Research and Development of Zincoborates: Crystal Growth, Structural Chemistry and Physicochemical Properties
Abstract
1. Introduction
2. Structural Chemistry of Zincoborates
2.1. Statistical Analysis of Structural Configurations
2.2. Zincoborates Possessing Special Structural Features
2.2.1. Zincoborates with Benign KBe2BO3F2 (KBBF)-Type Layered Structures
AZn2BO3X2 (A = Na, K, Rb, NH4; X = Cl, Br) Series with 2∞[Zn2BO3X2] Layers
Cs3Zn6B9O21 with 2∞[Zn2BO3O2] Layers
BaLiZn3(BO3)3 with 2∞[LiZn3(BO3)3] Layers and CdZn2KB2O6F with 2∞[ZnBO3] Layers
2.2.2. Zincoborates with Novel Edge-Sharing [BO4]5− Tetrahedra
KZnB3O6
Ba4Na2Zn4(B3O6)2(B12O24)
2.2.3. Zincoborates with Two Kinds of Isolated Anion Groups
3. Zincoborates with Excellent Properties
3.1. Zincoborates with Short Ultraviolet (UV) Cutoff Edges
3.2. Zincoborates with Large Second-Order Non-Linear Optical (NLO) Response
3.2.1. NLO Properties of Zincoborates Containing Alkali/Alkaline-Earth Metals
Cs3Zn6B9O21
AZn2BO3X2 (A = Na, K, Rb, NH4; X = Cl, Br) Series
BaZnBO3F
Ba5Zn4(BO3)6
3.2.2. Other Zinc-Containing Compounds with NLO Properties
Bi2ZnOB2O6
Ba3(ZnB5O10)PO4
3.3. Zincoborates with Anomalous Thermal Expansion Properties
3.3.1. Near-Zero Thermal Expansion Properties in Zn4B6O13
3.3.2. Unidirectional Thermal Expansion in KZnB3O6
4. Single Crystal Growth of Zincoborates
4.1. Bi2ZnOB2O6
4.2. Ba3(ZnB5O10)PO4
4.3. β-Zn3BPO7
4.4. Zn4B6O13
4.5. BaZnBO3F
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, C.T.; Liu, G.Z. Recent advances in nonlinear optical and electro-optical materials. Annu. Rev. Mater. Sci. 1986, 16, 203–243. [Google Scholar] [CrossRef]
- Chen, C.T.; Ye, N.; Lin, J.; Jiang, J.; Zeng, W.R.; Wu, B.C. Computer-assisted search for nonlinear optical crystals. Adv. Mater. 1999, 11, 1071–1078. [Google Scholar] [CrossRef]
- Becker, P. Borate materials in nonlinear optics. Adv. Mater. 1998, 10, 979–992. [Google Scholar] [CrossRef]
- Halasyamani, P.S.; Poeppelmeier, K.R. Noncentrosymmetric oxides. Chem. Mater. 1998, 10, 2753–2769. [Google Scholar] [CrossRef]
- Halasyamani, P.S.; Rondinelli, J.M. The must-have and nice-to-have experimental and computational requirements for functional frequency doubling deep-UV crystals. Nat. Commun. 2018, 9, 2972. [Google Scholar] [CrossRef]
- Ok, K.M.; Chi, E.O.; Halasyamani, P.S. Bulk characterization methods for non-centrosymmetric materials: Second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity. Chem. Soc. Rev. 2006, 35, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.T.; Yu, H.W.; Rondinelli, J.M.; Poeppelmeier, K.R.; Halasyamani, P.S. Deep ultraviolet nonlinear optical materials. Chem. Mater. 2016, 28, 5238–5258. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, J.H.; Hu, C.L.; Xu, X.; Kong, F.; Mao, J.G. KSbB2O6 and BaSb2B4O12: Novel boroantimonates with 3D anionic architectures composed of 1D chains of SbO6 octahedra and B2O5 groups. Inorg. Chem. 2014, 53, 3847–3853. [Google Scholar] [CrossRef]
- Yan, D.; Hu, C.L.; Mao, J.G. A2SbB3O8 (A = Na, K, Rb) and β-RbSbB2O6: Two types of alkali boroantimonates with 3D anionic architectures composed of SbO6 octahedra and borate groups. CrystEngComm 2016, 18, 1655–1664. [Google Scholar] [CrossRef]
- Zhang, M.; An, D.H.; Hu, C.; Chen, X.L.; Yang, Z.H.; Pan, S.L. Rational design via synergistic combination leads to an outstanding deep-ultraviolet birefringent Li2Na2B2O5 material with an unvalued B2O5 functional gene. J. Am. Chem. Soc. 2019, 141, 3258–3264. [Google Scholar] [CrossRef]
- Mutailipu, M.; Zhang, M.; Yang, Z.H.; Pan, S.L. Targeting the next generation of deep-ultraviolet nonlinear optical materials: Expanding from borates to borate fluorides to fluorooxoborates. Acc. Chem. Res. 2019, 52, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.F.; Wang, Y.B.; Chen, C.T.; Wu, B.C. Nonlinear optical materials based on MBe2BO3F2 (M = Na, K). J. Appl. Phys. 1993, 74, 7014–7015. [Google Scholar] [CrossRef]
- Mei, L.; Huang, X.; Wang, Y.; Wu, Q.; Wu, B.; Chen, C. Crystal structure of KBe2BO3F2. Z. Kristallogr. 1995, 210, 93–95. [Google Scholar] [CrossRef]
- Chen, C.T.; Wang, Y.B.; Wu, B.C.; Wu, K.C.; Zeng, W.L.; Yu, L.H. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature 1995, 373, 322–324. [Google Scholar] [CrossRef]
- Chen, C.T.; Wang, Y.B.; Xia, Y.N.; Wu, B.C.; Tang, D.Y.; Wu, K.C.; Zeng, W.R.; Yu, L.H.; Mei, L.F. New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach. J. Appl. Phys. 1995, 77, 2268–2272. [Google Scholar] [CrossRef]
- Chen, C.T.; Wu, B.C.; Jiang, A.D.; You, G.M. A new-type ultraviolet SHG crystal–β-BaB2O4. Sci. Sin. B 1985, 28, 235–243. [Google Scholar]
- Chen, C.T.; Wu, Y.C.; Jiang, A.D.; Wu, B.C.; You, G.M.; Li, R.K.; Lin, S.J. New nonlinear-optical crystal: LiB3O5. J. Opt. Soc. Am. B 1989, 6, 616–621. [Google Scholar] [CrossRef]
