Bio-mining of Lanthanides from Red Mud by Green Microalgae
Abstract
:1. Introduction
2. Results
2.1. Composition of Lanthanides and Other Metals in Red Mud
2.2. Selection of a Suitable Model Organism for Cultivation with Red Mud
2.3. Cultivation of Desmodesmus quadricauda with Red Mud in Incomplete Nutrient Medium
2.4. Localization of Lanthanides in Algal Cells
3. Discussion
3.1. Red Mud as a Source of Valuable Metals
3.2. Bio-Mining of Red Mud by Green Algae
3.3. Beneficial Effects of Red Mud on Algal Growth
4. Materials and Methods
4.1. Microalgal Strains
4.2. Laboratory Experimental Photobioreactor
4.3. Measurement of Light Intensity
4.4. Preparation of Experimental Cultures
4.5. Determination of Cell Number
4.6. Estimation of Growth Rates of Cultures
4.7. Preparation of Samples for ICP-MS
4.8. Determination of Element Content (ICP-MS)
4.9. Fluorescence Microscopy
4.10. Red Mud
4.10.1. Red Mud Sampling
4.10.2. Red Mud Treatment
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, Z.Z.; Wang, Z.L.; Li, J.; Li, Y.; Zhang, Z.G.; Zhang, P. Distribution of rare earth elements in sewage-irrigated soil profiles in Tianjin, China. J. Rare Earths 2012, 30, 609–613. [Google Scholar]
- European Commission. Study on the Review of the List of Critical Raw Materials. Critical Raw Materials Factsheets. Catalogue Number ET-04-15-307-ENN. 2017. Available online: https://publications.europa.eu/en/publication-detail/-/publication/7345e3e8-98fc-11e7-b92d-01aa75ed71a1/language-en (accessed on 15 May 2018).
- Evans, K. The history, challenges, and new developments in the management and use of bauxite residue. J. Sustain. Metallurgy 2016, 2, 316–331. [Google Scholar] [CrossRef]
- Wang, W.W.; Pranolo, Y.; Cheng, C.Y. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA. Separ. Purif. Technol. 2013, 108, 96–102. [Google Scholar] [CrossRef]
- Ujaczki, E.; Feigl, V.; Molnar, M.; Cusack, P.; Curtin, T.; Courtney, R.; O’Donoghue, L.; Davris, P.; Hugi, C.; Evangelou, M.W.; et al. Re-using bauxite residues: Benefits beyond (critical raw) material recovery. J. Chem. Technol. Biotechnol. 2018, 93, 2498–2510. [Google Scholar]
- Cusack, P.B.; Courtney, R.; Healy, M.G.; O’Donoghue, L.M.T.; Ujaczki, E. An evaluation of the general composition and critical raw material content of bauxite residue in a storage area over a twelve-year period. J. Clean. Prod. 2019, 208, 393–401. [Google Scholar] [CrossRef]
- Liu, Y.J.; Naidu, R. Hidden values in bauxite residue (red mud): Recovery of metals. Waste Manag. 2014, 34, 2662–2673. [Google Scholar] [CrossRef]
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Recovery of rare earths and other valuable metals from bauxite residue (red mud): A review. J. Sustain. Metall. 2016, 2, 365–386. [Google Scholar] [CrossRef]
- Borra, C.R.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Leaching of rare earths from bauxite residue (red mud). Miner. Eng. 2015, 76, 20–27. [Google Scholar] [Green Version]
- Abreu, R.D.; Morais, C.A. Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Miner. Eng. 2010, 23, 536–540. [Google Scholar] [CrossRef]
- Sethurajan, M.; van Hullebusch, E.D.; Nancharaiah, Y.V. Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances. J. Environ. Manag. 2018, 211, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Pollmann, K.; Kutschke, S.; Matys, S.; Raff, J.; Hlawacek, G.; Lederer, F.L. Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnol. Adv. 2018, 36, 1048–1062. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Boxall, N.J.; Gumulya, Y.; Khaleque, H.N.; Morris, C.; Bohu, T.; Cheng, K.Y.; Usher, K.M.; Lakaniemi, A.M. Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy 2018, 180, 7–25. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Mohan, S.V.; Lens, P.N.L. Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol. 2016, 34, 137–155. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.Q.; Fitts, J.P.; Ajo-Franklin, C.M.; Maes, S.; Alvarez-Cohen, L.; Hennebel, T. Recovery of critical metals using biometallurgy. Curr. Opin. Biotechnol. 