative impact of manganese on honeybee foraging. Biol. Lett. 2015, 11, 20140989. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.J.; Bernal, J.L.; del Nozal, M.J.; Martín, M.T.; Toribio, L. Identification of adulterants added to beeswax: Estimation of detectable minimum percentages. Eur. J. Lipid Sci. Technol. 2009, 111, 902–911. [Google Scholar] [CrossRef]
- Giampieri, F.; Quiles, J.L.; Orantes-Bermejo, F.J.; Gasparrini, M.; Forbes-Hernandez, T.Y.; Sánchez-González, C.; Llopis, J.; Rivas-García, L.; Afrin, S.; Varela-López, A.; et al. Are by-products from beeswax recycling process a new promising source of bioactive compounds with biomedical properties? Food Chem. Toxicol. 2018, 112, 126–133. [Google Scholar] [CrossRef]
- Dżugan, M.; Tomczyk, M.; Sowa, P.; Grabek-Lejko, D. Antioxidant activity as biomarker of honey variety. Molecules 2018, 23, 2069. [Google Scholar] [CrossRef] [PubMed]
- Serra-Bonvehi, J.; Orantes Bermejo, F.J. Detection of adulterated commercial Spanish beeswax. Food Chem. 2012, 132, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Giampieri, F.; Gasparrini, M.; Forbes-Hernández, T.Y.; Manna, P.P.; Zhang, J.; Reboredo-Rodríguez, P.; Cianciosi, D.; Quiles, J.L.; Torres Fernández-Piñar, C.; Orantes-Bermejo, F.J.; et al. Beeswax by-products efficiently counteract the oxidative damage induced by an oxidant agent in human dermal fibroblasts. Int. J. Mol. Sci. 2018, 19, 2842. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.C.F.R.; Aires, E.; Barreira, J.C.M.; Estevinho, L.M. Antioxidant activity of Portuguese honey samples: Different contributions of the entire honey and phenolic extract. Food Chem. 2009, 114, 1438–1443. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “antioxidant power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds (unfiltered and filtered beeswaxes) are available from the authors. |
Compounds | Initial Contamination (ppb) | Final Contamination (ppb) | Percentage Reduction |
---|---|---|---|
Chlorfenvinphos (n = 3) | 1785 685 1398 | 977 59 100 | 45.3% (1 cycle *) 91.4% (2 cycles) 92.8% (2 cycles) |
Coumaphos (n = 3) | 14126 8758 1788 | 10914 763 58 | 22.8% (1 cycle) 91.3% (2 cycles) 96.7% (2 cycles) |
tau fluvalinate ** (n = 2) | 2113 2113 | 1721 1477 | 18.5% (1 cycle) 30.1% (2 cycles) |
Abbreviated Formula | Unfiltered Beeswax (n = 3) | Filtered Beeswax (n = 3) |
---|---|---|
Mean ± SEM | Mean ± SEM | |
H19 | 0.143 ± 0.004 | 0.139 ± 0.005 |
H20 | 0.273 ± 0.083 | 0.485 ± 0.080 |
H21 | 0.419 ± 0.005 | 0.393 ± 0.019 |
H22 | 0.135 ± 0.012 | 0.113 ± 0.004 |
H23 | 2.979 ± 0.049 | 2.946 ± 0.069 |