- Wu, H.Q.; Ju, P.; He, H.; Yang, B.F.; Yang, G.Y. Three new mixed-alkali- and alkaline-earth-metal borates: From 1D chain to 2D layer to 3D framework. Inorg. Chem. 2013, 52, 10566–10570. [Google Scholar] [CrossRef]
- Wang, J.J.; Yang, G.Y. A novel supramolecular magnesoborate framework with snowflake-like channels built by unprecedented huge B69 cluster cages. Chem. Commun. 2017, 53, 10398–10401. [Google Scholar] [CrossRef]
- Kong, F.; Huang, S.P.; Sun, Z.M.; Mao, J.G.; Cheng, W.D. Se2(B2O7): A new type of second-order NLO material. J. Am. Chem. Soc. 2006, 128, 7750–7751. [Google Scholar] [CrossRef]
- Li, L.Y.; Li, G.B.; Wang, Y.X.; Liao, F.H.; Lin, J.H. Bismuth borates: One-dimensional borate chains and nonlinear optical properties. Chem. Mater. 2005, 17, 4174–4180. [Google Scholar] [CrossRef]
- Ok, K.M. Toward the rational design of novel noncentrosymmetric materials: Factors influencing the framework structures. Acc. Chem. Res. 2016, 49, 2774–2785. [Google Scholar] [CrossRef] [PubMed]
- Xia, Z.G.; Poeppelmeier, K.R. Chemistry-inspired adaptable framework structures. Acc. Chem. Res. 2017, 50, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.H.; Lei, B.H.; Zhang, W.Y.; Pan, S.L. Module-analysis-assisted design of deep ultraviolet fluorooxoborates with extremely large gap and high structural stability. Chem. Mater. 2019, 31, 2807–2813. [Google Scholar] [CrossRef]
- Song, J.L.; Hu, C.L.; Xu, X.; Kong, F.; Mao, J.G. A facile synthetic route to a new SHG material with two types of parallel π-conjugated planar triangular units. Angew. Chem. Int. Ed. 2015, 54, 3679–3682. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, C.L.; Mao, F.F.; Feng, J.H.; Mao, J.G. A facile route to nonlinear optical materials: Three-site aliovalent substitution involving one cation and two anions. Angew. Chem. Int. Ed. 2019, 131, 2120–2124. [Google Scholar] [CrossRef]
- Jing, Q.; Yang, G.; Chen, Z.H.; Dong, X.Y.; Shi, Y.J. A joint strategy to evaluate the microscopic origin of the second-harmonic-generation response in nonpolar ABCO3F Compounds. Inorg. Chem. 2018, 57, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.H.; Yang, Z.H.; Yu, H.W.; Cao, C.; Li, Z.; Hu, C.; Poeppelmeier, K.R.; Pan, S.L. Module-guided design scheme for deep-ultraviolet nonlinear optical materials. J. Am. Chem. Soc. 2018, 140, 10726–10733. [Google Scholar] [CrossRef]
- Shen, Y.G.; Zhao, S.G.; Luo, J.H. The role of cations in second-order nonlinear optical materials based on π-conjugated [BO3]3− groups. Coord. Chem. Rev. 2018, 366, 1–28. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, M.; Pan, S.L.; Yang, Z.H.; Wang, Z.; Bian, Q.; Hou, X.L.; Yu, H.W.; Zhang, F.F.; Wu, K.; et al. Na3Ba2(B3O6)2F: Next generation of deep-ultraviolet birefringent materials. Cryst. Growth Des. 2015, 15, 523–529. [Google Scholar] [CrossRef]
- Huang, H.W.; Yao, J.Y.; Lin, Z.S.; Wang, X.Y.; He, R.; Yao, W.J.; Zhai, N.X.; Chen, C.T. Molecular engineering design to resolve the layering habit and polymorphism problems in deep UV NLO crystals: New structures in MM’Be2B2O6F (M = Na, M’ = Ca; M = K, M’ = Ca, Sr). Chem. Mater. 2011, 23, 5457–5463. [Google Scholar] [CrossRef]
- Chen, C.T.; Wang, G.L.; Wang, X.Y.; Xu, Z.Y. Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications. Appl. Phys. B 2009, 97, 9–25. [Google Scholar] [CrossRef]
- Eimerl, D.; Davis, L.; Velsko, S.; Graham, E.K.; Zalkin, A. Optical, mechanical and thermal-properties of barium borate. J. Appl. Phys. 1987, 62, 1968–1983. [Google Scholar] [CrossRef]
- Cyranoski, D. Materials science: China’s crystal cache. Nature 2009, 457, 953–955. [Google Scholar] [CrossRef]
- Becker, P. A contribution to borate crystal chemistry: Rules for the occurrence of polyborate anion types. Z. Kristallogr. 2001, 216, 523–533. [Google Scholar] [CrossRef]
- Zhao, S.G.; Gong, P.F.; Bai, L.; Xu, X.; Zhang, S.Q.; Sun, Z.H.; Lin, Z.S.; Hong, M.C.; Chen, C.T.; Luo, J.H. Beryllium-free Li4Sr(BO3)2 for deep-ultraviolet nonlinear optical applications. Nat. Commun. 2014, 5, 4019. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.H.; Hu, C.L.; Xu, X.; Kong, F.; Mao, J.G. Na2RE2TeO4(BO3)2 (RE = Y, Dy-Lu): Luminescent and structural studies on a series of mixed metal borotellurates. Inorg. Chem. 2015, 54, 2447–2454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.L.; Cheng, W.D.; Zhang, H.; Geng, L.; Lin, C.S.; He, Z.Z. A strong second-harmonic generation material Cd4BiO(BO3)3 originating from 3-chromophore asymmetric structures. J. Am. Chem. Soc. 2010, 132, 1508–1509. [Google Scholar] [CrossRef]
- Hao, Y.C.; Xu, X.; Kong, F.; Song, J.L.; Mao, J.G. PbCd2B6O12 and EuZnB5O10: Syntheses, crystal structures and characterizations of two new mixed metal borates. CrystEngComm 2014, 16, 7689–7695. [Google Scholar] [CrossRef]
- Cheng, L.; Wei, Q.; Wu, H.Q.; Zhou, L.J.; Yang, G.Y. Nonlinear optical metal borates containing two types of oxoboron clusters. Chem. Eur. J. 2013, 19, 17662–17667. [Google Scholar] [CrossRef]