2015, 33, 327–335. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.B. Biomining–biotechnologies for extracting and recovering metals from ores and waste materials. Curr. Opin. Biotechnol. 2014, 30, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Minoda, A.; Sawada, H.; Suzuki, S.; Miyashita, S.; Inagaki, K.; Yamamoto, T.; Tsuzuki, M. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Appl. Microbiol. Biotechnol. 2015, 99, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Park, D.M.; Reed, D.W.; Yung, M.C.; Eslamimanesh, A.; Lencka, M.M.; Anderko, A.; Fujita, Y.; Riman, R.E.; Navrotsky, A.; Jiao, Y. Bioadsorption of rare earth elements through cell surface display of lanthanide binding tags. Environ. J. Sci. Technol. 2016, 50, 2735–2742. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Lian, B. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour. Technol. 2013, 136, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Lian, B.; Mo, B.B.; Liu, C.Q. Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy 2013, 136, 71–77. [Google Scholar] [CrossRef]
- Horiike, T.; Yamashita, M. A New Fungal Isolate, Penidiella sp. Strain T9, Accumulates the Rare Earth Element Dysprosium. Appl. Environ. Microbiol. 2015, 81, 3062–3068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacinto, J.; Henriques, B.; Duarte, A.C.; Vale, C.; Pereira, E. Removal and recovery of critical rare elements from contaminated waters by living Gracilaria gracilis. J. Hazard. Mater. 2018, 344, 531–538. [Google Scholar] [CrossRef]
- Ponou, T.; Wang, L.P.; Dodbiba, G.; Okaya, K.; Fujita, T.; Mitsuhashi, K.; Atarashi, T.; Satoh, G.; Noda, M. Recovery of rare earth elements from aqueous solution obtained from Vietnamese clay minerals using dried and carbonized parachlorella. J. Environ. Chem. 2014, 2, 1070–1081. [Google Scholar] [CrossRef] [Green Version]
- Dubey, K.; Dubey, K.P. A study of the effect of red mud amendments on the growth of cyanobacterial species. Bioremed. J. 2011, 15, 133–139. [Google Scholar] [CrossRef]
- Kang, L.; Shen, Z.; Jin, C. Neodymium cations Nd3+ were transported to the interior of Euglena gracilis 277. Chin. Sci. Bull. 2000, 45, 585–592. [Google Scholar] [CrossRef]
- Shen, H.; Ren, Q.G.; Mi, Y.; Shi, X.F.; Yao, H.Y.; Jin, C.Z.; Huang, Y.Y.; He, W.; Zhang, J.; Liu, B. Investigation of metal ion accumulation in Euglena gracilis by fluorescence methods. Nucl. Instrum. Methods Phys. Res. Sect. B 2002, 189, 506–510. [Google Scholar] [CrossRef]
- Guo, A.; Wang, J.; Li, X.; Zhu, J.; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.H.; Butz, T. Study of metal bioaccumulation by nuclear microscope analysis of algae fossils and living algae cells. Nucl. Instrum. Meth. Phys. Res. Sect. B 2000, 161–163. [Google Scholar]
- Shen, C.D.; Xu, J.R.; Yu, J.F. Effect of the rare earth element of Eu on the growth and chlorophyll content of Chlorella vulgaris. Freshw. Fish. 2003, 33, 23–26. [Google Scholar]
- Řezanka, T.; Kaineder, K.; Mezricky, D.; Řezanka, M.; Bišová, K.; Zachleder, V.; Vítová, M. The effect of lanthanides on photosynthesis, growth, and chlorophyll profile of the green alga Desmodesmus quadricauda. Photosynth. Res. 2016, 130, 335–340. [Google Scholar] [CrossRef]
- Brar, A.; Kumar, M.; Vivekanand, V.; Pareek, N. Photoautotrophic microorganisms and bioremediation of industrial effluents: Current status and future prospects. 3 Biotech 2017, 7, 1–8. [Google Scholar] [CrossRef]
- Olszewska, J.P.; Meharg, A.A.; Heal, K.V.; Carey, M.; Gunn, I.D.M.; Searle, K.R.; Winfield, I.J.; Spears, B.M. Assessing the legacy of red mud pollution in a shallow freshwater lake: Arsenic accumulation and speciation in macrophytes. Environ. Sci. Technol. 2016, 50, 9044–9052. [Google Scholar] [CrossRef]
- EEC Council Directive 76/464/EEC on Pollution Caused by Certain Dangerous Substances Discharged into the Aquatic Environment of the Community (Dangerous Substances Directive)–List II Substances. Off. J. Eur. Communities 1976, L129, 23–29.
