1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Consumables
3.2. Preparation of Corn Snack Products
3.3. Acrylamide and Hydroxymethylfurfural (HMF) Determination
3.3.1. Sample Preparation
3.3.2. LC–MS/MS Analysis
3.3.3. Analytical Method Validation
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gökmen, V. Introduction: Potential Safety Risks Associated with Thermal Processing of Foods. In Acrylamide in Food; Gökmen, V., Ed.; Academic Press: London, UK, 2016. [Google Scholar]
- Capuano, E.; Ferrigno, A.; Acampa, I.; Serpen, A.; Açar, Ö.Ç.; Gökmen, V.; Fogliano, V. Effect of flour type on Maillard reaction and acrylamide formation during toasting of bread crisp model systems and mitigation strategies. Food Res. Int. 2009, 42, 1295–1302. [Google Scholar] [CrossRef]
- Capuano, E.; Fogliano, V. Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Van Der Fels-Klerx, H.J.; Capuano, E.; Nguyen, H.T.; Ataç Mogol, B.; Kocadaǧli, T.; Göncüoǧlu Taş, N.; Hamzalıoğlu, A.; Van Boekel, M.A.J.S.; Gökmen, V. Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: NaCl and temperature-time profile effects and kinetics. Food Res. Int. 2014, 57, 210–217. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Van der Fels-Klerx, H.J.; Van Boekel, M.A.J.S. Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagine. Food Chem. 2017, 230, 14–23. [Google Scholar] [CrossRef]
- Teixidó, E.; Núñez, O.; Santos, F.J.; Galceran, T.M. 5-Hydroxymethylfurfural content in foodstuffs determined by micellar electrokinetic chromatography. Food Chem. 2011, 126, 1902–1908. [Google Scholar] [CrossRef][Green Version]
- Gökmen, V.; Kocadağlı, T.; Göncüoğlu, N.; Mogol, B.A. Model studies on the role of 5-hydroxymethyl-2-furfural in acrylamide formation from asparagine. Food Chem. 2012, 132, 168–174. [Google Scholar] [CrossRef]
- Teixidó, E.; Moyano, E.; Santos, F.J.; Galceran, T.M. Liquid chromatography multi-stage mass spectrometry for the analysis of 5-hydroxymethylfurfural in foods. J. Chromatogr. A 2008, 1185, 102–108. [Google Scholar] [CrossRef]
- Gökmen, V.; Şenyuva, H.Z. Improved Method for the Determination of Hydroxymethylfurfural in Baby Foods Using Liquid Chromatography-Mass Spectrometry. J. Agric. Food Chem. 2006, 54, 2845–2849. [Google Scholar] [CrossRef]
- Rada-Mendoza, M.; Olano, A.; Villamiel, M. Determination of hydroxymethylfurfural in commercial jams and in fruit-based infant foods. Food Chem. 2002, 79, 513–516. [Google Scholar] [CrossRef]
- Spano, N.; Casula, L.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Scanu, R.; Tapparo, A.; Sanna, G. An RP-HPLC determination of 5-hydroxymethylfurfural in honey: The case of strawberry tree honey. Talanta 2006, 68, 1390–1395. [Google Scholar] [CrossRef]
- Viegas, O.; Prucha, M.; Gökmen, V.; Ferreira, I.M.P.L.V.O. Parameters affecting 5-hydroxymethylfurfural exposure from beer. Food Addit. Contam. A 2018, 35, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius Commission. Distribution of the Report of the Seventh Session of the codex Committee on Sugars (ALINORM 01/25); Codex Alimentarius Commission: Washington, DC, USA, 2001. [Google Scholar]
- European Commission. Directive 2001/110/EC. Off. J. Eur. Communities 2001, 47–52. [Google Scholar]