- Song, H.M.; Wang, N.Z.; Jiang, X.X.; Fu, Y.; Li, Y.F.; Liu, W.; Lin, Z.S.; Yao, J.Y.; Zhang, G.C. Growth, crystal structures, and characteristics of Li5ASrMB12O24 (A = Zn, Mg; M = Al, Ga) with [MB12O24] frameworks. Inorg. Chem. 2019, 58, 1016–1019. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wei, Q.; Lin, Z.E.; Meng, Q.; He, H.; Yang, B.F.; Yang, G.Y. A 3D aluminoborate open framework interpenetrated by 2D zinc-amine coordination-polymer networks in its 11-ring channels. Angew. Chem. Int. Ed. 2014, 53, 7188–7191. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Fang, W.H.; Rong, C.; Yang, G.Y. A series of open-framework aluminoborates templated by transition-metal complexes. Chem. Eur. J. 2010, 16, 4852–4863. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Liu, L.J.; Jin, S.F.; Yao, W.J.; Zhang, Y.H.; Chen, C.T. Deep-ultraviolet nonlinear optical materials: Na2Be4B4O11 and LiNa5Be12B12O33. J. Am. Chem. Soc. 2013, 135, 18319–18322. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.W.; Wu, H.P.; Pan, S.L.; Yang, Z.H.; Hou, X.L.; Su, X.; Jing, Q.; Poeppelmeier, K.R.; Rondinelli, J.M. Cs3Zn6B9O21: A chemically benign member of the KBBF family exhibiting the largest second harmonic generation response. J. Am. Chem. Soc. 2014, 136, 1264–1267. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.G.; Zhang, J.; Zhang, S.Q.; Sun, Z.H.; Lin, Z.S.; Wu, Y.C.; Hong, M.C.; Luo, J.H. A new UV nonlinear optical material CsZn2B3O7: ZnO4 tetrahedra double the efficiency of second-harmonic generation. Inorg. Chem. 2014, 53, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- Mutailipu, M.; Zhang, M.; Wu, H.P.; Yang, Z.H.; Shen, Y.H.; Sun, J.L.; Pan, S.L. Ba3Mg3(BO3)3F3 polymorphs with reversible phase transition and high performances as ultraviolet nonlinear optical materials. Nat. Commun. 2018, 9, 3089. [Google Scholar] [CrossRef]
- Zhao, S.G.; Kang, L.; Shen, Y.G.; Wang, X.D.; Asghar, M.A.; Lin, Z.S.; Xu, Y.Y.; Zeng, S.Y.; Hong, M.C.; Luo, J.H. Designing a beryllium-free deep-ultraviolet nonlinear optical material without a structural instability problem. J. Am. Chem. Soc. 2016, 138, 2961–2964. [Google Scholar] [CrossRef]
- Zhao, B.Q.; Bai, L.; Li, B.X.; Zhao, S.G.; Shen, Y.G.; Li, X.F.; Ding, Q.R.; Ji, C.M.; Lin, Z.S.; Luo, J.H. Crystal growth and optical properties of beryllium-free nonlinear optical crystal K3Ba3Li2Al4B6O20F. Cryst. Growth Des. 2018, 18, 1168–1172. [Google Scholar] [CrossRef]
- Zhao, B.Q.; Li, B.X.; Zhao, S.G.; Liu, X.T.; Wu, Z.Y.; Shen, Y.G.; Li, X.F.; Ding, Q.R.; Ji, C.M.; Luo, J.H. Physical properties of a promising nonlinear optical crystal K3Ba3Li2Al4B6O20F. Cryst. Growth Des. 2018, 18, 7368–7372. [Google Scholar] [CrossRef]
- Wu, H.P.; Yu, H.W.; Pan, S.L.; Halasyamani, P.S. Deep-ultraviolet nonlinear-optical material K3Sr3Li2Al4B6O20F: Addressing the structural instability problem in KBe2BO3F2. Inorg. Chem. 2017, 56, 8755–8758. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.W.; Young, J.; Wu, H.P.; Zhang, W.G.; Rondinelli, J.M.; Halasyamani, P.S. The next-generation of nonlinear optical materials: Rb3Ba3Li2Al4B6O20F-synthesis, characterization, and crystal growth. Adv. Opt. Mater. 2017, 5, 1700840. [Google Scholar] [CrossRef]
- Shen, Y.G.; Zhao, S.G.; Yang, Y.; Cao, L.L.; Wang, Z.J.; Zhao, B.Q.; Sun, Z.H.; Lin, Z.S.; Luo, J.H. A new KBBF-family nonlinear optical material with strong interlayer bonding. Cryst. Growth Des. 2017, 17, 4422–4427. [Google Scholar] [CrossRef]
- Meng, X.H.; Liang, F.; Xia, M.J.; Lin, Z.S. Beryllium-free nonlinear-optical crystals A3Ba3Li2Ga4B6O20F (A = K and Rb): Members of the Sr2Be2(BO3)2O family with a strong covalent connection between the ∞2[Li2Ga4B6O20F]9− double layers. Inorg. Chem. 2018, 57, 5669–5676. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.W.; Wu, H.P.; Pan, S.L.; Zhang, B.B.; Dong, L.Y.; Han, S.J.; Yang, Z.H. Pb4Zn2B10O21: A congruently melting lead zinc borate with a novel [B10O24] anionic group and an interesting [Pb4O12]∞ chain. New J. Chem. 2014, 38, 285–291. [Google Scholar] [CrossRef]
- Mutailipu, M.; Li, Z.; Zhang, M.; Hou, D.W.; Yang, Z.H.; Zhang, B.B.; Wu, H.P.; Pan, S.L. The mechanism of large second harmonic generation enhancement activated by Zn2+ substitution. Phys. Chem. Chem. Phys. 2016, 18, 32931–32936. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.; An, D.H.; Zhang, M.; Hu, C.; Mutailipu, M.; Yang, Z.H.; Lu, X.Q.; Pan, S.L. Li6Zn3(BO3)4: A new zincoborate featuring vertex-, edge- and face-sharing LiO4 tetrahedra and exhibiting reversible phase transitions. Inorg. Chem. Front. 2017, 4, 1100–1107. [Google Scholar] [CrossRef]