- Laguna, C.; Gonzalez, F.; Garcia-Balboa, C.; Ballester, A.; Blazquez, M.L.; Munoz, J.A. Bioreduction of iron compounds as a possible clean environmental alternative for metal recovery. Miner. Eng. 2011, 24, 10–18. [Google Scholar] [CrossRef]
- Schroda, M.; Hemme, D.; Muhlhaus, T. The Chlamydomonas heat stress response. Plant. J. 2015, 82, 466–480. [Google Scholar] [CrossRef]
- Zachleder, V.; Bišová, K.; Vítová, M. The cell cycle of microalgae. In The Physiology of Microalgae; Borowitzka, M.A., Raven, J.A., Eds.; Springer International Publishing: Cham, Switzerland; Heidelberg, Germnay; New York, NY, USA; Dordrecht, the Netherlands; London, UK, 2016; pp. 3–46. [Google Scholar]
- Umen, J.G. Sizing up the cell cycle: Systems and quantitative approaches in Chlamydomonas. Curr. Opin. Plant Biol. 2018, 46, 96–103. [Google Scholar] [CrossRef]
- Vitova, M.; Bisova, K.; Kawano, S.; Zachleder, V. Accumulation of energy reserves in algae: From cell cycles to biotechnological applications. Biotechnol. Adv. 2015, 33, 1204–1218. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, V.; Vignati, D.A.L.; Pons, M.N.; Montarges-Pelletier, E.; Bojic, C.; Giamberini, L. Lanthanide ecotoxicity: First attempt to measure environmental risk for aquatic organisms. Environ. Pollut. 2015, 199, 139–147. [Google Scholar] [CrossRef]
- Yang, G.; Wilkinson, K.J. Biouptake of a rare earth metal (Nd) by Chlamydomonas reinhardtii—Bioavailability of small organic complexes and role of hardness ions. Environ. Pollut. 2018, 243, 263–269. [Google Scholar] [CrossRef]
- Mishra, V.K.; Upadhyay, A.R.; Pathak, V.; Tripathi, B.D. Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes. Water Air Soil Pollut. 2008, 192, 303–314. [Google Scholar] [CrossRef]
- Goecke, F.; Aránguiz-Acuña, A.; Palacios, M.; Muñoz-Muga, P.; Rucki, M.; Vítová, M. Latitudinal distribution of lanthanides contained in macroalgae in Chile: An inductively coupled plasma-mass spectrometric (ICP-MS) determination. J. Appl. Phycol. 2017, 29, 2117–2128. [Google Scholar] [CrossRef]
- Qu, K.M.; Yuan, Y.; Xin, F. Enhancement of 3 rare earth elements to Isochrysis galbana J. Fish. Sci. Chin. 1998, 5, 42–47. [Google Scholar]
- Wang, X.; Sun, H.; Xu, Z.; Dai, L.; Li, Z.; Chen, Y. The effects and bioconcentration of REE La and its EDTA complex on the growth of algae Chlorella vulgaris Beijerinck. J. Nanjing Univ. 1996, 32, 460–475. (In Chinese) [Google Scholar]
- Ishii, N.; Tagami, K.; Uchida, S. Removal of rare earth elements by algal flagellate Euglena gracilis. J. Alloys Compd. 2006, 408–412, 417–420. [Google Scholar] [CrossRef]
- Martinez, M.E.; Sanchez, S.; Jimenez, J.M.; El Yousfi, F.; Munoz, L. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Biores. Technol. 2000, 73, 263–272. [Google Scholar] [CrossRef]
