Preparation of Porous Activated Carbons for High Performance Supercapacitors from Taixi Anthracite by Multi-Stage Activation
Abstract
1. Introduction
2. Results and Discussion
2.1. Microstructure and Composition
2.2. Electrochemical Performance
3. Materials and Methods
3.1. Materials
3.2. Preparation of AC
3.2.1. Pretreatment of TXA
3.2.2. The First-Stage Activation by Physical Activation
3.2.3. The Second-Stage Activation by Chemical Activation
3.2.4. The Third-Stage Activation by Chemical Activation
3.3. Characterizations
3.4. Electrochemical Measurement
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Long, C.; Xiao, Y.; Zheng, M.T.; Hu, H.; Dong, H.W.; Lei, B.F.; Zhang, H.R.; Zhuang, J.L.; Liu, Y.L. Synthesis of hybrid Ni-Co oxide @ 3D carbon skeleton derived from pollen grains for advanced supercapacitors. Electrochim. Acta 2016, 210, 695–703. [Google Scholar] [CrossRef]
- Geuli, O.; Hao, Q.L.; Mandler, D. One-step fabrication of NiOx-decorated carbon nanotubes-NiCo2O4 as an advanced electroactive composite for supercapacitors. Electrochim. Acta 2019, 318, 51–60. [Google Scholar] [CrossRef]
- Hao, L.; Li, X.L.; Zhi, L.J. Carbonaceous electrode materials for supercapacitors. Adv. Mater. 2013, 25, 3899–3904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, T.H.; Ji, X.G.; Zhang, Z.Y.; Yang, W.B.; Gao, J.J.; Li, H.; Xiong, C.Y.; Dang, A. Freestanding three-dimensional reduced graphene oxide/MnO2 on porous carbon/nickel foam as a designed hierarchical multihole supercapacitor electrode. Electrochim. Acta 2017, 252, 306–314. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhao, X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.H.; Liu, E.H.; Ding, R.; Liu, K.; Teng, Y.; Luo, Z.Y.; Li, Z.P.; Hu, T.T.; Liu, T.T. Facile in-situ redox synthesis of hierarchical porous activated carbon@MnO2 core/shell nanocomposite for supercapacitors. Ceram. Int. 2015, 41, 12734–12741. [Google Scholar] [CrossRef]
- Wang, J.W.; Chen, Y.; Chen, B.Z. A Synthesis Method of MnO2/Activated Carbon Composite for Electrochemical Supercapacitors. J. Electrochem. Soc. 2015, 162, A1654–A1661. [Google Scholar] [CrossRef]
- Yin, L.H.; Chen, Y.; Li, D.; Zhao, X.Q.; Hou, B.; Cao, B.K. 3-Dimensional hierarchical porous activated carbon derived from coconut fibers with high-rate performance for symmetric supercapacitors. Mater. Design 2016, 111, 44–50. [Google Scholar] [CrossRef]
- Geng, X.; Li, L.X.; Li, F. Carbon nanotubes/activated carbon hybrid with ultrahigh surface area for electrochemical capacitors. Electrochim. Acta 2015, 168, 25–31. [Google Scholar] [CrossRef]
- Jin, Z.; Yan, X.D.; Yu, Y.H.; Zhao, G.J. Sustainable activated carbon fibers from liquefied wood with controllable porosity for high-performance supercapacitors. J. Mater. Chem. A 2014, 2, 11706–11715. [Google Scholar] [CrossRef]
