Design and Synthesis of Matrine Derivatives as Novel Anti-Pulmonary Fibrotic Agents via Repression of the TGFβ/Smad Pathway
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Inhibition of TGF-β1-Induced Collagen Accumulation by Target Compounds
2.3. Inhibition Effects of Expression Levels of ECM Proteins by Key Compound 3f
2.4. Inhibition Effects against Fibroblast-to-Myfibroblast Transition by 3f
2.5. Inhibition Effects against Smad-Mediated Signaling by 3f
2.6. Inhibition Effects against TGF-β1 Induced Migration of MRC-5 Cells by 3f
2.7. Action on TGFβ/Smad Pathway of 3f
3. Experimental Section
3.1. Apparatus, Materials, and Analysis Reagents
3.2. Chemistry
3.2.1. General Procedure for the Synthesis of Compounds 2a–d
3.2.2. General Procedure for the Synthesis of Compounds 3a–n
3.3. BiologyAassay
3.3.1. Cell Culture
3.3.2. Sircol Collagen Assay
3.3.3. Cytotoxicity Assay
3.3.4. Immunofluorescence Assay
3.3.5. Scratch Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Raghu, G.; Rochwerg, B.; Zhang, Y.; Garcia, C.A.C.; Azuma, A.; Behr, J.; Brozek, J.L.; Collard, H.R.; Cunningham, W.; Homma, S.; et al. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am. J. Respir. Crit. Care. Med. 2015, 192, e3–e19. [Google Scholar] [CrossRef]
- Cottin, V.; Schmidt, A.; Catella, L.; Porte, F.; Fernandez-Montoya, C.; Le Lay, K.; Bénard, S. Burden of Idiopathic Pulmonary Fibrosis Progression: A 5-Year Longitudinal Follow-Up Study. PLoS ONE 2017, 12, e0166462. [Google Scholar] [CrossRef] [PubMed]
- Mathai, S.; Polito, A. The questionable efficacy of pirfenidone in IPF. Am. J. Respir. Crit. Care. Med. 2015, 172, 1228. [Google Scholar] [CrossRef] [PubMed]
- Richeldi, L.; du Bois, R.M.; Raghu, G.; Azuma, A.; Brown, K.K.; Costabel, U.; Cottin, V.; Flaherty, K.R.; Hansell, D.M.; Inoue, Y.; et al. Efficacy and Safety of Nintedanib in Idiopathic Pulmonary Fibrosis. N. Engl. J. Med. 2014, 370, 2071–2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.L.; Li, J.H.; Chengz, R.G.; Ma, Y.M.; Wang, X.J.; Liu, J.C. Effect of matrine on transforming growth factor β1 and hepatocyte growth factor in rat liver fibrosis model. Asian Pac. J. Trop. Med. 2014, 7, 390–393. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Cui, L.; Guan, G.C.; Wang, J.K.; Qiu, C.; Yang, T.L.; Guo, Y.; Liu, Z.W. Matrine suppresses cardiac fibrosis by inhibiting the TGF-β/Smad pathway in experimental diabetic cardiomyopathy. Mol. Med. Rep. 2018, 17, 1775–1781. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.W.; Zhang, Y.; Tang, Z.G.; Xu, J.; Ma, M.J.; Pan, S.; Qiu, C.; Guan, G.C.; Wang, J.K. Matrine attenuates cardiac fibrosis by affecting ATF6 signaling pathway in diabetic cardiomyopathy. Eur. J. Pharmacol. 2017, 804, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.F. Clinical study on matrine intervention in idiopathic pulmonary fibrosis. J. Shandong Univ. Tradit. Chin. Med. 2011, 5, 40–41. [Google Scholar]
- Jia, L. Clinical observation of matrine combined with prednisone in the treatment of idiopathic pulmonary fibrosis. Med. Inf. 2011, 24, 1067–1068. [Google Scholar]
- Zhang, W.H.; Yuan, X.M. Effect of oxymatrine on serum matrix metalloproteinase-9 and transforming growth factor-β1 in patients with idiopathic pulmonary fibrosis. Chin. J. Postgrad. Med. 2013, 36, 6–8. [Google Scholar]