H24 | 0.186 ± 0.002 | 0.169 ± 0.001 |
H25 | 5.306 ± 0.103 | 5.293 ± 0.077 |
H26 | 0.382 ± 0.004 | 0.360 ± 0.007 |
H27 | 15.473 ± 0.245 | 15.279 ± 0.139 |
H28 | 0.372 ± 0.020 | 0.334 ± 0.009 |
H29 | 9.300 ± 0.116 | 9.158 ± 0.215 |
H30 | 0.304 ± 0.011 | 0.277 ± 0.006 |
H31:1 | 2.762 ± 0.015 | 2.362 ± 0.262 |
H31 | 7.179 ± 0.148 | 7.111 ± 0.130 |
H32 | 0.351 ± 0.018 | 0.377 ± 0.024 |
H33:1 | 4.102 ± 0.104 | 4.076 ± 0.104 |
H33 | 0.737 ± 0.006 | 0.736 ± 0.019 |
H34 | 0.115 ± 0.004 | 0.109 ± 0.008 |
H35:1 | 0.213 ± 0.013 | 0.238 ±0.012 |
H35 | 0.418 ± 0.023 | 0.259 ± 0.111 |
H36 | 0.106 ± 0.053 | 0.185 ± 0.028 |
H37 | 0.077 ± 0.017 | 0.106 ± 0.010 |
H38 | 0.009 ± 0.009 | 0.063 ± 0.023 |
H39 | 0.049 ± 0.022 | 0.039 ± 0.010 |
H40 | 0.097 ± 0.005 | 0.118 ± 0.028 |
H41 | 0.041 ± 0.025 | 0.067 ± 0.018 |
H42 | 0.029 ± 0.008 | 0.023 ± 0.008 |
H43 | 0.043 ± 0.015 | 0.020 ± 0.010 |
H44 | 0.008 ± 0.004 | 0.012 ± 0.008 |
ΣH | 51.609 ± 0.805 | 50.848 ± 0.714 |
Abbreviated Formula | Compound Name | Unfiltered Beeswax (n = 3) | Filtered Beeswax (n = 3) |
---|---|---|---|
Mean ± SEM | Mean ± SEM | ||
C40 | Ethyl tetracontanoate | 10.2 ± 0.1 | 10.3 ± 0.1 |
C40:1 | Ethyl tetracontenoate | 0.00 ± 0.00 | 0.03 ± 0.01 |
C42 | Ethyl dotetracontanoate | 5.9 ± 0.1 | 5.8 ± 0.1 |
C42:1 | Ethyl dotetracontenoate | 0.23 ± 0.01 | 0.22 ± 0.03 |
C44 | Ethyl tetratetracontanoate | 6.5 ± 0.1 | 6.7 ± 0.1 |
C44:1 | Ethyl tetratetracontenoate | 0.2 ± 0.1 | 0.2 ± 0.1 |
C46 | Ethyl hexatetracontanoate | 15.3 ± 0.9 | 15.4 ± 0.9 |
C46:1 | Ethyl hexatetracontenoate | 0.11 ± 0.06 | 0.11 ± 0.01 |
C48 | Ethyl octatetracontanoate | 8.2 ± 0.1 | 8.5 ± 0.1 |
C48:1 | Ethyl octatetracontenoate | 0.32 ± 0.01 | 0.41 ± 0.14 |
C50 | Ethyl pentacontanoate | 0.69 ± 0.08 | 0.65 ± 0.05 |
C50:1 | Ethyl pentacontenoate | 0.70 ± 0.11 | 0.73 ± 0.02 |
ΣC | Total monoesters | 48.391 ± 0.805 | 49.152 ± 0.714 |
Unfiltered Beeswax (n = 3) | Filtered Beeswax (n = 3) | |
---|---|---|
Element | Mean ± SEM | Mean ± SEM |
Al | 9.9 ± 2.2 | 7.8 ± 3.5 |
As | 0.015 ± 0.002 | 0.048 ± 0.023 * |
Au | 1.6 ± 1.0 | 1.3 ± 1.1 |
Ca | 158 ± 72 | 37 ± 12 * |
Cd | 0.020 ± 0.011 | 0.011 ± 0.005 |
Co | 0.004 ± 0.004 | 0.000 ± 0.000 |
Cr | 0.000 ± 0.000 | 0.000 ± 0.000 |
Cu | 0.000 ± 0.000 | 0.000 ± 0.000 |
Fe | 20.7 ± 2.2 | 0.6 ± 0.6 * |
Hg | 1.7 ± 1.3 | 0.1 ± 0.1 * |
K | 88 ± 6 | 65 ± 27 |
Mg | 21.2 ± 3.2 | 67.9 ± 41.5 |
Mn | 0.51 ± 0.17 | 0.14 ± 0.09 * |
Mo | 0.000 ± 0.000 | 0.000 ± 0.000 |
Ni | 0.000 ± 0.000 | 0.000 ± 0.000 |
P | 47.3 ± 1.7 | 27.7 ± 11.2 * |
Pb | 3.5 ± 2.1 | 2.9 ± 2.1 |
Sc | 0.000 ± 0.000 | 0.000 ± 0.000 |
Se | 0.015 ± 0.012 | 0.000 ± 0.000 |