- Qin, K.; Kang, J.; Li, J.; Shi, C.; Li, Y.; Qiao, Z.; Zhao, N. Free-standing porous carbon nanofiber/ultrathin graphite hybrid for flexible solid-state supercapacitors. ACS Nano 2015, 9, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.H.; Sun, S.G.; Xu, Y.Q.; Yu, R.J.; Li, H.J. Facile one-step synthesis of nanocomposite based on carbon nanotubes and Nickel-Aluminum layered double hydroxides with high cycling stability for supercapacitors. J. Colloid Interf. Sci. 2016, 480, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Tang, Y.K.; Sun, Z.P.; Gao, S.S.; Ma, J.H.; Liu, L. A simple approach of constructing sulfur-containing porous carbon nanotubes for high-performance supercapacitors. Carbon. 2017, 115, 754–762. [Google Scholar] [CrossRef]
- Ling, Z.; Wang, Z.Y.; Zhang, M.D.; Yu, C.; Wang, G.; Dong, Y.F.; Liu, S.H.; Wang, Y.W.; Qiu, J.S. Sustainable Synthesis and Assembly of Biomass-Derived B/N Co-Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for High-Performance Supercapacitors. Adv. Funct. Mater. 2016, 26, 111–119. [Google Scholar] [CrossRef]
- Chen, C.; Yu, D.F.; Zhao, G.Y.; Du, B.S.; Tang, W.; Sun, L.; Sun, Y.; Besenbacher, F.; Yu, M. Three-dimensional scaffolding framework of porous carbon nanosheets derived from plant wastes for high-performance supercapacitors. Nano Energy 2016, 27, 377–389. [Google Scholar] [CrossRef]
- Pan, Z.H.; Zhi, H.Z.; Qiu, Y.C.; Yang, J.; Xing, L.D.; Zhang, Q.C.; Ding, X.Y.; Wang, X.S.; Xu, G.G.; Yuan, H. Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors. Nano Energy 2018, 46, 266–276. [Google Scholar] [CrossRef]
- Shao, Y.; Elkady, M.F.; Wang, L.J.; Zhang, Q.; Li, Y.; Wang, H.; Mousavi, M.F.; Kaner, R.B. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 2015, 44, 3639–3665. [Google Scholar] [CrossRef]
- Abdelhamid, A.A.; Yang, X.; Yang, J.; Chen, X.; Ying, J.Y. Graphene-wrapped nickel sulfide nanoprisms with improved performance for Li-ion battery anodes and supercapacitors. Nano Energy 2016, 26, 425–437. [Google Scholar] [CrossRef]
- Xing, B.L.; Guo, H.; Chen, L.J.; Chen, Z.F.; Zhang, C.X.; Huang, G.X.; Xie, W.; Yu, J.L. Lignite-derived high surface area mesoporous activated carbons for electrochemical capacitors. Fuel Process. Technol. 2015, 138, 734–742. [Google Scholar] [CrossRef]
- Dong, S.A.; Ji, X.Y.; Yu, M.X.; Xie, Y.Y.; Zhang, D.W.; He, X.J. Direct synthesis of interconnected porous carbon nanosheet/nickel foam composite for high-performance supercapacitors by microwave-assisted heating. J. Porous Mater. 2018, 25, 923–933. [Google Scholar] [CrossRef]
- Qin, B.; Wang, Q.; Zhang, X.H.; Xie, X.L.; Jin, L.; Cao, Q. One-pot synthesis of interconnected porous carbon derived from coal tar pitch and cellulose for high-performance supercapacitors. Electrochim. Acta 2018, 283, 655–663. [Google Scholar] [CrossRef]
- Wang, L.X.; Wang, R.R.; Zhao, H.Y.; Liu, L.; Jia, D.Z. High rate performance porous carbon prepared from coal for supercapacitors. Mater. Lett. 2015, 149, 85–88. [Google Scholar] [CrossRef]
- Abudu, P.; Wang, L.X.; Xu, M.J.; Jia, D.Z.; Wang, X.C.; Jia, L.X. Hierarchical porous carbon materials derived from petroleum pitch for high-performance supercapacitors. Chem. Phy. Lett. 2018, 702, 1–7. [Google Scholar] [CrossRef]