- Yang, G.S.; Gong, P.F.; Lin, Z.S.; Ye, N. AZn2BO3X2 (A = K, Rb, NH4; X = Cl, Br): New members of KBBF family exhibiting large SHG response and the enhancement of layer interaction by modified structures. Chem. Mater. 2016, 28, 9122–9131. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, L.J.; Wang, X.Y.; Li, R.K.; Chen, C.T. Beryllium-free KBBF family of nonlinear-optical crystals: AZn2BO3X2 (A = Na, K, Rb; X = Cl, Br). Inorg. Chem. 2016, 55, 12496–12499. [Google Scholar] [CrossRef]
- Yu, H.W.; Zhang, W.G.; Young, J.; Rondinelli, J.M.; Halasyamani, P.S. Design and synthesis of the beryllium-free deep-ultraviolet nonlinear optical material Ba3(ZnB5O10)PO4. Adv. Mater. 2015, 27, 7380–7385. [Google Scholar] [CrossRef]
- Li, R.K.; Chen, P. Cation coordination control of anionic group alignment to maximize SHG effects in the BaMBO3F (M = Zn, Mg) series. Inorg.Chem. 2010, 49, 1561–1565. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.H.; Xia, M.J.; Li, R.K. Ba5Zn4(BO3)6: A nonlinear-optical material with reinforced interlayer connections and large second-harmonic-generation response. Inorg. Chem. 2017, 56, 11458–11461. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.W.; Koliha, L.J. A new noncentrosymmetric orthoborate [Ba2Zn(BO3)2]. Mater. Res. Bull. 1994, 29, 1203–1210. [Google Scholar] [CrossRef]
- Zhang, W.G.; Yu, H.W.; Wu, H.P.; Halasyamani, P.S. Crystal growth and associated properties of a nonlinear optical crystal-Ba2Zn(BO3)2. Crystals 2016, 6, 68. [Google Scholar] [CrossRef]
- Lou, Y.F.; Li, D.D.; Li, Z.L.; Zhang, H.; Jin, S.F.; Chen, X.L. Unidirectional thermal expansion in KZnB3O6: Role of alkali metals. Dalton Trans. 2015, 44, 19763–19767. [Google Scholar] [CrossRef]
- Lou, Y.F.; Li, D.D.; Li, Z.L.; Jin, S.F.; Chen, X.L. Unidirectional thermal expansion in edge-sharing BO4 tetrahedra contained KZnB3O6. Sci. Rep. 2015, 5, 10996. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.X.; Molokeev, M.S.; Gong, P.F.; Yang, Y.; Wang, W.; Wang, S.H.; Wu, S.F.; Wang, Y.X.; Huang, R.J.; Li, L.F.; et al. Near-zero thermal expansion and high ultraviolet transparency in a borate crystal of Zn4B6O13. Adv. Mater. 2016, 28, 7936–7940. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, X.X.; Gong, P.F.; Molokeev, M.S.; Li, X.D.; Li, Y.C.; Wu, X.; Wu, Y.C.; Lin, Z.S. High mechanical strength in Zn4B6O13 with an unique sodalite-cage structure. RSC Adv. 2017, 7, 2038–2043. [Google Scholar] [CrossRef]
- Jin, S.F.; Cai, G.M.; Wang, W.Y.; He, M.; Wang, S.C.; Chen, X.L. Stable oxoborate with edge-sharing BO4 tetrahedra synthesized under ambient pressure. Angew. Chem. Int. Ed. 2010, 49, 4967–4970. [Google Scholar] [CrossRef]
- Wu, Y.; Yao, J.Y.; Zhang, J.X.; Fu, P.Z.; Wu, Y.C. Potassium zinc borate, KZnB3O6. Acta Crystallogr. 2010, 66, i45. [Google Scholar] [CrossRef]
- Sohr, G.; Perfler, L.; Huppertz, H. The high-pressure thallium triborate HP-TlB3O5. Z. Naturforsch. 2014, 69, 1260–1268. [Google Scholar] [CrossRef]
- Neumair, S.C.; Vanicek, S.; Kaindl, R.; Többens, D.M.; Martineau, C.; Taulelle, F.; Senker, J.; Huppertz, H. HP-KB3O5 highlights the structural diversity of borates: Corner-sharing BO3/BO4 groups in combination with edge-sharing BO4 tetrahedra. Eur. J. Inorg. Chem. 2011, 2011, 4147–4152. [Google Scholar] [CrossRef]
- Sohr, G.; Neumair, S.C.; Huppertz, H. High-pressure synthesis and characterization of the alkali metal borate HP-RbB3O5. Z. Naturforsch. 2012, 67, 1197–1204. [Google Scholar] [CrossRef]
- Sohr, G.; Többens, D.M.; Schmedt auf der Günne, J.; Huppertz, H. HP-CsB5O8: Synthesis and characterization of an outstanding borate exhibiting the simultaneous linkage of all structural units of borates. Chem. Eur. J. 2014, 20, 17059–17067. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.A.; Chen, Y.J.; Sun, C.; Chang, X.A.; Xiao, W.Q. Synthesis, crystal structure, spectrum properties, and electronic structure of a new three-borate Ba4Na2Zn4(B3O6)2(B12O24) with two isolated types of blocks: 3[3Δ] and 3[2Δ + 1T]. J. Alloys Compd. 2013, 568, 60–67. [Google Scholar] [CrossRef]
- Pauling, L. The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 1929, 51, 1010–1026. [Google Scholar] [CrossRef]
- Burdett, J.K.; McLarnan, T.J. An orbital interpretation of Pauling’s rules. Am. Mineral. 1984, 69, 601–621. [Google Scholar]
- Mutailipu, M.; Su, X.; Zhang, M.; Yang, Z.H.; Pan, S.L. Ban+2Znn(BO3)n(B2O5)Fn (n = 1, 2): New members of the zincoborate fluoride series with two kinds of isolated B-O units. Inorg. Chem. Front. 2017, 4, 281–288. [Google Scholar] [CrossRef]
- Busche, S.; Bluhm, K. Zur synthese und kristallstruktur von dibariumkaliumtrizinkborat Ba2KZn3(B3O6)(B6O13)/synthesis and crystal structure of di-barium potassium tri-zinc borate Ba2KZn3(B3O6)(B6O13). Z. Naturforsch. 1996, 51, 319–324. [Google Scholar] [CrossRef]
- Chen, X.A.; Chen, Y.J.; Wu, L.; Chang, X.A.; Xiao, W.Q. Synthesis, crystal structure, and spectrum properties of a new borate Ba4K2Zn5(B3O6)3(B9O19) with two isolated types of blocks: 3[3Δ] and 3[2Δ + 1T] + 3Δ + 3[2Δ + 1T]. Solid State Sci. 2014, 27, 47–54. [Google Scholar] [CrossRef]
