Quantitative Analysis of Organic Liquid Three-Component Systems: Near-Infrared Transmission versus Raman Spectroscopy, Partial Least Squares versus Classical Least Squares Regression Evaluation and Volume versus Weight Percent Concentration Units
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectral Characteristics
2.1.1. NIR Spectra
2.1.2. Raman Spectra
2.2. Comparison of the Calibration Performance
2.2.1. PLS/CLS Calibrations of NIR Spectra
2.2.2. PLS/CLS Calibrations of Raman Spectra
2.2.3. Comparison of Calibration Performance Obtained with Volume and Weight Percent Concentrations
3. Materials and Methods
3.1. Chemicals
3.2. Determination of Volume and Weight Percentage Concentrations
3.3. Instrumentation
3.4. Chemometric Data Analysis
3.5. Calibration Statistics Analysis
4. Conclusions
- (1)
- Multicomponent systems—as system 1 in the present work—that do not induce significant band shifts in the NIR spectra of different blend compositions yield equally good calibrations by PLS and CLS regression.
- (2)
- Multicomponent systems with large spectral signatures due to molecular interactions by hydrogen bonding—like system 2 in the present work—should only be calibrated by PLS regression, because the negative effect of the molecular interactions can be efficiently compensated by the increase of the number of factors.
- (3)
- For both sample systems, Raman spectra led to lower calibration performance than NIR spectra. Specifically, for system 1—the aromatic and cycloaliphatic 3-component system—a significant deterioration of calibration results by PLS and CLS regression was observed.
- (4)
- The hypothesis, that volume percent should be preferentially used as the concentration unit for the calibration of liquid multicomponent systems could not be confirmed by the presented results. For both spectroscopic measurement techniques as well as chemometric calibration procedures volume and weight percent concentration units yielded comparable results.
Author Contributions
Funding
Conflicts of Interest
References
- Pimentel, G.C.; McClellan, A.L. Hydrogen bonding. Annu. Rev. Phys. Chem. 1971, 22, 347–385. [Google Scholar] [CrossRef]
- Czarnecki, M.A. Molecular structure and hydrogen bonding in 1,2-diaminopropane and 1,3-diaminopropane and their binary mixtures with water studied by NIR spectroscopy and DFT calculations. Vib. Spectrosc. 2012, 62, 207–216. [Google Scholar] [CrossRef]
- Yacob, G.; Jeffrey, F.; Andrew, G. The Use of near infrared (NIR) spectroscopy to study specific interactions in polymer blends. J. Polym. Sci. Part B Polym. Phys. 1994, 32, 383–386. [Google Scholar]
- Hansen, W.G. Shifting of –OH absorption bands on NIR spectra of esters. Appl. Spectrosc. 1993, 47, 1623–1625. [Google Scholar] [CrossRef]
- Xiong, Z.; Pfeifer, F.; Siesler, H.W. Evaluating the molecular interaction of organic liquid mixtures using near-infrared spectroscopy. Appl. Spectrosc. 2016, 70, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y. Applications in Chemistry. In Near-Infrared Spectroscopy: Principles, Instruments, Applications; Siesler, H.W., Ozaki, Y., Kawata, S., Heise, H.M., Eds.; Wiley-VCH: Weinheim, Germany, 2002; pp. 179–211. [Google Scholar]