- Xie, X.Y.; Dong, S.A.; Xiao, N.; Qiu, J.S.; He, X.J.; Shao, X.L. Synthesis of layered microporous carbons from coal tar by directing, space-confinement and self-sacrificed template strategy for supercapacitors. Electrochim. Acta 2017, 246, 634–642. [Google Scholar] [CrossRef]
- Zhang, W.L.; Zhao, M.Z.; Liu, R.Y.; Wang, X.F.; Lin, H.B. Hierarchical porous carbon derived from lignin for high performance supercapacitor. Colloid. Surface A 2015, 484, 518–527. [Google Scholar] [CrossRef]
- Xing, B.L.; Huang, G.X.; Chen, Z.F.; Chen, L.J.; Yi, G.Y.; Zhang, C.X. Facile preparation of hierarchical porous carbons for supercapacitors by direct carbonization of potassium humate. J. Solid State Electro. 2017, 21, 263–271. [Google Scholar] [CrossRef]
- Xu, L.S.; Jia, M.Y.; Li, Y.; Jin, X.J.; Zhang, F. High-performance MnO2-deposited graphene/activated carbon film electrodes for flexible solid-state supercapacitor. Sci. Rep.-UK 2017, 7, 12857. [Google Scholar] [CrossRef]
- Choi, P.R.; Kim, S.G.; Jung, J.C.; Kim, M.S. High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch. Carbon Lett. 2017, 22, 70–80. [Google Scholar]
- Yin, J.; Zhang, D.Y.; Zhao, J.Q.; Wang, X.L.; Zhu, H.; Wang, C.Y. Meso- and micro-porous composite carbons derived from humic acid for supercapacitors. Electrochim. Acta 2014, 136, 504–512. [Google Scholar] [CrossRef]
- Shang, S.M.; Yang, X.M.; Tao, X.M. Easy synthesis of carbon nanotubes with polypyrrole nanotubes as the carbon precursor. Polymer 2009, 50, 2815–2818. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Dhaiveegan, P.; Michalska, M.; Lin, J.Y. Morphology-controlled synthesis of nanosphere-like NiCo2S4 as cathode materials for high-rate asymmetric supercapacitors. Electrochim. Acta 2018, 274, 208–216. [Google Scholar] [CrossRef]
- Chen, H.Y.; Ai, Y.N.; Liu, F.; Chang, X.; Xue, Y.; Huang, Q.; Wang, C.; Lin, H.L.; Han, S. Carbon-coated Hierarchical Ni-Mn Layered Double Hydroxide Nanoarrays on Ni Foam for Flexible High-capacitance Supercapacitors. Electrochim. Acta 2016, 213, 55–65. [Google Scholar] [CrossRef]
- Zhang, X.M.; Ma, J.; Yang, W.L.; Gao, Z.; Wang, J.; Liu, Q.; Liu, J.Y.; Jing, X.Y. Manganese dioxide core-shell nanowires in situ grown on carbon spheres for supercapacitor application. CrystEngComm 2014, 16, 4016–4022. [Google Scholar] [CrossRef]
- Hao, X.Q.; Jiang, Z.Q.; Tian, X.N.; Hao, X.G.; Jiang, Z.J.; Hao, X.Q.; Jiang, Z.Q.; Tian, X.N.; Hao, X.G.; Jiang, Z.J. Facile Assembly of Co-Ni Layered Double Hydroxide Nanoflakes on Carbon Nitride Coated N-doped Graphene Hollow Spheres with High Electrochemical Capacitive Performance. Electrochim. Acta 2017, 253, 21–30. [Google Scholar] [CrossRef]
- Pham, V.H.; Dickerson, J.H. Reduced Graphene Oxide Hydrogels Deposited in Nickel Foam for Supercapacitor Applications: Toward High Volumetric Capacitance. J. Phy. Chem. C 2016, 120, 5353–5360. [Google Scholar] [CrossRef]
