Novel Hit Compounds as Putative Antifungals: The Case of Aspergillus fumigatus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ligand-Based Pharmacophore Model Generation
2.2. Pharmacophore Model Validation
2.3. Virtual Screening and Docking Studies
2.4. Antifungal Activity Evaluation
2.5. Molecular Dynamics Simulations
3. Materials and Methods
3.1. Pharmacophore Model Generation
3.2. Evaluation of Validation Results
3.3. Pharmacophore-Based Virtual Screening
3.4. Molecular Docking Studies
3.5. Antifungal ActivityEvaluation
3.6. Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ikeh, M.; Ahmed, Y.; Quinn, J. Phosphate acquisition and virulence in human fungal pathogens. Microorganisms 2017, 5, 48. [Google Scholar] [CrossRef] [PubMed]
- Perfect, J. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov. 2017, 16, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Havlickova, B.; Czaika, V.A.; Friedrich, M. Epidemiological trends in skin mycoses worldwide. Mycoses 2008, 51, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Latge, J.P. Aspergillus fumigatus and Aspergillosis. Clin. Microbiol. Rev. 1999, 12, 310–350. [Google Scholar] [CrossRef]
- Kousha, M.; Tadi, R.; Soubani, A.O. Pulmonary aspergillosis: A clinical review. Eur. Respir. Rev. 2011, 20, 156–174. [Google Scholar] [CrossRef]
- Tracy, M.C.; Okorie, C.U.A.; Foley, E.A.; Moss, R.B. Allergic Bronchopulmonary Aspergillosis. J. Fungi 2016, 20, 17. [Google Scholar] [CrossRef]
- Panackal, A.A.; Bennett, J.E.; Williamson, P.R. Treatment options in Invasive Aspergillosis. Curr. Treat Options Infect. Dis. 2014, 6, 309–325. [Google Scholar] [CrossRef]
- Mayr, A.; Lass-Flörl, C. Epidemiology and antifungal resistance in invasive aspergillosis according to primary disease–review of the literature. Eur. J. Med. Res. 2011, 16, 153–157. [Google Scholar] [CrossRef]
- Global Action Fund for Fungal Infections (GAFFI). Priority Fungal Infections. Available online: http: //www.gaffi.org/media/fact-sheets/ (accessed on 14 August 2017).
- Baddley, J.W.; Andes, D.R.; Marr, K.A.; Kontoyiannis, D.P.; Alexander, B.D.; Kauffman, C.A.; Oster, R.A.; Anaissie, E.J.; Walsh, T.J.; Schuster, M.G.; et al. Factors associated with mortality in transplant patients with invasive aspergillosis. Clin. Infect. Dis. 2010, 50, 1559–1567. [Google Scholar] [CrossRef]
- Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86–96. [Google Scholar] [CrossRef]
- Lewis, R.E. Current concepts in antifungal pharmacology. Mayo Clin. Proc. 2011, 86, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Cowen, L.E.; Sanglard, D.; Howard, S.J.; Rogers, P.D.; Perlin, D.S. Mechanisms of Antifungal Drug Resistance, Cold Spring Harb. Perspect. Med. 2015, 5, 1–22. [Google Scholar] [CrossRef]
- Revie, N.M.; Lyer, K.R.; Robbins, N.; Cowen, L.E. Antifungal drug resistance: Evolution, mechanisms and impact. Curr. Opin. Microbiol. 2018, 45, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Lass-Florl, C. Triazole Antifungal Agents in Invasive Fungal Infections, A Comparative Review. Drugs 2011, 71, 2405–2419. [Google Scholar] [CrossRef] [PubMed]
- Shukla, P.K.; Singh, P.; Yadav, R.K.; Pandey, S.; Bhunia, S.S. Past, Present, and Future of Antifungal Drug Development. Top. Med. Chem. 2016, 125–167. [Google Scholar] [CrossRef]
- Herbrecht, R.; Denning, D.W.; Patterson, T.F.; Bennett, J.E.; Greene, R.E.; Oestmann, J.W.; de Pauw, B. Voriconazole versus Amphotericin B for Primary Therapy of Invasive Aspergillosis. N Engl. J. Med. 2002, 347, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: A review. Drugs Today (Barc). 2015, 51, 705–718. [Google Scholar] [CrossRef]