- Kim, G.Y.; Yun, Y.M.; Shin, H.S.; Kim, H.S.; Han, J.I. Scenedesmus-based treatment of nitrogen and phosphorus from effluent of anaerobic digester and bio-oil production. Biores. Technol. 2015, 196, 235–240. [Google Scholar] [CrossRef]
- Gee, K.R.; Brown, K.A.; Chen, W.N.; Bishop-Stewart, J.; Gray, D.; Johnson, I. Chemical and physiological characterization of Fluo-4 Ca2+-indicator dyes. Cell Calcium 2000, 27, 97–106. [Google Scholar] [CrossRef]
- Liu, C.; Hong, F.-S.; Wu, K.; Ma, H.-B.; Zhang, X.-G.; Hong, C.-J.; Wu, C.; Gao, F.-Q.; Yang, F.; Zheng, L.; et al. Effect of Nd3+ ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach. Biochem. Biophys. Res. Commun. 2006, 342, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hasenstein, K.H. La3+ uptake and its effect on the cytoskeleton in root protoplasts of Zea mays L. Planta 2005, 220, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.H.; Richter, H.; Sparovek, G.; Schnug, E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. J. Plant Nutr. 2004, 27, 183–220. [Google Scholar] [CrossRef]
- Li, X.; Přibyl, P.; Bišová, K.; Kawano, S.; Cepák, V.; Zachleder, V.; Čížková, M.; Brányiková, I.; Vítová, M. The microalga Parachlorella kessleri—A novel highly-efficient lipid producer. Biotechnol. Bioeng. 2013, 110, 97–107. [Google Scholar] [CrossRef]
- Kastori, R.; Maksimovic, I.; Zeremski-Skoric, T.; Putnik-Delic, M. Rare earth elements: Yttrium and higher plants. Zbornik Matice Srpske za Prirodne Nauke 2010, 87–98. [Google Scholar] [CrossRef]
- Wang, X.P.; Shan, X.Q.; Zhang, S.Z.; Wen, B. Distribution of rare earth elements among chloroplast components of hyperaccumulator Dicranopteris dichotoma. Anal. Bioanal. Chem. 2003, 376, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.M.; Abu Bakar, N.K.; Abu Bakar, A.F.; Ashraf, M.A. Chemical speciation and bioavailability of rare earth elements (REEs) in the ecosystem: A review. Environ. Sci. Pollut. Res. 2017, 24, 22764–22789. [Google Scholar] [CrossRef] [PubMed]
- Squier, T.C.; Bigelow, D.J.; Fernandezbelda, F.J.; Demeis, L.; Inesi, G. Calcium and lanthanide binding in the sarcoplasmic-reticulum atpase. J. Biol. Chem. 1990, 265, 13713–13720. [Google Scholar]
- Brown, P.H.; Rathjen, A.H.; Graham, R.D.; Tribe, D.E. Rare earth elements in biological systems. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K.A., Eyring, L., Eds.; Elsevier: North Holland, The Netherland, 1990; pp. 423–452. [Google Scholar]
- Goecke, F.; Jerez, C.; Zachleder, V.; Figueroa, F.L.; Bišová, K.; Řezanka, T.; Vítová, M. Use of lanthanides to alleviate the effects of metal ion-deficiency in Desmodesmus quadricauda (Sphaeropleales, Chlorophyta). Front. Microbiol. 2015, 6, 2. [Google Scholar] [CrossRef] [PubMed]