- He, X.J.; Zhang, N.; Shao, X.L.; Wu, M.B.; Yu, M.X.; Qiu, J.H. A layered- template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors. Chem. Eng. J. 2016, 297, 121–127. [Google Scholar] [CrossRef]
- Li, J.; Liu, K.; Gao, X.; Yao, B.; Huo, K.; Cheng, Y.; Cheng, X.; Chen, D.; Wang, B.; Ding, D. Oxygen and nitrogen enriched 3D porous carbon for supercapacitors of high volumetric capacity. ACS Appl. Mater. Inter. 2015, 7, 24622–24628. [Google Scholar] [CrossRef]
- Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763. [Google Scholar] [CrossRef]
- He, X.J.; Li, X.J.; Ma, H.; Han, J.F.; Zhang, H.; Yu, C.; Xiao, N.; Qiu, J.S. ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. J. Power Sources 2017, 340, 183–191. [Google Scholar] [CrossRef]
- Han, S.S.; Hou, F.; Yuan, X.B.; Liu, J.C.; Yan, X.; Chen, S.Q. Continuous hierarchical carbon nanotube/reduced graphene oxide hybrid films for supercapacitors. Electrochim. Acta 2017, 225, 566–573. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Z.W.; Wang, H.L.; Ding, J.; Zahiri, B.; Holt, C.M.B.; Tan, X.H.; Mitlin, D. Colossal pseudocapacitance in a high functionality-high surface area carbon anode doubles the energy of an asymmetric supercapacitor. Energ. Environ. Sci. 2014, 7, 1708–1718. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Zhang, H.D.; Zhang, X.Y.; Yu, D.Y.; Ji, Y.; Sun, Q.S.; Wang, Y.; Liu, X.Y. Facile synthesis of hierarchical CoMoO4@NiMoO4 core-shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. J. Mater. Chem. A 2016, 4, 18578–18584. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.Y.; Wang, D.W.; Zhao, J.; Zhang, H.H. Snowflake-like core-shell α-MnO2 @δ-MnO2 for high performance asymmetric supercapacitor. Electrochim. Acta 2017, 251, 344–354. [Google Scholar] [CrossRef]
- Yan, J.; Wang, Q.; Wei, T.; Fan, Z.J. Recent Advances in Design and Fabrication of Electrochemical Supercapacitors with High Energy Densities. Adv. Energy Mater. 2014, 4, 157–164. [Google Scholar] [CrossRef]
- Shao, J.Q.; Ma, F.W.; Wu, G.; Dai, C.C.; Geng, W.D.; Song, S.J.; Wan, J.F. In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem. Eng. J. 2017, 321, 301–313. [Google Scholar] [CrossRef]
- Das, T.; Chauhan, H.; Deka, S.; Chaudhary, S.; Boruah, R.; Saikia, B.K. Promising carbon nanosheet-based supercapacitor electrode materials from low-grade coals. Micropor. Mesopor. Mater. 2017, 253, 80–90. [Google Scholar] [CrossRef]
- Shao, J.; Zhou, X.; Liu, Q.; Zou, R.; Li, W.; Yang, J.; Hu, J. Mechanism analysis of the capacitance contributions and ultralong cycling-stability of the isomorphous MnO2@MnO2 core/shell nanostructures for supercapacitors. J. Mater. Chem. A 2015, 3, 6168–6176. [Google Scholar] [CrossRef]
- Li, S.F.; Yu, C.; Yang, J.; Zhao, C.T.; Fan, X.M.; Huang, H.W.; Han, X.T.; Wang, J.X.; He, X.J.; Qiu, J.H. Ultrathin Nitrogen-Enriched Hybrid Carbon Nanosheets for Supercapacitors with Ultrahigh Rate Performance and High Energy Density. Chemelectrochem. 2017, 4, 369–375. [Google Scholar] [CrossRef]
