Liquid Anaerobic Digestate as a Source of Nutrients for Lipid and Fatty Acid Accumulation by Auxenochlorella Protothecoides
Abstract
:1. Introduction
2. Results
2.1. Effect of The Digestate on Growth Kinetics
2.2. Characterization of The Digestate and Removal of Macro- and Micronutrients by A. Protothecoides
2.3. Lipid Content and Fatty Acid Profile
3. Discussion
4. Materials and Methods
4.1. Culture Conditions
4.2. Physico-Chemical Analysis of The Digestate
4.3. Determination of Algal Growth
4.4. Lipid Extraction
4.5. Analysis of Fatty Acids
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Magierek, E.; Krzemińska, I.; Tys, J. Stimulatory effect of indole-3-acetic acid and continuous illumination on the growth of Parachlorella kessleri. Int. Agrophysics 2017, 31, 483–489. [Google Scholar] [CrossRef]
- Grudziński, W.; Krzemińska, I.; Luchowski, R.; Nosalewicz, A.; Gruszecki, W. Strong-light-induced yellowing of green microalgae Chlorella: A study on molecular mechanisms of the acclimation response. Algal Res. 2016, 16, 245–254. [Google Scholar]
- Lam, M.K.; Lee, K.T. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnol. Adv. 2012, 30, 673–690. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.B.; Costanza-Robinson, S.M.; Spatafora, G.A. Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenergy 2011, 35, 40–49. [Google Scholar] [CrossRef]
- Krzemińska, I.; Oleszek, M. Glucose supplementation-induced changes in the Auxenochlorella protothecoides fatty acid composition suitable for biodiesel production. Bioresour. Technol. 2016, 218, 1294–1297. [Google Scholar] [CrossRef] [PubMed]
- Darpito, C.; Shin, W.S.; Jeon, S.; Lee, H.; Nam, K.; Kwon, J.H.; Yang, J.W. Cultivation of Chlorella protothecoides in anaerobically treated brewery wastewater for cost-effective biodiesel production. Bioprocess Biosyst. Eng. 2015, 38, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Gonzalez, I.; Parashar, A.; Bressler, D.C. Heterotrophic growth and lipid accumulation of Chlorella protothecoides in whey permeate, a dairy by-product stream, for biofuel production. Bioresour. Technol. 2014, 155, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Walker, T.H.; Bridges, W.C.; Thornton, C.; Gopalakrishnan, K. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresour. Technol. 2014, 166, 17–23. [Google Scholar] [CrossRef]
- Ramos Tercero, E.A.; Sforza, E.; Morandini, M.; Bertucco, A. Cultivation of Chlorella protothecoides with Urban Wastewater in Continuous Photobioreactor: Biomass Productivity and Nutrient Removal. Appl. Biochem. Biotechnol. 2014, 172, 1470–1485. [Google Scholar] [CrossRef]
- Wen, Q.; Chen, Z.; Li, P.; Duan, R.; Ren, N. Lipid production for biofuels from hydrolyzate of waste activated sludge by heterotrophic Chlorella protothecoides. Bioresour. Technol. 2013, 143, 695–698. [Google Scholar] [CrossRef]