- Vítová, M.; Bišová, K.; Hlavová, M.; Zachleder, V.; Rucki, M.; Čížková, M. Glutathione peroxidase activity in the selenium-treated alga Scenedesmus quadricauda. Aquat. Toxicol. 2011, 102, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, B.; Teixeira, J.; Dragone, G.; Vicente, A.A.; Kawano, S.; Bišová, K.; Přibyl, P.; Zachleder, V.; Vítová, M. Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresour. Technol. 2013, 144, 268–274. [Google Scholar] [CrossRef]
- Sueoka, N. Mitotic replication of deoxyribonucleic acid in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 1960, 46, 83–91. [Google Scholar] [CrossRef]
Sample Availability: Samples of compounds are available from the authors. |
Element | Symbol | Content mg/kg | Avg mg/kg | SD | Avg% |
---|---|---|---|---|---|
Scandium | Sc | 80–110 | 95 | 12.2 | 8.1 |
Yttrium | Y | 95–140 | 118 | 18.4 | 10.1 |
Lanthanum | La | 140–260 | 200 | 49.0 | 17.2 |
Cerium | Ce | 300–550 | 425 | 102.1 | 36.5 |
Praseodymium | Pr | 25–49 | 37 | 9.8 | 3.2 |
Neodymium | Nd | 132–210 | 171 | 31.8 | 14.7 |
Samarium | Sm | 26–38 | 32 | 4.9 | 2.7 |
Europium | Eu | 5–8 | 7 | 1.2 | 0.6 |
Gadolinium | Gd | 20–32 | 26 | 4.9 | 2.2 |
Dysprosium | Dy | 20–35 | 28 | 6.1 | 2.4 |
Erbium | Er | 11–18 | 15 | 2.9 | 1.2 |
Ytterbium | Yb | 11–15 | 13 | 1.6 | 1.1 |
Total lanthanides | 1167 | 100.0 |
Element | Symbol | Content g/kg | Avg g/kg | SD | Avg% |
Sodium | Na | 46.0–49.1 | 47.6 | 1.55 | 17.183 |
Aluminum | Al | 29.6–37.7 | 33.7 | 4.05 | 12.165 |
Silicon | Si | 15.6–32.6 | 24.1 | 8.5 | 8.700 |
Calcium | Ca | 20.3–45.2 | 32.7 | 6.2 | 11.804 |
Titanium | Ti | 19.5–19.6 | 19.6 | 0.05 | 7.057 |
Manganese | Mn | 1.4–1.5 | 1.45 | 0.05 | 0.523 |
Iron | Fe | 146–147.6 | 147 | 0.8 | 53.066 |
mg/kg | mg/kg | ||||
Lithium | Li | 70.2–74.7 | 72.5 | 2.25 | 0.026 |
Beryllium | Be | 4.4–4.7 | 4.6 | 0.15 | 0.002 |
Boron | B | 54.6–65.6 | 60.1 | 5.5 | 0.022 |
Magnesium | Mg | 480.5–667.5 | 574.0 | 93.5 | 0.207 |
Barium | Ba | 45.3–52.2 | 48.7 | 3.45 | 0.018 |
Vanadium | V | 741.6–750.7 | 746.6 | 4.8 | 0.270 |
Chromium | Cr | 352.3–370.9 | 361.5 | 9.3 | 0.130 |
Cobalt | Co | 35.3–33.9 | 34.6 | 0.7 | 0.012 |
Nickel | Ni | 173.7–283.5 | 228.6 | 54.9 | 0.083 |
Copper | Cu | 73.1–76.5 | 74.53 | 1.7 | 0.027 |
Zinc | Zn | 112.5–113.4 | 112.95 | 0.45 | 0.041 |
Gallium | Ga | 22.5–22.9 | 22.7 | 0.2 | 0.008 |
Arsenic | As | 98.1–100.8 | 98.85 | 1.35 | 0.036 |
Rubidium | Rb | 1.3–1.3 | 1.3 | 0 | 0.000 |
Strontium | Sr | 584.0–623.2 | 603.6 | 19.6 | 0.218 |
Zirconum | Zr | 445.7–457.2 | 451.45 | 5.75 | 0.163 |
Niobium | Nb | 55.1–55.6 | 55.35 | 0.25 | 0.020 |
Molybdenum | Mo | 11.8–12.1 | 11.95 | 0.15 | 0.004 |
Palladium | Pd | 4.9–5.0 | 4.95 | 0.05 | 0.002 |
Silver | Ag | 1.1–1.2 | 1.15 | 0.05 | 0.000 |
Cadmium | Cd | 1.2–1.4 | 1.3 | 0.1 | 0.000 |
Tin | Sn | 11.3–11.6 | 11.45 | 0.15 | 0.004 |
Antimony | Sb | 11.6–11.7 | 11.64 | 0.05 | 0.004 |