- Xu, K.B.; Li, W.Y.; Liu, Q.; Li, B.; Liu, X.J.; An, L.; Chen, Z.Q.; Zou, R.J.; Hu, J.Q. Hierarchical mesoporous NiCoO @MnO core-shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. J. Mater. Chem. A 2014, 2, 4795–4802. [Google Scholar] [CrossRef]
- Zhang, J.L.; Zhang, W.F.; Han, M.F.; Pang, J.; Xiang, Y.; Cao, G.P.; Yang, Y.S. Synthesis of nitrogen-doped polymeric resin-derived porous carbon for high performance supercapacitors. Micropor. Mesopor. Mater. 2018, 270, 204–210. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.Q.; Yang, Q.L.; Xiong, Y.; Chen, C.G. In-situ Synthesis of MnO2 @Graphdiyne Oxides Nanocomposite with Enhanced Performance of Supercapacitors. Electrochim. Acta 2017, 251, 672–680. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Zhang, Y.H.; Luo, Y.S.; Chu, P.K. Highly porous honeycomb manganese oxide@carbon fibers core-shell nanocables for flexible supercapacitors. Nano Energy 2015, 13, 47–57. [Google Scholar] [CrossRef]
- Hao, J.N.; Liao, Y.Q.; Zhong, Y.Y.; Shu, D.; He, C.; Guo, S.T.; Huang, Y.L.; Zhong, J.; Hu, L.L. Three-dimensional graphene layers prepared by a gas-foaming method for supercapacitor applications. Carbon 2015, 94, 879–887. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Samples | SBET (m2 g−1) | Vt (cm3 g−1) | Vmic (cm3 g−1) | Vmes (cm3 g−1) | Vmes/Vt (%) | Dap (nm) |
---|---|---|---|---|---|---|
ACI | 591.3 | 0.2715 | 0.2263 | 0.0156 | 16.7 | 1.84 |
ACII | 466.1 | 0.2274 | 0.2058 | 0.0216 | 18.7 | 1.95 |
ACIII | 984.6 | 0.5219 | 0.3993 | 0.1226 | 23.5 | 2.12 |
Proximate Analysis (wt.%) | Ultimate Analyses (wt.%, daf) | |||||||
---|---|---|---|---|---|---|---|---|
Mad | Ad | VMdaf | FCdafa | C | H | Oa | N | S |
1.45 | 3.88 | 7.67 | 92.33 | 94.67 | 2.49 | 1.90 | 0.75 | 0.19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, X.-M.; An, Z.-Y.; Ye, M.; Liu, Z.-J.; Xiao, C.-C.; Huang, Y.; Han, Y.-J.; Zhang, S.-Q.; Zhu, J.-S. Preparation of Porous Activated Carbons for High Performance Supercapacitors from Taixi Anthracite by Multi-Stage Activation. Molecules 2019, 24, 3588. https://doi.org/10.3390/molecules24193588
Yue X-M, An Z-Y, Ye M, Liu Z-J, Xiao C-C, Huang Y, Han Y-J, Zhang S-Q, Zhu J-S. Preparation of Porous Activated Carbons for High Performance Supercapacitors from Taixi Anthracite by Multi-Stage Activation. Molecules. 2019; 24(19):3588. https://doi.org/10.3390/molecules24193588
Chicago/Turabian StyleYue, Xiao-Ming, Zhao-Yang An, Mei Ye, Zi-Jing Liu, Cui-Cui Xiao, Yong Huang, Yu-Jia Han, Shuang-Quan Zhang, and Jun-Sheng Zhu. 2019. "Preparation of Porous Activated Carbons for High Performance Supercapacitors from Taixi Anthracite by Multi-Stage Activation" Molecules 24, no. 19: 3588. https://doi.org/10.3390/molecules24193588
APA StyleYue, X.-M., An, Z.-Y., Ye, M., Liu, Z.-J., Xiao, C.-C., Huang, Y., Han, Y.-J., Zhang, S.-Q., & Zhu, J.-S. (2019). Preparation of Porous Activated Carbons for High Performance Supercapacitors from Taixi Anthracite by Multi-Stage Activation. Molecules, 24(19), 3588. https://doi.org/10.3390/molecules24193588