- Warrilow, A.G.; Melo, N.; Martel, C.M.; Parker, J.E.; Nes, W.D.; Kelly, S.L.; Kelly, D.E. Expression, purification, and characterization of Aspergillus fumigatus sterol 14-α demethylase (CYP51) isoenzymes A and B. Antimicrob. Agents Chemother. 2010, 54, 4225–4234. [Google Scholar] [CrossRef]
- Odds, F.C.; Brown, A.J.P.; Gow, N.A.R. Antifungal agents: Mechanisms of action. Trends Microbiol. 2003, 11, 272–279. [Google Scholar] [CrossRef]
- Bossche, H.V.; Koymans, H.L. Review Article Cytochromes P450 in fungi. Mycoses 1998, 41, 32–38. [Google Scholar] [CrossRef]
- Lepesheva, G.I.; Waterman, M.R. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta. 2007, 1770, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, R.S.; Robbins, N.; Cowen, L.E. Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiol. Mol. Biol. Rev. 2011, 75, 213–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraczek, M.G.; Bromley, M.; Bowyer, P. An improved model of the Aspergillus fumigatus CYP51A protein. Antimicrob. Agents Chemother. 2011, 55, 2483–2486. [Google Scholar] [CrossRef] [PubMed]
- Podust, L.M.; Poulos, T.L.; Waterman, M.R. Crystal structure of cytochrome P450 14 a-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. USA 2001, 98, 3068–3073. [Google Scholar] [CrossRef]
- Howard, S.J.; Cerar, D.; Anderson, M.J.; Albarrag, A.; Fisher, M.C.; Pasqualotto, A.C.; Laverdiere, M.; Arendrup, M.C.; Perlin, D.S.; Dennn, D.W. Frequency and evolution of azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg. Infect. Dis. 2009, 15, 1068–1076. [Google Scholar] [CrossRef]
- Howard, S.J.; Webster, I.; Moore, C.B.; Gardiner, R.E.; Park, S.; Perlin, D.S.; Denning, D.W. Multi-azole resistance in Aspergillus fumigatus. Int. J. Antimicrob. Agents 2006, 28, 450–453. [Google Scholar] [CrossRef]
- Liu, M.; Zheng, N.; Li, D.; Zheng, H.; Zhang, L.; Ge, H.; Liu, W. cyp51A-based mechanism of azole resistance in Aspergillus fumigatus: Illustration by a new 3D Structural Model of Aspergillus fumigatus CYP51A protein. Med. Mycol. J. 2016, 54, 400–408. [Google Scholar] [CrossRef]
- Available online: http://zinc.docking.org/ (accessed on 21 September 2019).
- Yang, S.Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discov. Today 2010, 15, 444–450. [Google Scholar] [CrossRef]
- Kaserer, T.; Beck, K.; Akram, M.; Odermatt, A.; Schuster, D. Pharmacophore Models and Pharmacophore-Based Virtual Screening: Concepts and Applications Exemplified on Hydroxysteroid Dehydrogenases. Molecules 2015, 20, 22799–22832. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Irwin, J.J.; Shoichet, B.K. ZINC - A free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005, 45, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Strushkevich, N.; Usanov, S.A.; Park, H.W. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles. J. Mol. Biol. 2010, 397, 1067–1078. [Google Scholar] [CrossRef] [PubMed]
- González-Chávez, R.; Martínez, R.; Torre-Bouscoulet, M.E.; Gallo, M.; González-Chávez, M.M. De Novo Design of Non-coordinating Indolones as Potential Inhibitors for Lanosterol 14-α-Demethylase (CYP51). Chem. Pharm. Bull. 2014, 62, 16–24. [Google Scholar] [CrossRef]
- Wolber, G.; Langer, T. LigandScout:3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.inteligand.com/ligandscout (accessed on 21 September 2019).
- Available online: https://www.ebi.ac.uk/chembl (accessed on 21 September 2019).