- Nunn, S.; Nishikida, K. Advanced ATR correction algorithm-Application note 50581; Thermo Fisher Scientific: Madison, WI, USA, 2008. [Google Scholar]
- Lopes, M.B.; Wolff, J.-C.; Bioucas-Dias, J.M.; Figueiredo, M.A.T. Determination of the composition of counterfeit Heptodin (TM) tablets by near infrared chemical imaging and classical least squares estimation. Anal. Chim. Acta 2009, 641, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Martens, H.; Naes, T. Multivariate calibration; John Wiley & Sons: New York, NY, USA, 1992. [Google Scholar]
- Mark, H.; Workman, J., Jr. Units of measure in spectroscopy, part III: Summary of our findings. Spectroscopy 2015, 30, 24–33. [Google Scholar]
- Mark, H.; Workman, J., Jr. Units of measure in spectroscopy, part II: What does it mean? Spectroscopy 2014, 29, 26–31. [Google Scholar]
- Mark, H.; Workman Jr, J. Chemometrics in spectroscopy units of measure in spectroscopy, part I: It’s the volume, folks! Spectroscopy 2014, 29, 24–37. [Google Scholar]
- Mark, H.; Rubinovitz, R.; Heaps, D.; Gemperline, P.; Dahm, D.; Dahm, K. Comparison of the use of volume fractions with other measures of concentration for quantitative spectroscopic calibration using the classical least squares method. Appl. Spectrosc. 2010, 64, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Workman, J., Jr.; Weyer, L. Practical guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy; CRC press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Hoffmann, G.G. Raman Spectroscopy, Volume I: Principles and Applications in Chemistry, Physics, Materials Science, and Biology; Momentum Press: New York, NY, USA, 2019. [Google Scholar]
- Alsmeyer, F.; Koß, H.-J.; Marquardt, W. Indirect spectral hard modeling for the analysis of reactive and interacting mixtures. Appl. Spectrosc. 2004, 58, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Kriesten, E.; Alsmeyer, F.; Bardow, A.; Marquardt, W. Fully automated indirect hard modeling of mixture spectra. Chemom. Intell. Lab. Syst. 2008, 91, 181–193. [Google Scholar] [CrossRef]
- Kriesten, E.; Mayer, D.; Alsmeyer, F.; Minnich, C.B.; Greiner, L.; Marquardt, W. Identification of unknown pure component spectra by indirect hard modeling. Chemom. Intell. Lab. Syst. 2008, 93, 108–119. [Google Scholar] [CrossRef]
- Fan, S.X.; Zhang, B.H.; Li, J.B.; Wang, C.P. Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Biosys. Eng. 2016, 143, 9–19. [Google Scholar] [CrossRef]
- Fearn, T. Assessing calibrations: SEP, RPD, RER and R2. NIR news. 2002, 13, 12–14. [Google Scholar] [CrossRef]
Sample Availability: Samples of the commercial compounds aren’t available from the authors. |
Concentration Parameters | Factors | PLS | CLS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSEC | RMSECV | RMSEP | R2C | R2CV | R2P | RMSEC | RMSECV | RMSEP | R2C | R2CV | R2P | ||
Benzene (%V) | 2 | 0.8 | 1.0 | 0.9 | 0.970 | 0.999 | 0.999 | 0.8 | 1.1 | 0.7 | 0.999 | 0.998 | 0.999 |
Benzene (%W) | 2 | 0.5 | 0.6 | 0.5 | 1.000 | 1.000 | 1.000 | 0.5 | 0.6 | 0.4 | 1.000 | 0.999 | 1.000 |
Cyclohexane (%V) | 2 | 0.6 | 0.7 | 0.6 | 1.000 | 0.999 | 0.999 | 0.6 | 0.7 | 0.6 | 0.999 | 0.999 | 0.999 |
Cyclohexane (%W) | 2 | 0.4 | 0.6 | 0.5 | 1.000 | 1.000 | 1.000 | 0.5 | 0.6 | 0.5 | 1.000 | 0.999 | 1.000 |
Ethylbenzene (%V) | 2 | 0.6 | 0.7 | 0.6 | 0.999 | 0.999 | 0.999 | 0.8 | 0.9 | 0.4 | 0.999 | 0.999 | 1.000 |