- Xu, W.H.; Hu, H.G.; Tian, Y.; Wang, S.Z.; Li, J.; Li, J.Z.; Deng, X.; Qian, H.; Qiu, L.; Hu, Z.L.; et al. Bioactive compound reveals a novel function for ribosomal protein S5 in hepatic stellate cell activation and hepatic fibrosis. Hepatology 2014, 60, 648–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, H.G.; Wang, S.Z.; Zhang, C.M.; Wang, L.; Ding, L.; Zhang, J.P.; Wu, Q.Y. Synthesis and in vitro inhibitory activity of matrine derivatives towards pro-inflammatory cytokines. Bioorg. Med. Chem. Lett. 2010, 20, 7537–7539. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Wu, M.C.; Ding, L.; Wu, Q.Y.; Zhao, Q.J.; Guo, Z.W. Synthesis and in vitro antifibrosis activities of 13-acetylmethylaminomatrine derivatives. Pharm. Care. Res. 2017, 17, 102–104. [Google Scholar]
- Xia, Z.E.; Xi, J.L.; Shi, L. 3,3′-Diindolylmethane ameliorates renal fibrosis through the inhibition of renal fibroblast activation in vivo and in vitro. Renal Fail. 2018, 40, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Shima, H.; Sasaki, K.; Suzuki, T.; Mukawa, C.; Obara, T.; Oba, Y.; Matsuo, A.; Kobayashi, T.; Mishima, E.; Watanabe, S.; et al. A novel indole compound MA-35 attenuates renal fibrosis by inhibiting both TNF-α and TGF-β1 pathways. Sci. Rep. 2017, 7, 1884. [Google Scholar] [CrossRef] [Green Version]
- Mesa, R.A.; Yasothan, U.; Kirkpatrick, P. Ruxolitinib. Nat. Rev. Drug Discov. 2012, 11, 103. [Google Scholar] [CrossRef]
- Lars, K.; Clemens, R.; Matthias, O. Tissue remodelling in pulmonary fibrosis. Cell Tissue Res. 2017, 367, 607–626. [Google Scholar]
- Yue, X.P.; Shan, B.; Lasky, J.A. TGF-β: Titan of Lung Fibrogenesis. Curr. Enzym. Inhib. 2010, 6, 67. [Google Scholar] [CrossRef]
- Scotton, C.J.; Chambers, R.C. Molecular targets in pulmonary fibrosis: The myofibroblast in focus. Chest 2007, 132, 1311–1321. [Google Scholar] [CrossRef]
- Laurent, G.J. Collagen in Normal Lung and During Pulmonary Fibrosis. In Cellular Biology of the Lung; Cumming, G., Bonsignore, G., Eds.; Springer US: Boston, MA, USA, 1982; pp. 311–325. [Google Scholar] [Green Version]
- Blatt, L.M.; Seiwert, S.D.; Beigelman, L.; Radhakrishnan, R.; Kossen, K.; Serebryany, V. Method of Modulating Stress-Activated Protein Kinase System. U.S. Patent 7720813, 1 June 2010. [Google Scholar]
- White, E.S.; Thannickal, V.J.; Carskadon, S.L.; Dickie, E.G.; Livant, D.L.; Markwart, S.; Toews, G.B.; Arenberg, D.A. Integrin alpha4beta1 regulates migration across basement membranes by lung fibroblasts: A role for phosphatase and tensin homologue deleted on chromosome 10. Am. J. Respir. Crit Care Med. 2003, 168, 436–442. [Google Scholar] [CrossRef]
- Bitterman, P.B.; Rennard, S.I.; Adelberg, S.; Crystal, R.G. Role of fibronectin as a growth factor for fibroblasts. J. Cell Biol. 1983, 97, 1925–1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, C.T.; Cheng, H.W.; Huang, M.T.; Li, J.Z.; Ou, M.H.; Huang, J.R.; Khoo, K.H.; Yu, H.W.; Chen, Y.Q.; Wang, J.K.; et al. Fibronectin in cell adhesion and migration via N-glycosylation. Oncotarget 2017, 8, 70653–70668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinz, B.; Phan, S.H.; Thannickal, V.J.; Galli, A.; Bochaton-Piallat, M.-L.; Gabbiani, G. The myofibroblast: One function, multiple origins. Am. J. Pathol. 2007, 170, 1807–1816. [Google Scholar] [CrossRef]
- Xu, P.L.; Liu, J.M.; Derynck, R. Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett. 2012, 586, 1871–1884. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Chung, A.C.K.; Dong, Y.; Yang, W.; Zhong, X.; Lan, H.Y. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway. Kidney Int. 2013, 84, 1129–1144. [Google Scholar] [CrossRef] [PubMed]