- Barbier, J.; Penin, N.; Cranswick, L.M. Melilite-type borates Bi2ZnB2O7 and CaBiGaB2O7. Chem. Mater. 2005, 17, 3130–3136. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.A.; Chang, X.A.; Zang, H.G.; Xiao, W.Q. Synthesis, Crystal structure and optical properties of non-centrosymmetric borate, Bi2ZnB2O7. J. Syn. Cryst. 2007, 36, 1005–1010. [Google Scholar]
- Li, F.; Hou, X.L.; Pan, S.L.; Wang, X. Growth, structure, and optical properties of a congruent melting oxyborate, Bi2ZnOB2O6. Chem. Mater. 2009, 21, 2846–2850. [Google Scholar] [CrossRef]
- Yu, H.W.; Wu, H.P.; Jing, Q.; Yang, Z.H.; Halasyamani, P.S.; Pan, S.L. Polar Polymorphism: α-, β-, and γ-Pb2Ba4Zn4B14O31-Synthesis, characterization, and nonlinear optical properties. Chem. Mater. 2015, 27, 4779–4788. [Google Scholar] [CrossRef]
- Chen, Y.N.; Zhang, M.; Hu, C.; Yang, Z.H.; Pan, S.L. Ba2ZnSc(BO3)3 and Ba4Zn5Sc2(BO3)8: First examples of borates in the Zn-Sc-B-O system featuring special structure configurations. Inorg. Chem. Front. 2018, 5, 1787–1794. [Google Scholar] [CrossRef]
- Huang, Z.J.; Pan, S.L.; Yang, Z.H.; Yu, H.W.; Dong, X.Y.; Zhao, W.W.; Dong, L.Y.; Su, X. Pb8M(BO3)6 (M = Zn, Cd): Two new isostructural lead borates compounds with two-dimensional ∞[Pb8B6O18]2− layer structure. Solid State Sci. 2013, 15, 73–78. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Zhou, Y.; Chen, Y.; Li, C.; Zhu, Y.; Xu, Z.; Chen, C. 12.95 mW sixth harmonic generation with KBe2BO3F2 crystal. Appl. Phys. B 2008, 91, 95–97. [Google Scholar] [CrossRef]
- Wu, B.C.; Tang, D.Y.; Ye, N.; Chen, C.T. Linear and nonlinear optical properties of the KBe2BO3F2 (KBBF) crystal. Opt. Mater. 1996, 5, 105–109. [Google Scholar] [CrossRef]
- Chen, C.T. Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal. Opt. Mater. 2004, 26, 425–429. [Google Scholar] [CrossRef]
- Jiang, X.X.; Luo, S.Y.; Kang, L.; Gong, P.F.; Huang, H.W.; Wang, S.C.; Lin, Z.S.; Chen, C.T. First-principles evaluation of the alkali and/or alkaline earth beryllium borates in deep ultraviolet nonlinear optical applications. ACS Photonics 2015, 2, 1183–1191. [Google Scholar] [CrossRef]
- Zou, G.H.; Lin, C.S.; Jo, H.; Nam, G.; You, T.S.; Ok, K.M. Pb2BO3Cl: A tailor-made polar lead borate chloride with very strong second harmonic generation. Angew. Chem. Int. Ed. 2016, 55, 12078–12082. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.W.; Koocher, N.Z.; Rondinelli, J.M.; Halasyamani, P.S. Pb2BO3I: A borate iodide with the largest second-harmonic generation (SHG) response in the KBe2BO3F2 (KBBF) family of nonlinear optical (NLO) materials. Angew. Chem. Int. Ed. 2018, 57, 6100–6103. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Song, Y.X.; Liang, F.; Ye, N.; Lin, Z.S. Pb2BO3Br: A novel nonlinear optical lead borate bromine with a KBBF-type structure exhibiting strong nonlinear optical response. Inorg. Chem. Front. 2018, 5, 916–921. [Google Scholar] [CrossRef]
- Tran, T.T.; Koocher, N.Z.; Rondinelli, J.M.; Halasyamani, P.S. Beryllium-free β-Rb2Al2B2O7 as a possible deep-ultraviolet nonlinear optical material replacement for KBe2BO3F2. Angew. Chem. Int. Ed. 2017, 56, 2969–2973. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.G.; Gong, P.F.; Luo, S.Y.; Liu, S.J.; Li, L.N.; Asghar, M.A.; Khan, T.; Hong, M.C.; Lin, Z.S.; Luo, J.H. Beryllium-free Rb3Al3B3O10F with reinforced interlayer bonding as a deep-ultraviolet nonlinear optical crystal. J. Am. Chem. Soc. 2015, 137, 2207–2210. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Jiang, X.X.; Duan, M.H.; Hou, Z.Y.; Tang, C.C.; Xia, M.J.; Liu, L.J.; Lin, Z.S.; Fan, F.D.; Bai, L.; et al. Deep-ultraviolet nonlinear optical crystal Cs2Al2(B3O6)2O: A benign member of the Sr2Be2(BO3)2O family with [Al2(B3O6)2O]2− double layers. Chem. Eur. J. 2018, 24, 7856–7860. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.; Zhang, M.; Pan, S.L. BaLiZn3(BO3)3: A new member of the KBe2BO3F2 family possessing dense BO3 triangles and the smallest interlayer distance. New J. Chem. 2018, 42, 12365–12368. [Google Scholar] [CrossRef]
- Duan, M.H.; Xia, M.J.; Li, R.K. BaLiZn3B3O9: A mixed-cation KBe2BO3F2-type zinc-borate with a (LiZn3B3O9)∞ network. Eur. J. Inorg. Chem. 2018, 32, 3686–3689. [Google Scholar] [CrossRef]
- Jiao, Z.W.; Zhang, F.; Yan, Q.F.; Shen, D.Z.; Shen, G.Q. Synthesis, structure characterization and fluorescence property of a new fluoride borate crystal, CdZn2KB2O6F. J. Solid State Chem. 2009, 182, 3063–3066. [Google Scholar] [CrossRef]
- Zhang, F.; Jiao, Z.W.; Shen, D.Z.; Shen, G.Q.; Wang, X.Q. CdZn2KB2O6F, a new fluoride borate crystal. Acta Crystallogr. 2010, 66, i1–i3. [Google Scholar] [CrossRef]