Ethylbenzene (%W) | 2 | 0.8 | 1.0 | 0.9 | 0.999 | 0.999 | 0.998 | 0.8 | 1.0 | 0.5 | 0.999 | 0.999 | 1.000 |
Ethyl acetate (%V) | 4 | 0.4 | 0.7 | 0.6 | 1.000 | 0.999 | 0.999 | 2.2 | 2.7 | 1.3 | 0.993 | 0.990 | 0.998 |
Ethyl acetate (%W) | 4 | 0.5 | 0.8 | 0.6 | 1.000 | 0.999 | 0.999 | 2.6 | 3.7 | 1.2 | 0.991 | 0.982 | 0.999 |
1-Heptanol (%V) | 2 | 0.9 | 1.2 | 0.8 | 0.998 | 0.998 | 0.996 | 1.1 | 1.3 | 1.0 | 0.997 | 0.995 | 0.997 |
1-Heptanol (%W) | 2 | 0.5 | 0.6 | 0.5 | 1.000 | 0.999 | 0.998 | 0.7 | 1.0 | 0.7 | 0.998 | 0.997 | 0.997 |
1,4-Dioxane (%V) | 4 | 0.7 | 1.1 | 1.0 | 0.999 | 0.999 | 0.998 | 3.9 | 4.8 | 3.9 | 0.980 | 0.971 | 0.989 |
1,4-Dioxane (%W) | 4 | 0.7 | 1.1 | 1.0 | 0.999 | 0.999 | 0.998 | 3.8 | 4.9 | 3.7 | 0.982 | 0.969 | 0.991 |
Concentration Parameters | Factors | PLS | CLS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSEC | RMSECV | RMSEP | R2C | R2CV | R2P | RMSEC | RMSECV | RMSEP | R2C | R2CV | R2P | ||
Benzene (% V) | 3 | 1.8 | 2.4 | 2.3 | 0.995 | 0.993 | 0.991 | 3.1 | 3.5 | 5.7 | 0.987 | 0.983 | 0.969 |
Benzene (% W) | 3 | 1.7 | 2.2 | 1.8 | 0.996 | 0.994 | 0.995 | 3.0 | 3.4 | 5.3 | 0.988 | 0.985 | 0.973 |
Cyclohexane (%V) | 3 | 1.3 | 1.6 | 1.3 | 0.998 | 0.996 | 0.997 | 2.0 | 2.3 | 1.4 | 0.994 | 0.992 | 0.998 |
Cyclohexane (% W) | 3 | 1.1 | 1.3 | 0.8 | 0.998 | 0.997 | 0.999 | 1.7 | 1.9 | 1.2 | 0.996 | 0.994 | 0.998 |
Ethylbenzene (% V) | 3 | 1.6 | 2.1 | 1.2 | 0.996 | 0.995 | 0.997 | 2.4 | 2.7 | 1.8 | 0.993 | 0.990 | 0.995 |
Ethylbenzene (% W) | 3 | 1.7 | 2.2 | 1.4 | 0.996 | 0.994 | 0.996 | 2.6 | 3.0 | 2.1 | 0.991 | 0.988 | 0.993 |
Ethyl acetate (% V) | 2 | 1.9 | 2.3 | 2.0 | 0.995 | 0.994 | 0.994 | 2.4 | 3.4 | 2.6 | 0.991 | 0.983 | 0.996 |
Ethyl acetate (% W) | 2 | 1.7 | 2.1 | 1.8 | 0.996 | 0.994 | 0.992 | 2.3 | 3.2 | 2.5 | 0.991 | 0.984 | 0.996 |
1-Heptanol (% V) | 3 | 1.1 | 1.4 | 1.7 | 0.998 | 0.997 | 0.995 | 1.9 | 2.0 | 1.9 | 0.995 | 0.994 | 0.993 |
1-Heptanol (% W) | 3 | 1.4 | 1.8 | 2.2 | 0.997 | 0.995 | 0.992 | 2.1 | 2.4 | 2.4 | 0.993 | 0.990 | 0.988 |
1,4-Dioxane (% V) | 3 | 1.0 | 1.3 | 1.1 | 0.999 | 0.998 | 0.997 | 1.7 | 2.1 | 1.9 | 0.996 | 0.994 | 0.999 |
1,4-Dioxane (% W) | 3 | 1.3 | 1.7 | 1.2 | 0.998 | 0.997 | 0.997 | 2.3 | 2.6 | 2.1 | 0.993 | 0.992 | 0.995 |
Sample Set | Sample No. | Benzene | Cyclohexane | Ethylbenzene | Benzene | Cyclohexane | Ethylbenzene | Ethyl Acetate | 1-Heptanol | 1,4-Dioxane |
---|---|---|---|---|---|---|---|---|---|---|
Ethyl Acetate | 1-Heptanol | 1,4-Dioxane | ||||||||
(% V) | (% W) | (% W) | ||||||||
Calibration set | 1 | 2.50 | 7.50 | 90.00 | 2.54 | 6.77 | 90.70 | 2.22 | 6.19 | 91.59 |
3 | 7.50 | 2.50 | 90.00 | 7.57 | 2.24 | 90.19 | 6.64 | 2.06 | 91.31 | |
4 | 7.50 | 90.00 | 2.50 | 8.33 | 88.91 | 2.76 | 7.97 | 88.98 | 3.05 | |
6 | 10.00 | 30.00 | 60.00 | 10.39 | 27.71 | 61.90 | 9.37 | 26.15 | 64.48 | |
7 | 10.00 | 40.00 | 50.00 | 10.50 | 37.35 | 52.15 | 9.57 | 35.59 | 54.85 | |
9 | 10.00 | 60.00 | 30.00 | 10.73 | 57.28 | 31.99 | 9.98 | 55.69 | 34.33 | |
10 | 10.00 | 70.00 | 20.00 | 10.86 | 67.58 | 21.57 | 10.20 | 66.41 | 23.39 | |
12 | 20.00 | 10.00 | 70.00 | 20.32 | 9.04 | 70.65 | 18.25 | 8.49 | 73.26 | |
13 | 20.00 | 20.00 | 60.00 | 20.54 | 18.26 | 61.20 | 18.62 | 17.32 | 64.06 | |
15 | 20.00 | 70.00 | 10.00 | 21.70 | 67.53 | 10.78 | 20.71 | 67.41 | 11.87 | |