Tellurium | Te | 1.2–1.4 | 1.3 | 0.1 | 0.000 |
Hafnium | Hf | 11.2–11.7 | 11.45 | 0.25 | 0.004 |
Tantalum | Ta | 4.5–4.5 | 4.5 | 0 | 0.002 |
Wolfram | W | 2.9–3.0 | 2.95 | 0.05 | 0.001 |
Total elements | 309.7 | g/kg |
Concentration of Red Mud | Number of Cells, 106/mL | Growth Rate µ | |
---|---|---|---|
% | 0 h | 2 days | |
Desmodesmus quadricauda | |||
0 | 0.8 | 34.4 | 2.71 |
0.03 | 0.8 | 30.4 | 2.62 |
0.05 | 0.8 | 30.5 | 2.63 |
0.1 | 0.8 | 23.3 | 2.43 |
Chlamydomonas reinhardtii | |||
0 | 0.8 | 25.75 | 2.50 |
0.03 | 0.8 | 23.83 | 2.45 |
0.05 | 0.8 | 20.03 | 2.32 |
0.1 | 0.8 | 12.63 | 1.99 |
Parachlorella kessleri | |||
0 | 0.8 | 21.24 | 2.37 |
0.03 | 0.8 | 20.41 | 2.34 |
0.05 | 0.8 | 16.25 | 2.17 |
0.1 | 0.8 | 15.37 | 2.13 |
Compound | Weight g/L | MW | Molarity µmol/L | Element |
---|---|---|---|---|
Macroelements for Desmodesmus quadricauda and Parachloreella kessleri | ||||
KNO3 | 2.021 | 101.1 | 19990.1 | N |
K2HPO4 | 0.14 | 174.2 | 803.7 | P |
KH2PO4 | 0.34 | 136.1 | 2498.2 | K |
MgSO4·7H2O | 0.988 | 246.5 | 4008.1 | Mg |
CaCl2·2H2O | 0.011 | 147.0 | 74.8 | Ca |
FeNaEDTA | 0.018 | 367.0 | 49.0 | Fe |
Macroelements for Chlamydomonas reinhardtii | ||||
NH4Cl | 0.5 | 53.4 | 9363.3 | N |
K2HPO4 | 1.44 | 174.2 | 8266.4 | P |
KH2PO4 | 0.72 | 136.1 | 5290.2 | K |
MgSO4·7H2O | 1.18 | 246.5 | 4787.0 | Mg |
CaCl2·2H2O | 0.02 | 147.0 | 136.1 | Ca |
FeNaEDTA | 0.018 | 367.0 | 49.0 | Fe |
Composition of microelements common for all species | ||||
H3BO3 | 0.003 | 61.8 | 4.85 | B |
ZnSO4·7H2O | 0.00143 | 287.6 | 4.97 | Zn |
MnSO4·4H2O | 0.0012 | 223.0 | 5.38 | Mn |
CuSO4·5H2O | 0.00124 | 231.7 | 5.35 | Cu |
CoSO4·7H2O | 0.0014 | 227.0 | 6.17 | Co |
(NH4)6Mo7O24·4H2O | 0.00184 | 1235.8 | 1.49 | Mo |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čížková, M.; Mezricky, D.; Rucki, M.; Tóth, T.M.; Náhlík, V.; Lanta, V.; Bišová, K.; Zachleder, V.; Vítová, M. Bio-mining of Lanthanides from Red Mud by Green Microalgae. Molecules 2019, 24, 1356. https://doi.org/10.3390/molecules24071356
Čížková M, Mezricky D, Rucki M, Tóth TM, Náhlík V, Lanta V, Bišová K, Zachleder V, Vítová M. Bio-mining of Lanthanides from Red Mud by Green Microalgae. Molecules. 2019; 24(7):1356. https://doi.org/10.3390/molecules24071356
Chicago/Turabian StyleČížková, Mária, Dana Mezricky, Marian Rucki, Tivadar M. Tóth, Vít Náhlík, Vojtěch Lanta, Kateřina Bišová, Vilém Zachleder, and Milada Vítová. 2019. "Bio-mining of Lanthanides from Red Mud by Green Microalgae" Molecules 24, no. 7: 1356. https://doi.org/10.3390/molecules24071356
APA StyleČížková, M., Mezricky, D., Rucki, M., Tóth, T. M., Náhlík, V., Lanta, V., Bišová, K., Zachleder, V., & Vítová, M. (2019). Bio-mining of Lanthanides from Red Mud by Green Microalgae. Molecules, 24(7), 1356. https://doi.org/10.3390/molecules24071356