- Wang, S.C.; Ye, N. Na2CsBe6B5O15: An alkaline beryllium borate as a deep-UV nonlinear optical crystal. J. Am. Chem. Soc. 2011, 133, 11458–11461. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C.; Ye, N.; Li, W.; Zhao, D. Alkaline beryllium borate NaBeB3O6 and ABe2B3O7 (A = K, Rb) as UV nonlinear optical crystals. J. Am. Chem. Soc. 2010, 132, 8779–8786. [Google Scholar] [CrossRef] [PubMed]
- Knyrim, J.S.; Becker, P.; Johrendt, D.; Huppertz, H. A new non-centrosymmetric modification of BiB3O6. Angew. Chem. Int. Ed. 2006, 45, 8239–8241. [Google Scholar] [CrossRef] [PubMed]
- An, D.H.; Kong, Q.R.; Zhang, M.; Yang, Y.; Li, D.N.; Yang, Z.H.; Pan, S.L.; Chen, H.M.; Su, Z.; Sun, Y.; et al. Versatile coordination mode of LiNaB8O13 and α- and β-LiKB8O13 via the flexible assembly of four-connected B5O10 and B3O7 Groups. Inorg. Chem. 2016, 55, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.W.; Yao, J.Y.; Lin, Z.S.; Wang, X.Y.; He, R.; Yao, W.J.; Zhai, N.X.; Chen, C.T. NaSr3Be3B3O9F4: A promising deep-ultraviolet nonlinear optical material resulting from the cooperative alignment of the [Be3B3O12F]10− anionic group. Angew. Chem. Int. Ed. 2011, 50, 9141–9144. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, H.; von der Eltz, B. Multianvil high-pressure synthesis of Dy4B6O15: The first oxoborate with edge-sharing BO4 tetrahedra. J. Am. Chem. Soc. 2002, 124, 9376–9377. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, H. High-pressure preparation, crystal structure, and properties of RE4B6O15 (RE = Dy, Ho) with an extension of the “fundamental building block”-descriptors. Z. Naturforsch. 2003, 58, 278–290. [Google Scholar] [CrossRef]
- Emme, H.; Huppertz, H. High-pressure preparation, crystal structure, and properties of α-(RE)2B4O9 (RE = Eu, Gd, Tb, Dy): Oxoborates displaying a new type of structure with edge-sharing BO4 tetrahedra. Chem. Eur. J. 2003, 9, 3623–3633. [Google Scholar] [CrossRef]
- Emme, H.; Huppertz, H. High-pressure syntheses of α-RE2B4O9 (RE = Sm, Ho), with a structure type displaying edge-sharing BO4 tetrahedra. Acta Cryst. 2005, C61, i29–i31. [Google Scholar]
- Knyrim, J.S.; Roeßner, F.; Jakob, S.; Johrendt, D.; Kinski, I.; Glaum, R.; Huppertz, H. Formation of edge-sharing BO4 tetrahedra in the high-pressure borate HP-NiB2O4. Angew. Chem. Int. Ed. 2007, 46, 9097–9100. [Google Scholar] [CrossRef]
- Neumair, S.C.; Kaindl, R.; Huppertz, H. Synthesis and crystal structure of the high-pressure cobalt borate HP-CoB2O4. Z. Naturforsch. 2010, 65, 1311–1317. [Google Scholar] [CrossRef]
- Jen, I.H.; Lee, Y.C.; Tsai, C.E.; Lii, K.H. Edge-sharing BO4 tetrahedra in the structure of hydrothermally synthesized barium borate: α-Ba3[B10O17(OH)2]. Inorg. Chem. 2019, 58, 4085–4088. [Google Scholar] [CrossRef] [PubMed]
- Mutailipu, M.; Zhang, M.; Li, H.; Fan, X.; Yang, Z.H.; Jin, S.F.; Wang, G.; Pan, S.L. Li4Na2CsB7O14: A new edge-sharing [BO4]5− tetrahedra containing borate with high anisotropic thermal expansion. Chem. Commun. 2019, 55, 1295–1298. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.J.; Han, J.; Cheng, S.C.; Yu, S.J.; Yang, Z.H.; Pan, S.L. Transformation of the B-O units from corner-sharing to edge-sharing linkages in BaMBO4 (M = Ga, Al). Inorg. Chem. 2019, 58, 8237–8244. [Google Scholar] [CrossRef] [PubMed]
- Han, S.J.; Huang, C.M.; Tudi, A.; Hu, S.S.; Yang, Z.H.; Pan, S.L. β-CsB9O14: A triple-layered borate with edge-sharing BO4 tetrahedra exhibiting a short cutoff edge and a large birefringence. Chem. Eur. J. 2019. [Google Scholar] [CrossRef]
- Yang, L.; Fan, W.L.; Li, Y.L.; Sun, H.G.; Wei, L.; Cheng, X.F.; Zhao, X. Theoretical insight into the structural stability of KZnB3O6 polymorphs with different BOx polyhedral networks. Inorg. Chem. 2012, 51, 6762–6770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Hu, C.L.; Xu, X.; Kong, F.; Mao, J.G. New second-order NLO materials based on polymeric borate clusters and GeO4 tetrahedra: A combined experimental and theoretical study. Inorg. Chem. 2011, 50, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Wang, J.J.; He, C.; Cheng, J.W.; Yang, G.Y. Deep-ultraviolet nonlinear optics in a borate framework with 21-ring channels. Chem. Eur. J. 2016, 22, 10759–10762. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Mori, Y.; Yoshimura, M.; Yap, Y.K.; Kamimura, T. Recent development of nonlinear optical borate crystals: Key materials for generation of visible and UV light. Mater. Sci. Eng. R 2000, 30, 1–54. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, S.L. Recent development of metal borate halides: Crystal chemistry and application in second-order NLO materials. Coord. Chem. Rev. 2016, 323, 15–35. [Google Scholar] [CrossRef]
- Wu, C.; Yang, G.; Humphrey, M.G.; Zhang, C. Recent advances in ultraviolet and deep-ultraviolet second-order nonlinear optical crystals. Coord. Chem. Rev. 2018, 375, 459–488. [Google Scholar] [CrossRef]