- Hu, B.; Min, M.; Zhou, W.; Li, Y.; Mohr, M.; Cheng, Y.; Lei, H.; Liu, Y.; Lin, X.; Chen, P.; et al. Influence of Exogenous CO2 on Biomass and Lipid Accumulation of Microalgae Auxenochlorella protothecoides Cultivated in Concentrated Municipal Wastewater. Appl. Biochem. Biotechnol. 2012, 166, 1661–1673. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, W.; Hu, B.; Min, M.; Chen, P.; Ruan, R.R. Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresour. Technol. 2011, 102, 10861–10867. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.Y.; Yun, Y.M.; Shin, H.S.; Han, J.I. Cultivation of four microalgae species in the effluent of anaerobic digester for biodiesel production. Bioresour. Technol. 2017, 224, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Xia, A.; Murphy, J.D. Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol. 2016, 34, 264–275. [Google Scholar] [CrossRef]
- Herrmann, A. Biogas production from maize: current state, challenges ans prospects. 2. Agronomic and environmental aspects. BioEnergy Res. 2013, 6, 372–387. [Google Scholar] [CrossRef]
- Oleszek, M.; Matyka, M. Nitrogen fertilization level and cutting affected lignocellulosic crops properties important for biogas production. BioResources 2017, 12, 8565–8580. [Google Scholar]
- Oleszek, M.; Krzemińska, I. Enhancement of Biogas Production by Co-Digestion of Maize Silage with Common Goldenrod Rich in Biologically Active Compound. BioResources 2017, 12, 704–714. [Google Scholar] [CrossRef]
- Yu, Z.; Song, M.; Pei, H.; Han, F.; Jiang, L.; Hou, Q. The growth characteristics and biodiesel production of ten algae strains cultivated in anaerobically digested effluent from kitchen waste. Algal Res. 2017, 24, 265–275. [Google Scholar] [CrossRef]
- Silkina, A.; Zacharof, M.P.; Hery, G.; Nouvel, T.; Lovitt, R.W. Formulation and utilisation of spent anaerobic digestate fluids for the growth and product formation of single cell algal cultures in heterotrophic and autotrophic conditions. Bioresour. Technol. 2017, 244, 1445–1455. [Google Scholar] [CrossRef] [Green Version]
- Mayers, J.J.; Nilsson, A.E.; Albers, E.; Flynnc, K.J. Nutrients from anaerobic digestion effluents for cultivation of the microalga Nannochloropsis sp. -Impact on growth, biochemical composition and the potential for cost and environmental impact savings. Algal Res. 2017, 6, 275–286. [Google Scholar] [CrossRef]
- Massa, M.; Buono, S.; Langellotti, A.L.; Castaldo, L.; Martello, A.; Paduano, A.; Sacchi, R.; Fogliano, V. Evaluation of anaerobic digestates from different feedstocks as growth media for Tetradesmus obliquus, Botryococcus braunii, Phaeodactylum tricornutum and Arthrospira maxima. New Biotechnol. 2017, 36, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, X.; Sun, S.; Zhao, Y.; Hu, C. Effects of influent C/N ratios and treatment technologies on integral biogas upgrading and pollutants removal from synthetic domestic sewage. Sci. Rep. 2017, 7, 10897. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Y.; Chen, P.; Min, M.; Chen, Y.; Zhu, J.; Ruan, R.R. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 2010, 101, 2623–2628. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res. 2014, 65, 186–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grobbelaar, J.U. Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Richmond, A., Ed.; Blackwell Publishing Ltd.: Oxford, UK, 2004; pp. 97–115. [Google Scholar]
- Koutra, E.; Economou, C.N.; Tsafrakidou, P.; Kornaros, M. Bio-Based Products from Microalgae Cultivated in Digestates. Trends Biotechnol. 2018, 36, 819–833. [Google Scholar] [CrossRef]