- Selman, M.; Pardo, A. Idiopathic pulmonary fibrosis: An epithelial/fibroblastic cross-talk disorder. Respir. Res. 2002, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Moskot, M.; Jakóbkiewicz-Banecka, J.; Kloska, A.; Piotrowska, E.; Narajczyk, M.; Gabig-Cimińska, M. The Role of Dimethyl Sulfoxide (DMSO) in Gene Expression Modulation and Glycosaminoglycan Metabolism in Lysosomal Storage Disorders on an Example of Mucopolysaccharidosis. Int. J. Mol. Sci. 2019, 20, 304. [Google Scholar] [CrossRef]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. J. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef] [PubMed]
- Baecker, V. ImageJ Macro Tool Sets for Biological Image Analysis. In Proceedings of the ImageJ User and Developer Conference, Luxembourg, 24–26 October 2012. [Google Scholar]
Sample Availability: Samples of the compounds 2a–d and 3a–n are available from the authors. |
Code | R | IC50 (μM) a | CC50 (μM) b | SI c | 13S/13R ratio d | ClogP e |
---|---|---|---|---|---|---|
2a | R1 = Me, R2 = H | 65.3 ± 4.2 | 609.3 ± 29.8 | 9.3 | pure 13S | 0.75 |
2b | R1 = R2 = Me | 92.1 ± 1.9 | 624.5 ± 13.2 | 6.8 | pure 13S | 1.33 |
2c | | 255.8 ± 22.1 | 675.8 ± 49.1 | 2.6 | 2.6:1 | 1.89 |
2d | | 138.4 ± 9.8 | 507.2 ± 25.3 | 3.7 | 2.4:1 | 0.92 |
3a | H | 28.3 ± 3.9 | 106.6 ± 5.9 | 3.8 | 8.1:1 | 3.28 |
3b | 3′-Me | 39.0 ± 0.6 | 95.1 ± 6.5 | 2.4 | 5.7:1 | 3.78 |
3c | 4′-OMe | 44.7 ± 3.6 | 56.7 ± 3.9 | 1.3 | 4.9:1 | 3.34 |
3d | 4′-NO2 | 4.3 ± 0.4 | 32.8 ± 2.7 | 7.6 | 10.1:1 | 3.11 |
3e | 5′-OMe | 68.1 ± 5.5 | 127.5 ± 1.4 | 1.9 | 7.3:1 | 3.34 |
3f | 5′-Cl | 3.3 ± 0.3 | 26.7 ± 0.7 | 8.0 | pure 13S | 4.03 |
3g | 5′-Br | 6.5 ± 1.2 | 18.2 ± 0.6 | 2.8 | 4.9:1 | 4.18 |
3h | 5′-CN | 72.1 ± 4.0 | 153.6 ± 11.0 | 2.1 | 1.6:1 | 2.81 |
3i | 5′-NO2 | 14.5 ± 1.0 | 65.4 ± 3.1 | 4.5 | 3.3:1 | 3.11 |
3j | 5′-aza | 16.7 ± 3.5 | 114.0 ± 5.9 | 6.8 | pure 13S | 1.98 |
3k | 6′-F | 23.1 ± 5.3 | 78.1 ± 3.4 | 3.4 | 1.9:1 | 3.46 |
3l | 6′-Cl | 27.0 ± 1.4 | 45.8 ± 1.1 | 1.7 | 4.9:1 | 4.03 |
3m | 6′-NO2 | 19.3 ± 2.2 | 53.3 ± 1.9 | 2.8 | 11.5:1 | 3.11 |
3n | 6′-aza | 69.5 ± 8.2 | 84.2 ± 2.2 | 1.2 | 1.5:1 | 1.98 |
Matrine | - | 878 ± 68 | 2466 ± 103 | 2.8 | - | 1.36 |
Sophocarpine | - | 1186 ± 135 | 3160 ± 355 | 2.7 | - | 1.36 |
Pirfenidone | - | 1320 ± 98 | 4159 ± 239 | 3.1 | - | 2.40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Ma, L.; Wang, D.; Jia, H.; Yu, M.; Gu, Y.; Shang, H.; Zou, Z. Design and Synthesis of Matrine Derivatives as Novel Anti-Pulmonary Fibrotic Agents via Repression of the TGFβ/Smad Pathway. Molecules 2019, 24, 1108. https://doi.org/10.3390/molecules24061108
Li L, Ma L, Wang D, Jia H, Yu M, Gu Y, Shang H, Zou Z. Design and Synthesis of Matrine Derivatives as Novel Anti-Pulmonary Fibrotic Agents via Repression of the TGFβ/Smad Pathway. Molecules. 2019; 24(6):1108. https://doi.org/10.3390/molecules24061108
Chicago/Turabian StyleLi, Lingyu, Liyan Ma, Dongchun Wang, Hongmei Jia, Meng Yu, Yucheng Gu, Hai Shang, and Zhongmei Zou. 2019. "Design and Synthesis of Matrine Derivatives as Novel Anti-Pulmonary Fibrotic Agents via Repression of the TGFβ/Smad Pathway" Molecules 24, no. 6: 1108. https://doi.org/10.3390/molecules24061108
APA StyleLi, L., Ma, L., Wang, D., Jia, H., Yu, M., Gu, Y., Shang, H., & Zou, Z. (2019). Design and Synthesis of Matrine Derivatives as Novel Anti-Pulmonary Fibrotic Agents via Repression of the TGFβ/Smad Pathway. Molecules, 24(6), 1108. https://doi.org/10.3390/molecules24061108