- Dotsenko, V.P.; Berezovskaya, I.V.; Efryushina, N.P.; Voloshinovskii, A.S.; Stryganyuk, G.B. Position of the optical absorption edge of alkaline earth borates. Opt. Mater. 2009, 31, 1428–1433. [Google Scholar] [CrossRef]
- Huang, J.H.; Jin, C.C.; Xu, P.L.; Gong, P.F.; Lin, Z.S.; Cheng, J.W.; Yang, G.Y. Li2CsB7O10(OH)4: A deep-ultraviolet nonlinear-optical mixed-alkaline borate constructed by unusual heptaborate anions. Inorg. Chem. 2019, 58, 1755–1758. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.H.; Ma, Z.J.; Wu, K.C.; Ye, N. Cadmium-rare earth oxyborates Cd4ReO(BO3)3 (Re = Y, Gd, Lu): Congruently melting compounds with large SHG responses. J. Mater. Chem. 2012, 22, 19911–19918. [Google Scholar] [CrossRef]
- Zhao, S.G.; Zhang, G.C.; Yao, J.Y.; Wu, Y.C. K3YB6O12: A new nonlinear optical crystal with a short UV cutoff edge. Mater. Res. Bull. 2012, 47, 3810–3813. [Google Scholar] [CrossRef]
- Feng, J.H.; Xu, X.; Hu, C.L.; Mao, J.G. K6ACaSc2(B5O10)3 (A = Li, Na, Li0.7Na0.3): Nonlinear-optical materials with short UV cutoff edges. Inorg. Chem. 2019, 58, 2833–2839. [Google Scholar] [CrossRef] [PubMed]
- Mutailipu, M.; Xie, Z.Q.; Su, X.; Zhang, M.; Wang, Y.; Yang, Z.H.; Janjua, M.R.S.A.; Pan, S.L. Chemical cosubstitution-oriented design of rare-earth borates as potential ultraviolet nonlinear optical materials. J. Am. Chem. Soc. 2017, 139, 18397–18405. [Google Scholar] [CrossRef]
- Xie, Z.Q.; Mutailipu, M.; He, G.J.; Han, G.P.; Wang, Y.; Yang, Z.H.; Zhang, M.; Pan, S.L. A series of rare-earth borates K7MRE2B15O30 (M = Zn, Cd, Pb; RE = Sc, Y, Gd, Lu) with large second harmonic generation responses. Chem. Mater. 2018, 30, 2414–2423. [Google Scholar] [CrossRef]
- Wu, H.P.; Pan, S.L.; Yu, H.W.; Chen, Z.H.; Zhang, F.F. Synthesis, crystal structure and properties of a new congruently melting compound, K3ZnB5O10. Solid State Sci. 2012, 14, 936–940. [Google Scholar] [CrossRef]
- Baiheti, T.; Han, S.J.; Tudi, A.; Yang, Z.H.; Yu, H.H.; Pan, S.L. From centrosymmetric to noncentrosymmetric: Cation-directed structural evolution in X3ZnB5O10 (X = Na, K, Rb) and Cs12Zn4(B5O10)4 crystals. Inorg. Chem. Front. 2019, 6, 1461–1467. [Google Scholar] [CrossRef]
- Halasyamani, P.S.; Zhang, W.G. Viewpoint: Inorganic materials for UV and deep-UV nonlinear-optical applications. Inorg. Chem. 2017, 56, 12077–12085. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.P.; Yu, H.W.; Yang, Z.H.; Hou, X.L.; Su, X.; Pan, S.L.; Poeppelmeier, K.R.; Rondinelli, J.M. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. J. Am. Chem. Soc. 2013, 135, 4215–4218. [Google Scholar] [CrossRef] [PubMed]
- Mori, Y.; Kuroda, I.; Nakajima, S.; Sasaki, T.; Nakai, S. New nonlinear optical crystal: Cesium lithium borate. Appl. Phys. Lett. 1995, 67, 1818–1820. [Google Scholar] [CrossRef]
- Sasaki, T.; Mori, Y.; Kuroda, I.; Nakajima, S.; Yamaguchi, K.; Watanabe, S.; Nakai, S. Caesium lithium borate: A new nonlinear optical crystal. Acta Crystallogr. C 1995, 51, 2222–2224. [Google Scholar] [CrossRef]
- Xia, M.J.; Li, R.K. Growth, structure and optical properties of nonlinear optical crystal BaZnBO3F. J. Solid State Chem. 2016, 233, 58–61. [Google Scholar] [CrossRef]
- Wang, G.F.; Wu, Y.C.; Fu, P.Z.; Liang, X.Y.; Xu, Z.Y.; Chen, C.T. Crystal growth and properties of β-Zn3BPO7. Chem. Mater. 2002, 14, 2044–2047. [Google Scholar] [CrossRef]
- Dagdale, S.R.; Muley, G.G. Synthesis and characterization of a novel nonlinear optical material Mg2Na2ZnB4O10. Proce. Technol. 2016, 24, 682–688. [Google Scholar] [CrossRef][Green Version]
- Chen, C.T.; Wu, Y.C.; Li, R.K. The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series. Int. Rev. Phys. Chem. 1989, 8, 65–91. [Google Scholar] [CrossRef]
- Ye, N.; Chen, Q.X.; Wu, B.C.; Chen, C.T. Searching for new nonlinear optical materials on the basis of the anionic group theory. J. Appl. Phys. 1998, 84, 555–558. [Google Scholar] [CrossRef]
- Li, F.; Pan, S.L.; Hou, X.L.; Yao, J. A novel nonlinear optical crystal Bi2ZnOB2O6. Cryst. Growth Des. 2009, 9, 4091–4095. [Google Scholar] [CrossRef]
- Sleight, A. Zero-expansion plan. Nature 2003, 425, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, L.; Deng, J.X.; Xing, X.R. Negative thermal expansion in functional materials: Controllable thermal expansion by chemical modifications. Chem. Soc. Rev. 2015, 44, 3522–3567. [Google Scholar] [CrossRef] [PubMed]
- Bubnova, R.S.; Filatov, S.K. Strong anisotropic thermal expansion in borates. Phys. Stat. Sol. B 2008, 245, 2469–2476. [Google Scholar] [CrossRef]
- Bubnova, R.S.; Stepanov, N.K.; Levin, A.A.; Filatov, S.K.; Paufler, P.; Meyer, D.C. Crystal structure and thermal behaviour of boropollucite CsBSi2O6. Solid State Sci. 2004, 6, 629–637. [Google Scholar] [CrossRef]
- Lin, W.; Dai, G.Q.; Huang, Q.Z.; Zhen, A.; Liang, J.K. Anisotropic thermal expansion of LiB3O5. J. Phys. D: Appl. Phys. 1990, 23, 1073–1075. [Google Scholar]