- Kobayashi, N.; Noel, E.A.; Barnes, A.; Watson, A.; Rosenberg, J.N.; Erickson, G.; Oyler, G.A. Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour. Technol. 2013, 150, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Jin, H.F.; Lim, B.R.; Park, K.Y.; Lee, K. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresour. Technol. 2010, 101, 8649–8657. [Google Scholar] [CrossRef]
- Sigurnjak, I.; Vaneeckhaute, C.; Michels, E.; Ryckaert, B.; Ghekiere, G.; Tack, F.M.G.; Meers, E. Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years. Sci. Total Environ. 2017, 1885–1894. [Google Scholar] [CrossRef]
- Markou, G.; Georgakakis, D. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial, wastes and wastewaters: A review. Appl. Energy 2011, 88, 3389–3401. [Google Scholar] [CrossRef]
- Sforza, E.; Cipriani, R.; Morosinotto, T.; Bertucco, A.; Giacometti, G.M. Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresour. Technol. 2012, 104, 523–529. [Google Scholar] [CrossRef]
- Ma, C.; Wen, H.; Xing, D.; Pei, X.; Zhu, J.; Ren, N.; Liu, B. Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4. Biotechnol. Biofuels 2017, 10, 111. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, Q.; Gu, M.; Cong, W. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J. Appl. Phycol. 2013, 25, 311–318. [Google Scholar] [CrossRef]
- Shin, D.Y.; Cho, H.U.; Utomo, J.C.; Choi, Y.N.; Xua, X.; Park, J.M. Biodiesel production from Scenedesmus bijuga grown in anaerobically digested food wastewater effluent. Bioresour Technol. 2015, 184, 215–221. [Google Scholar] [CrossRef]
- Solovchenko, A.E. Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses. Russ. J. Plant Physiol. 2012, 59, 167–176. [Google Scholar] [CrossRef]
- Bucy, H.B.; Baumgardner, M.E.; Marchese, A.J. Chemical and physical properties of algal methyl ester biodiesel containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate. Algal Res. 2012, 1, 57–69. [Google Scholar] [CrossRef]
- Andersen, R.A. Algal Culturing Techniques; Elsevier: Amsterdam, The Netherlands, 2005; p. 578. [Google Scholar]
- Oleszek, M.; Król, A.; Tys, J.; Matyka, M.; Kulik, M. Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour. Technol. 2014, 156, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 1959, 37, 911–917. [Google Scholar]
- Krzemińska, I.; Piasecka, A.; Nosalewicz, A.; Simionato, D.; Wawrzykowski, J. Alterations of the lipid content and fatty acid profile of Chlorella protothecoides under different light intensities. Bioresour. Technol. 2015, 196, 72–77. [Google Scholar] [CrossRef]
Sample Availability: Samples of the microalgae and liquid digestate are available from the authors. |
Medium | Specific Growth Rate 0–6 (day −1) | Doubling Time 0–6 (h) | Specific Growth Rate 7–11 (day −1) | Doubling Time 7–11 (h) | Lipid Content (% of Dry Weight) * |
---|---|---|---|---|---|
BBM | 0.302 ± 0.056 | 51.573 ± 7.621 | 0.675 ± 0.039 | 24.71 ± 1.45 | 6.33 ± 1.4 a |
LD 20 | 0.412 ± 0.044 | 40.767 ± 4.231 | 0.704 ± 0.053 | 23.72 ± 3.24 | 44.65 ± 2.65 b |
Parameters | Unit | Mean ± SD |
---|---|---|
TS | % | 3.64 ± 0.12 |
VS | % TS | 59.30 ± 1.55 |
Ash | % TS | 40.70 ± 1.55 |
BOD | mg O2 L−1 | 3985 ± 156 |
COD | mg O2 L−1 | 9140 ± 90 |