- Rufián-Henares, J.A.; Delgado-Andrade, C.; Morales, F.J. Non-enzymatic browning: The case of the Maillard reaction. In Assessing the Generation and Bioactivity of neoformed Compounds in Thermally Treated Foods; Delgado-Andrade, C., Rufián-Henares, J.A., Eds.; Editorial Atrio S.L.: Granada, Spain, 2009; pp. 9–32. [Google Scholar]
- The International Agency for Research on Cancer (IARC). Acrylamide. In Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, France, 1994; Volume 60, pp. 389–433. [Google Scholar]
- Swedish National Food Administration (SNFA). Information about Acrylamide in Food; SNFA: Stockholm, Sweden, 2002. [Google Scholar]
- Tareke, E.; Rydberg, P.; Karlsson, S.; Eriksson, M.; Törnqvist, M. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J. Agric. Food. Chem. 2002, 50, 4998–5006. [Google Scholar] [CrossRef]
- Mottram, D.S.; Wedzicha, B.L.; Dodson, A.T. Acrylamide is formed in the Maillard reaction. Nature 2002, 419, 448–449. [Google Scholar] [CrossRef] [PubMed]
- Stadler, R.H.; Blank, I.; Varga, N.; Robert, F.; Hau, J.; Guy, P.A.; Robert, M.-C.; Riediker, S. Food chemistry: Acrylamide from Maillard reaction products. Nature 2002, 419, 449–450. [Google Scholar] [CrossRef]
- Yaylayan, V.A.; Wnorowski, A.; Perez Locas, C. Why asparagine needs carbohydrates to generate acrylamide. J. Agric. Food Chem. 2003, 51, 1753–1757. [Google Scholar] [CrossRef]
- Zyzak, D.V.; Sanders, R.A.; Stojanovic, M.; Tallmadge, D.H.; Eberhart, B.L.; Ewald, D.K.; Gruber, D.C.; Morsch, T.R.; Strothers, M.A.; Rizzi, G.P.; et al. Acrylamide formation in heated foods. J. Agric. Food Chem. 2003, 51, 4782–4787. [Google Scholar] [CrossRef]
- Claus, A.; Carle, R.; Schieber, A. Acrylamide in cereal products: A review. J. Cereal Sci. 2008, 47, 118–133. [Google Scholar] [CrossRef]
- Mulla, M.Z.; Bharadway, V.R.; Annapure, U.S.; Singhal, R.S. Effect of formulation and processing parameters on acrylamide formation: A case study on extrusion of blends of potato flour and semolina. LWT Food Sci. Technol. 2011, 44, 1643–1648. [Google Scholar] [CrossRef]
- Pedreschi, F.; Kaack, K.; Granby, K. The effect of asparaginase on acrylamide formation in French fries. Food Chem. 2008, 109, 386–392. [Google Scholar] [CrossRef]
- Masatcioglu, M.T.; Gökmen, V.; Ng, P.K.W.; Köksel, H. Effects of formulation, extrusion cooking conditions, and CO2 injection on the formation of acrylamide in corn extrudates. J. Sci. Food. Agric. 2014, 94, 2562–2568. [Google Scholar] [CrossRef]
- European Commission. Commission recommendations of 3 May 2007 on the monitoring of acrylamide levels in food. Off. J. Eur. Union 2007, 123, 33–39. [Google Scholar]
- European Commission. Commission recommendations of 2 June 2010 on the monitoring of acrylamide levels in food. Off. J. Eur. Union 2010, 137, 4–10. [Google Scholar]
- European Commission. Commission recommendations of 8 November 2013 on the monitoring of acrylamide levels in food. Off. J. Eur. Union 2013, 301, 15–17. [Google Scholar]
- European Commission. Commission regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. Off. J. Eur. Union 2017, 304, 24–44. [Google Scholar]
- European Food Safety Authority (EFSA). Update on acrylamide levels in food from monitoring years 2007 to 2010. EFSA J. 2012, 10, 2938. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar] [CrossRef]
- Rufián-Henares, J.A.; Morales, F.J. Determination of acrylamide in potato chips by a reversed-phase LC–MS method based on a stable isotope dilution assay. Food Chem. 2006, 97, 555–562. [Google Scholar] [CrossRef]