16 | 30.00 | 20.00 | 50.00 | 30.78 | 18.25 | 50.97 | 28.32 | 17.56 | 54.12 | |
18 | 30.00 | 60.00 | 10.00 | 32.16 | 57.20 | 10.65 | 30.84 | 57.37 | 11.79 | |
19 | 40.00 | 20.00 | 40.00 | 41.02 | 18.24 | 40.75 | 38.29 | 17.80 | 43.91 | |
21 | 40.00 | 50.00 | 10.00 | 42.37 | 47.10 | 10.52 | 40.83 | 47.46 | 11.71 | |
22 | 50.00 | 10.00 | 40.00 | 50.69 | 9.02 | 40.29 | 47.54 | 8.84 | 43.61 | |
24 | 50.00 | 40.00 | 10.00 | 52.35 | 37.25 | 10.40 | 50.68 | 37.70 | 11.62 | |
25 | 60.00 | 10.00 | 30.00 | 60.79 | 9.01 | 30.20 | 57.86 | 8.97 | 33.17 | |
27 | 70.00 | 10.00 | 20.00 | 70.88 | 9.00 | 20.12 | 68.47 | 9.10 | 22.43 | |
28 | 70.00 | 20.00 | 10.00 | 71.63 | 18.20 | 10.17 | 69.95 | 18.59 | 11.46 | |
30 | 90.00 | 2.50 | 7.50 | 90.29 | 2.23 | 7.47 | 89.18 | 2.30 | 8.52 | |
31 | 90.00 | 7.50 | 2.50 | 90.77 | 6.73 | 2.50 | 90.14 | 6.99 | 2.87 | |
Test set | 2 | 2.50 | 90.00 | 7.50 | 2.78 | 88.94 | 8.28 | 2.64 | 88.29 | 9.07 |
5 | 10.00 | 10.00 | 80.00 | 10.17 | 9.04 | 80.79 | 9.01 | 8.38 | 82.62 | |
8 | 10.00 | 50.00 | 40.00 | 10.62 | 47.20 | 42.18 | 9.77 | 45.42 | 44.81 | |
11 | 10.00 | 80.00 | 10.00 | 10.98 | 78.11 | 10.91 | 10.43 | 77.61 | 11.96 | |
14 | 20.00 | 30.00 | 50.00 | 20.76 | 27.69 | 51.55 | 19.01 | 26.51 | 54.48 | |
17 | 30.00 | 40.00 | 30.00 | 31.45 | 37.30 | 31.25 | 29.53 | 36.61 | 33.86 | |
20 | 40.00 | 30.00 | 30.00 | 41.46 | 27.65 | 30.89 | 39.10 | 27.27 | 33.63 | |
23 | 50.00 | 30.00 | 20.00 | 51.79 | 27.63 | 20.58 | 49.59 | 27.67 | 22.74 | |
26 | 60.00 | 30.00 | 10.00 | 62.10 | 27.61 | 10.28 | 60.38 | 28.08 | 11.54 | |
29 | 80.00 | 10.00 | 10.00 | 80.95 | 9.00 | 10.05 | 79.39 | 9.23 | 11.38 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Ma, Y.; Xiong, Z.; Siesler, H.W.; Qi, L.; Zhang, G. Quantitative Analysis of Organic Liquid Three-Component Systems: Near-Infrared Transmission versus Raman Spectroscopy, Partial Least Squares versus Classical Least Squares Regression Evaluation and Volume versus Weight Percent Concentration Units. Molecules 2019, 24, 3564. https://doi.org/10.3390/molecules24193564
Yan H, Ma Y, Xiong Z, Siesler HW, Qi L, Zhang G. Quantitative Analysis of Organic Liquid Three-Component Systems: Near-Infrared Transmission versus Raman Spectroscopy, Partial Least Squares versus Classical Least Squares Regression Evaluation and Volume versus Weight Percent Concentration Units. Molecules. 2019; 24(19):3564. https://doi.org/10.3390/molecules24193564
Chicago/Turabian StyleYan, Hui, Yue Ma, Zhixin Xiong, Heinz W. Siesler, Liang Qi, and Guozheng Zhang. 2019. "Quantitative Analysis of Organic Liquid Three-Component Systems: Near-Infrared Transmission versus Raman Spectroscopy, Partial Least Squares versus Classical Least Squares Regression Evaluation and Volume versus Weight Percent Concentration Units" Molecules 24, no. 19: 3564. https://doi.org/10.3390/molecules24193564
APA StyleYan, H., Ma, Y., Xiong, Z., Siesler, H. W., Qi, L., & Zhang, G. (2019). Quantitative Analysis of Organic Liquid Three-Component Systems: Near-Infrared Transmission versus Raman Spectroscopy, Partial Least Squares versus Classical Least Squares Regression Evaluation and Volume versus Weight Percent Concentration Units. Molecules, 24(19), 3564. https://doi.org/10.3390/molecules24193564