BOD/COD | - | 0.44 ± 0.032 |
Removal of Element | P | K | Na | Zn | Mg | Mn | Mo | Fe | Co | Cu | N-NO2− | N-NO3− | C/N | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
unit | LD 20 | |||||||||||||
Initial concentration | mg L−1 | 2.08 ± 0.01 a | 192.49 ± 2.67 a | 25.13 ± 0.00 a | 0.57 ± 0.02 a | 2.61 ± 0.21 a | 1.97 ± 0.01 a | 0.21 ± 0.00 a | 1.79 ± 0.04 a | 0.00 ± 0.00 a | 0.03 ± 0.00 a | 0.25 ± 0.01 a | 4.15 | 4.6 |
Final concentration | mg L−1 | 0.45 ± 0.00 b | 174.21 ± 0.54 b | 16.97 ± 0.28 b | 0.21 ± 0.08 a | 0.61 ± 0.18 b | 1.85 ± 0.03 b | 0.08 ± 0.00 b | 1.03 ± 0.02 b | 0.00 ± 0.00 a | 0.02 ± 0.00 a | 0.15 ± 0.01 b | 1.20 | 17.8 |
Removal | mg L−1 | 1.63 | 18.28 | 8.16 | 0.36 | 2.00 | 0.12 | 0.13 | 0.76 | 0.00 | 0.01 | 0.11 | 2.95 | |
Removal | % | 78.4 | 9.5 | 32.5 | 63.1 | 76.7 | 5.9 | 61.2 | 42.2 | - | 32.6 | 43.1 | 71.1 | |
BBM | ||||||||||||||
Initial concentration | mg L−1 | 53.3 ± 0.00 c | 105.80 ± 0.00 c | 77.60 ± 0.00 c | 2.00 ± 0.00 b | 7.40 ± 0.00 c | 0.40 ± 0.00 c | 0.47 ± 0.00 c | 1.00 ± 0.01 b | 0,10 ± 0.00 b | 0.63 ± 0.01 b | nd | 45.05 | 2.8 |
Final concentration | mg L−1 | 51.07 ± 1.04 d | 83.20 ± 0.07 d | 69.29 ± 1.33 d | 1.43 ± 0.28 c | 6.66 ± 0.43 d | 0.16 ± 0.02 d | 0.42 ± 0.01 d | 0.00 ± 0.00 c | 0.09 ± 0.02 b | 0.52 ± 0.00 c | nd | 0.00 | 12.7 |
Removal | mg L−1 | 2.23 | 22.60 | 8.31 | 0.57 | 0.74 | 0.24 | 0.05 | 1.00 | 0.01 | 0.11 | 45.05 | ||
Removal | % | 4.0 | 21.4 | 10.7 | 28.7 | 10.0 | 60.1 | 10.0 | 100.0 | 8.7 | 17.5 | 100 |
Medium | ||
---|---|---|
Distribution of fatty acids (%, of total fatty acids) * | BBM | LD 1:20 |
16:0 (Palmitic acid) | 14.92 ± 1.88 | 9.46 ± 1.10 |
18:0 (Stearic acid) | 13.13 ± 2.73 | 1.76 ± 0.28 |
18:1 (Oleic acid) | 2.93 ± 0.34 | 35.09 ± 0.08 |
18:2 (Linoleic acid) | 32.85 ± 1.05 | 38.96 ± 1.05 |
18:3(Linolenic acid) | 34.18 ± 1.31 | 13.31 ± 0.95 |
C16-C18 | 98.00 | 98.56 |
Component | Stock Solution g L−1 | Quantity Used (mL L−1) | |
---|---|---|---|
NaNO3 | 25 | 10 | |
CaCl2·2H2O | 2.50 | 10 | |
MgSO4·7H2O | 7.50 | 10 | |
K2HPO4 | 7.50 | 10 | |
KH2PO4 | 17.50 | 10 | |
NaCl | 2.50 | 10 | |
EDTA solution g L−1 | |||
EDTA | 50.00 | 1 mL | |
KOH | 31 | ||
Acidified Iron Solution (to 100 mL) | |||
FeSO4·7H2O | 0.498 g | 1 mL | |
H2SO4 (96%) | 0.1 mL | ||
Trace metals solution (g L−1) | |||
ZnSO4·7H2O | 8.82 | 1 mL | |
MnCl2·4H2O | 1.44 | ||
MoO3 | 0.71 | ||
CuSO4·5H2O | 1.57 | ||
Co(NO3)2·6H2O | 0.49 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzemińska, I.; Oleszek, M.; Wiącek, D. Liquid Anaerobic Digestate as a Source of Nutrients for Lipid and Fatty Acid Accumulation by Auxenochlorella Protothecoides. Molecules 2019, 24, 3582. https://doi.org/10.3390/molecules24193582
Krzemińska I, Oleszek M, Wiącek D. Liquid Anaerobic Digestate as a Source of Nutrients for Lipid and Fatty Acid Accumulation by Auxenochlorella Protothecoides. Molecules. 2019; 24(19):3582. https://doi.org/10.3390/molecules24193582
Chicago/Turabian StyleKrzemińska, Izabela, Marta Oleszek, and Dariusz Wiącek. 2019. "Liquid Anaerobic Digestate as a Source of Nutrients for Lipid and Fatty Acid Accumulation by Auxenochlorella Protothecoides" Molecules 24, no. 19: 3582. https://doi.org/10.3390/molecules24193582