- Hawkins, P.C.D.; Skillman, A.G.; Warren, G.L.; Ellingson, B.A.; Stahl, M.T. Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50, 572–584. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.C.; Costa, L.; Oliveira, P. An alternative method for global and partial comparison of two diagnostic systems based on ROC curves. J. Stat. Comput. Sim. 2013, 83, 307–325. [Google Scholar] [CrossRef]
- Chen, I.J.; Foloppe, N. Drug-like bioactive structures and conformational coverage with the ligprep/confgen suite: Comparison to programs MOE and catalyst. J. Chem. Inf. Model. 2010, 50, 822–839. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide:A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef]
- Sherman, W.; Beard, H.S.; Farid, R. Use of an induced fit receptor structure in virtual screening. Chem. Biol. Drug Des. 2006, 67, 83–84. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A. Comparison of the E-test with the NCCLS M38-P method for antifungal susceptibility testing of common and emerging pathogenic filamentous fungi. Clin. Microbiol. 2001, 39, 1360–1367. [Google Scholar] [CrossRef] [PubMed]
- Soković, M.; van Griensven, L.J.L.D. Antimicrobial activity of essential oils and their 471 components against the three major pathogens of the cultivated button mushroom, 472 Agaricus bisporus. Eur. J. Plant Pathol. 2006, 116, 211–224. [Google Scholar] [CrossRef]
- Abraham, M.J.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindhal, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. Software X. 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 70, 1950–1958. [Google Scholar] [CrossRef]
- Bayly, C.I.; Cieplak, P.; Cornell, W.; Kollman, P. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. J. Phys. Chem. 1993, 97, 10269–10280. [Google Scholar] [CrossRef]
- Shahrokh, K.; Orendt, A.; Yost, G.; Cheatham, T. Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle. J. Comput. Chem. 2012, 33, 119–133. [Google Scholar] [CrossRef]
- Smiljkovic, M.; Matsoukas, M.T.; Kritsi, E.; Zelenko, U.; Grdodolnik, S.G.; Calhelha, R.; Ferreira, I.; Sankovic-Babic, S.; Glamoclija, J.; Fotopoulou, T.; et al. Nitrate esters of heteroaromatic compounds as novel Candida albicans CYP51 enzyme inhibitors. ChemMedChem 2018, 13, 251–258. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1–2, 3–5 and 6–8 were purchased from ChemDiv, Mcule and eMolecules, respectively. |
Cartesian Coordinates | ||||
---|---|---|---|---|
Feature Type | Radius (Å) | X | Υ | Z |
HBA1 | 1.65 | 1.64 | 0.02 | 1.77 |
HBA2 | 1.65 | −0.17 | −3.17 | −1.52 |
AR | 1.05 | 4.07 | −2.27 | −0.20 |
H | 1.65 | 6.07 | −4.53 | −0.93 |
Sensitivity (Se) | 0.45 |
---|---|
False Positive Rate (1-Sp) | 0.06 |
Enrichment Factor (EF) | 2.4 |
Area Under Curve (AUC) | 0.69 |
Variable | Value | Variable | Value |
---|---|---|---|
A | 916 | Dt | 4128 |
I | 117 | Ht | 784 |
D | 3095 | Ha | 417 |
%A | 45.52 | Hi | 7 |
%I | 5.98 | Hd | 360 |
%D | 11.63 |