Si | 1.10 ± 1.10 | 33.41 ± 33.41 * |
V | 0.021 ± 0.004 | 0.044 ± 0.021 |
Y | 0.007 ± 0.000 | 0.008 ± 0.002 |
Zn | 10.3 ± 0.5 | 1.3 ± 0.3 * |
Unfiltered Beeswax | Filtered Beeswax | |
---|---|---|
Mean ± SEM | Mean ± SEM | |
Lipophilic extract | ||
ABTS (µmol TEq/Kg) | 400 ± 30 | 330 ± 10 * |
FRAP (µmol TEq/Kg) | 252 ± 6 | 133 ± 5 * |
DPPH (µmol TEq/100 g) | 193 ± 29 | 112 ± 9 * |
Total Phenolic content (mg GAEq/100 g) | 0.20 ± 0.07 | 0.07 ± 0.03 * |
Flavonoids (mg CEq/100 g) | 1.2 ± 0.1 | 0.8 ± 0.1 * |
Hydrophilic extract | ||
ABTS (µmol TEq/Kg) | 260 ± 10 | 270 ± 10 |
FRAP (µmol TEq/Kg) | 21.3 ± 0.4 | 25.4 ± 1.2 |
DPPH (µmol TEq/100 g) | 29.6 ± 11.4 | 66.2 ± 26.9 |
Total Phenolic content (mg GAEq/100 g) | 0.01 ± 0.01 | 0.01 ± 0.01 |
Flavonoids (mg CEq/100 g) | 0.01 ± 0.01 | 0.02 ± 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Hortal, M.D.; Orantes-Bermejo, F.J.; Sánchez-González, C.; Varela-López, A.; Giampieri, F.; Torres Fernández-Piñar, C.; Serra-Bonvehí, J.; Forbes-Hernández, T.Y.; Reboredo-Rodríguez, P.; Llopis, J.; et al. Industrial-Scale Decontamination Procedure Effects on the Content of Acaricides, Heavy Metals and Antioxidant Capacity of Beeswax. Molecules 2019, 24, 1518. https://doi.org/10.3390/molecules24081518
Navarro-Hortal MD, Orantes-Bermejo FJ, Sánchez-González C, Varela-López A, Giampieri F, Torres Fernández-Piñar C, Serra-Bonvehí J, Forbes-Hernández TY, Reboredo-Rodríguez P, Llopis J, et al. Industrial-Scale Decontamination Procedure Effects on the Content of Acaricides, Heavy Metals and Antioxidant Capacity of Beeswax. Molecules. 2019; 24(8):1518. https://doi.org/10.3390/molecules24081518
Chicago/Turabian StyleNavarro-Hortal, María D., Francisco J. Orantes-Bermejo, Cristina Sánchez-González, Alfonso Varela-López, Francesca Giampieri, Cristina Torres Fernández-Piñar, Josep Serra-Bonvehí, Tamara Y. Forbes-Hernández, Patricia Reboredo-Rodríguez, Juan Llopis, and et al. 2019. "Industrial-Scale Decontamination Procedure Effects on the Content of Acaricides, Heavy Metals and Antioxidant Capacity of Beeswax" Molecules 24, no. 8: 1518. https://doi.org/10.3390/molecules24081518
APA StyleNavarro-Hortal, M. D., Orantes-Bermejo, F. J., Sánchez-González, C., Varela-López, A., Giampieri, F., Torres Fernández-Piñar, C., Serra-Bonvehí, J., Forbes-Hernández, T. Y., Reboredo-Rodríguez, P., Llopis, J., Aranda, P., Battino, M., & Quiles, J. L. (2019). Industrial-Scale Decontamination Procedure Effects on the Content of Acaricides, Heavy Metals and Antioxidant Capacity of Beeswax. Molecules, 24(8), 1518. https://doi.org/10.3390/molecules24081518