- Becker, P.; Bohaty, L. Thermal expansion of bismuth triborate. Cryst. Res. Technol. 2001, 36, 1175–1180. [Google Scholar] [CrossRef]
- Yao, W.J.; Jiang, X.X.; Huang, R.J.; Li, W.; Huang, C.J.; Lin, Z.S.; Li, L.F.; Chen, C.T. Area negative thermal expansion in a beryllium borate LiBeBO3 with edge sharing tetrahedra. Chem. Commun. 2014, 50, 13499–13501. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.X.; Luo, S.Y.; Kang, L.; Gong, P.F.; Yao, W.J.; Huang, H.W.; Li, W.; Huang, R.J.; Wang, W.; Li, Y.C.; et al. Isotropic negative area compressibility over large pressure range in potassium beryllium fluoroborate and its potential applications in deep ultraviolet region. Adv. Mater. 2015, 27, 4851–4857. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.Q.; Wang, Y.; Zhang, F.F.; Zhang, B.B.; Yang, Z.H.; Hou, X.L.; Pan, S.L.; Poeppelmeier, K.R. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F. J. Am. Chem. Soc. 2017, 139, 10645–10648. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.B.; Shi, G.Q.; Yang, Z.H.; Zhang, F.F.; Pan, S.L. Fluorooxoborates: Beryllium-free deep-ultraviolet nonlinear optical materials without layered growth. Angew. Chem. Int. Ed. 2017, 56, 3916–3919. [Google Scholar] [CrossRef] [PubMed]
- Mutailipu, M.; Zhang, M.; Zhang, B.B.; Wang, L.Y.; Yang, Z.H.; Zhou, X.; Pan, S.L. SrB5O7F3: Functionalized with [B5O9F3]6− chromophores: Accelerating the rational design of deep-ultraviolet nonlinear optical materials. Angew. Chem. Int. Ed. 2018, 57, 6095–6099. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Pan, S.L.; Hou, X.L.; Zhou, Z.X. Growth of Bi2ZnOB2O6 crystal by the Czochralski method. J. Cryst. Growth 2010, 312, 2383–2385. [Google Scholar] [CrossRef]
- Yu, H.W.; Cantwell, J.; Wu, H.P.; Zhang, W.G.; Poeppelmeier, K.R.; Halasyamani, P.S. Top-seeded solution crystal growth, morphology, optical and thermal properties of Ba3(ZnB5O10)PO4. Cryst. Growth Des. 2016, 16, 3976–3982. [Google Scholar] [CrossRef]
- Liebertz, J.; Stähr, S. Zur Existenz und Einkristallzüchtung von Zn3BPO7 und Mg3BPO7. Z. Kristallogr. 1982, 160, 135–137. [Google Scholar] [CrossRef]
- Wang, G.F.; Fu, P.Z.; Wu, Y.C.; Chen, C.T. Study on pulling growth of β-Zn3BPO7 crystal. J. Synth. Cryst. 2000, 29, 130–133. [Google Scholar]
- Wu, Y.C.; Wang, G.F.; Fu, P.Z.; Liang, X.Y.; Xu, Z.Y.; Chen, C.T. A new nonlinear optical crystal β-Zn3BPO7. J. Cryst. Growth 2001, 229, 205–207. [Google Scholar] [CrossRef]
Compounds | Space Group | Structural Features | Second Harmonic Generation (SHG) Intensity (@ 1064nm) | Absorption Edge | Refs. |
---|---|---|---|---|---|
Cs3Zn6B9O21 | Cmc21 | 2∞[Zn2BO3O2] layer | 3.3 × KH2PO4 (KDP) | ~200 nm | [45] |
KZn2BO3Cl2 | R32 | Isolated [BO3]3− (coplanar) | 3.01 × KDP | ~194 nm | [58] |
RbZn2BO3Cl2 | R32 | Isolated [BO3]3− (coplanar) | 2.85 × KDP | ~198 nm | [58] |
NH4Zn2BO3Cl2 | R32 | Isolated [BO3]3− (coplanar) | 2.82 × KDP | ~190 nm | [58] |
KZn2BO3Br2 | R32 | Isolated [BO3]3− (coplanar) | 2.68 × KDP | ~209 nm | [58] |
RbZn2BO3Br2 | R32 | Isolated [BO3]3− (coplanar) | 2.53 × KDP | <214 nm | [58] |
Ba3(ZnB5O10)PO4 | Pmn21 | / | 4 × KDP (@ 532nm) | ~180 nm | [60] |
Ba5Zn4(BO3)6 | Pc | 2∞[Zn4(BO3)4O6] layer | 2.6 × KDP | ~223 nm | [62] |
Ba2Zn(BO3)2 | Pca21 | Isolated [BO3]3− | 1.5 × KDP | ~230 nm | [64] |
Bi2ZnOB2O6 | Pba2 | Isolated [B2O5]4− + [B2O7]8− | 3–4 × KDP | ~330 nm | [83] |
α−Pb2Ba4Zn4B14O31 | P1 | Isolated [B2O5]4− + [B6O13]8− | 0.6 × KDP | <289 nm | [84] |
β−Pb2Ba4Zn4B14O31 | Cc | Isolated [B2O5]4− + [B6O13]8− | 1.1 × KDP | <304 nm | [84] |
Cs12Zn4(B5O10)4 | 2∞[Zn(B5O10)] layer | 0.5 × KDP | <185 nm | [130] | |
BaZnBO3F | P | Isolated [BO3]3− (coplanar) | 2.8 × KDP | ~223 nm | [135] |
β-Zn3BPO7 | P | / | 1.8 × KDP | ~250 nm | [136] |
Mg2Na2ZnB4O10 | / | / | 2.78 × KDP | ~210 nm | [137] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhang, M.; Mutailipu, M.; Poeppelmeier, K.R.; Pan, S. Research and Development of Zincoborates: Crystal Growth, Structural Chemistry and Physicochemical Properties. Molecules 2019, 24, 2763. https://doi.org/10.3390/molecules24152763
Chen Y, Zhang M, Mutailipu M, Poeppelmeier KR, Pan S. Research and Development of Zincoborates: Crystal Growth, Structural Chemistry and Physicochemical Properties. Molecules. 2019; 24(15):2763. https://doi.org/10.3390/molecules24152763
Chicago/Turabian StyleChen, Yanna, Min Zhang, Miriding Mutailipu, Kenneth R. Poeppelmeier, and Shilie Pan. 2019. "Research and Development of Zincoborates: Crystal Growth, Structural Chemistry and Physicochemical Properties" Molecules 24, no. 15: 2763. https://doi.org/10.3390/molecules24152763
APA StyleChen, Y., Zhang, M., Mutailipu, M., Poeppelmeier, K. R., & Pan, S. (2019). Research and Development of Zincoborates: Crystal Growth, Structural Chemistry and Physicochemical Properties. Molecules, 24(15), 2763. https://doi.org/10.3390/molecules24152763