Compound | Docking Score (kcal·mol−1) | Emodel (kcal·mol−1) | Pharmacophore-Fit Score | Distance Fe3+(Å) |
---|---|---|---|---|
1 | −8.98 | −91.44 | 45.14 | 2.49 |
2 | −7.85 | −88.15 | 44.77 | 2.40 |
3 | −8.37 | −91.08 | 43.41 | 2.36 |
4 | −7.55 | −93.28 | 45.13 | 2.21 |
5 | −7.88 | −80.73 | 43.28 | 2.45 |
6 | −10.32 | −119.77 | 43.62 | 2.29 |
7 | −9.80 | −81.13 | 44.28 | 2.48 |
8 | −8.42 | −79.25 | 44.97 | 2.35 |
R-econazole | −7.56 | −73.64 | 45.03 | 2.56 |
Compound | Interactions | ||||
---|---|---|---|---|---|
1 | MC | π-π Tyr107 | π-π Tyr121 | - | |
2 | MC | - | π-π Tyr121 | π-π His296 | |
3 | MC | - | π-π Tyr121 | π-π His296 | HB Thr11 |
4 | MC | π-π Tyr107 | - | HB His285 | HB Val120 |
5 | MC | - | π-π Tyr121 | π-π Phe214 | |
6 | MC | - | π-π Tyr121 | π-π Phe214 | HB Ser363 |
7 | MC | π-π Tyr107 | π-π Tyr121 | - | |
8 | MC | π-π Tyr107 | π-π Tyr121 | HB Hie285 | π-c Lys132 |
R-econazole | MC | π-π Tyr107 | π-π Tyr121 | π-π heme |
Aspergillus fumigatus Clinical Isolate | Aspergillus fumigatus ATCC 204305 | |||
---|---|---|---|---|
Compound | MIC | MFC | MIC | MFC |
1 | 0.2024 ± 0.001d | 0.4047 ± 0.002c | 0.1012 ± 0.001d | 0.4047 ± 0.003d |
2 | 0.2028 ± 0.001d | 0.4056 ± 0.002c | 0.0507 ± 0.0008c | 0.1014 ± 0.001c |
3 | 0.2096 ± 0.001d | 0.4192 ± 0.003c | 0.2096 ± 0.001e | 0.4192 ± 0.002d |
4 | 0.1190 ± 0.001c | 0.4762 ± 0.003d | 0.2381 ± 0.001e | 0.4762 ± 0.002e |
5 | 0.2083 ± 0.001d | 0.4166 ± 0.002c | 0.2083 ± 0.001e | 0.4166 ± 0.002d |
6 | 0.2053 ± 0.001d | 0.4106 ± 0.002c | 0.2053 ± 0.002e | 0.4106 ± 0.003d |
7 | 0.2693 ± 0.001e | 0.5386 ± 0.004d | 0.2693 ± 0.001f | 0.5386 ± 0.004e |
8 | 0.1986 ± 0.001d | 0.3972 ± 0.002c | 0.1986 ± 0.001e | 0.3972 ± 0.002d |
Ketoconazole | 0.0023 ± 0.00002b | 0.0046 ± 0.00004b | 0.0023 ± 0.00001b | 0.0046 ± 0.00004b |
Econazole | 0.1754 × 10−3 ± 0.01 ×10−3a | 0.3508 × 10−3 ± 0.02 × 10−3a | 0.0877 × 10−3 ± 0.002 × 10−3a | 0.1754 × 10−3 ± 0.002 × 10−3a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kritsi, E.; Matsoukas, M.-T.; Potamitis, C.; Detsi, A.; Ivanov, M.; Sokovic, M.; Zoumpoulakis, P. Novel Hit Compounds as Putative Antifungals: The Case of Aspergillus fumigatus. Molecules 2019, 24, 3853. https://doi.org/10.3390/molecules24213853
Kritsi E, Matsoukas M-T, Potamitis C, Detsi A, Ivanov M, Sokovic M, Zoumpoulakis P. Novel Hit Compounds as Putative Antifungals: The Case of Aspergillus fumigatus. Molecules. 2019; 24(21):3853. https://doi.org/10.3390/molecules24213853
Chicago/Turabian StyleKritsi, Eftichia, Minos-Timotheos Matsoukas, Constantinos Potamitis, Anastasia Detsi, Marija Ivanov, Marina Sokovic, and Panagiotis Zoumpoulakis. 2019. "Novel Hit Compounds as Putative Antifungals: The Case of Aspergillus fumigatus" Molecules 24, no. 21: 3853. https://doi.org/10.3390/molecules24213853
APA StyleKritsi, E., Matsoukas, M.-T., Potamitis, C., Detsi, A., Ivanov, M., Sokovic, M., & Zoumpoulakis, P. (2019). Novel Hit Compounds as Putative Antifungals: The Case of Aspergillus fumigatus. Molecules, 24(21), 3853. https://doi.org/10.3390/molecules24213853