Next Article in Journal
An Organic Chemist’s Guide to Electrospray Mass Spectrometric Structure Elucidation
Previous Article in Journal
Transport and Optical Gaps in Amorphous Organic Molecular Materials
Article Menu
Issue 3 (February-1) cover image

Export Article

Open AccessArticle
Molecules 2019, 24(3), 610; https://doi.org/10.3390/molecules24030610

The Role of Saccharomyces cerevisiae Yeast and Lactic Acid Bacteria in the Formation of 2-Propanol from Acetone during Fermentation of Rye Mashes Obtained Using Thermal-Pressure Method of Starch Liberation

1
Department of Spirit and Yeast Technology, Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
2
Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
*
Author to whom correspondence should be addressed.
Received: 27 January 2019 / Revised: 4 February 2019 / Accepted: 7 February 2019 / Published: 9 February 2019
Full-Text   |   PDF [522 KB, uploaded 9 February 2019]   |  

Abstract

This study set out to assess the acetone content in rye sweet mashes prepared using the thermal-pressure method of starch liberation, and to investigate the formation of 2-propanol during the fermentation process. In the first set of experiments, we evaluated the correlation between the color and the content of acetone and furfural in industrially produced sweet mashes (n = 37). The L * value was negatively correlated with the content of both acetone and furfural, while chromatic parameters a * and b * and the yellowness index (YI) had strong positive correlations with acetone (r > 0.9) and furfural (r > 0.8 for a * and r > 0.9 for b * and YI). In the second set of experiments, we assessed the concentration of acetone and 2-propanol in distillery rye mashes, fermented by S. cerevisiae yeast and lactic acid bacteria. The influence of fermentation temperature on the formation of 2-propanol was also evaluated. The presence of 2-propanol in the post-fermentation media was confirmed, while a decrease in acetone content was observed. Fermentation temperature (27 °C or 35 °C) was found to have a significant effect on the concentration of 2-propanol in trials inoculated with lactic bacteria. The content of 2-propanol was more than 11 times higher in trials fermented at the higher temperature. In the case of yeast-fermented mashes, the temperature did not affect 2-propanol content. The acetone in the sweet mash was assumed to be a precursor of 2-propanol, which was found in the fermented mashes. View Full-Text
Keywords: 2-propanol; acetone; thermal-pressure method of starch liberation; Maillard reaction products; Saccharomyces cerevisiae yeast; lactic acid bacteria 2-propanol; acetone; thermal-pressure method of starch liberation; Maillard reaction products; Saccharomyces cerevisiae yeast; lactic acid bacteria
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Pielech-Przybylska, K.; Balcerek, M.; Dziekońska-Kubczak, U.; Pacholczyk-Sienicka, B.; Ciepielowski, G.; Albrecht, Ł.; Patelski, P. The Role of Saccharomyces cerevisiae Yeast and Lactic Acid Bacteria in the Formation of 2-Propanol from Acetone during Fermentation of Rye Mashes Obtained Using Thermal-Pressure Method of Starch Liberation. Molecules 2019, 24, 610.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top