- Oracz, J.; Nebesny, E.; Żyżelewicz, D. New trends in quantification of acrylamide in food products. Talanta. 2011, 86, 23–34. [Google Scholar] [CrossRef]
- Keramat, J.; LeBail, A.; Prost, C.; Soltanizadeh, N. Acrylamide in Foods: Chemistry and Analysis. A Review. Food Bioprocess Technol. 2011, 4, 340–363. [Google Scholar] [CrossRef]
- Šarkanj, B.; Ezekiel, N.C.; Turner, C.P.; Abia, A.W.; Rychlik, M.; Krska, R.; Sulyok, M.; Warth, B. Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Anal. Chim. Acta 2018, 1019, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Jozinović, A.; Panak Balentić, J.; Ačkar, Đ.; Babić, J.; Pajin, B.; Miličević, B.; Guberac, S.; Vrdoljak, A.; Šubarić, D. Cocoa husk application in the enrichment of extruded snack products. J. Food Process Pres. 2019, 43, e13866. [Google Scholar] [CrossRef]
- Ačkar, Đ.; Jozinović, A.; Babić, J.; Miličević, B.; Panak Balentić, J.; Šubarić, D. Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products. Innov. Food. Sci. Emerg. Technol. 2018, 47, 517–524. [Google Scholar] [CrossRef]
- Teixidó, E.; Santos, F.J.; Puignou, L.; Galceran, M.T. Analysis of 5-hydroxymethylfurfural in foods by gas chromatography–mass spectrometry. J. Chromatogr. A 2006, 1135, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Gökmen, V.; Morales, F.J.; Ataç, B.; Serpen, A.; Arribas-Lorenzo, G. Multiple-stage extraction strategy for the determination of acrylamide in foods. J. Food Compost. Anal. 2009, 22, 142–147. [Google Scholar] [CrossRef]
- Gökmen, V.; Şenyuva, H.Z. Study of colour and acrylamide formation in coffee, wheat flour and potato chips during heating. Food Chem. 2006, 99, 238–243. [Google Scholar] [CrossRef]
- Spanic, V.; Marcek, T.; Abicic, I.; Sarkanj, B. Effects of Fusarium Head Blight on Wheat Grain and Malt Infected by Fusarium culmorum. Toxins 2018, 10, 17. [Google Scholar] [CrossRef]
- Malachová, A.; Sulyok, M.; Beltrán, E.; Berthiller, F.; Krska, R. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J. Chrom. A 2014, 1362, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Stadler, D.; Sulyok, M.; Schuhmacher, R.; Berthiller, F.; Krska, R. The contribution of lot-to-lot variation to the measurement uncertainty of an LC-MS-based multi-mycotoxin assay. Anal. Bioanal. Chem. 2018, 410, 4409–4418. [Google Scholar] [CrossRef][Green Version]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young. Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Masatcioglu, M.T.; Ng, P.K.W.; Köksel, H. Effects of formulation and extrusion cooking conditions on furfural and hydroxymethylfurfural content. J. Cereal Sci. 2015, 65, 32–38. [Google Scholar] [CrossRef]
- Validation of analytical procedures: Text and Methodology. In International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use; ICH: Geneva, Switzerland, 2005.
Sample Availability: Samples of the compounds are not available from the authors. |


Validation Parameters * | Acrylamide | 13C3-acrylamide | HMF | |
---|---|---|---|---|
Calibration curve equation | y = 6421.6x − 2739.3 | y = 7114.5x − 2567.8 | y = 205.38x + 6249.7 | |
R2 | 0.997 | 0.998 | 0.999 | |
LOD (ng/g) | 0.62 | 0.58 | 18.9 | |
LOQ (ng/g) | 1.89 | 1.75 | 57.5 | |
Retention time (min) | 9.10 ± 0.07 | 9.10 ± 0.06 | 13.3 ± 0.08 | |
RA (%) | Lower concentration | 91.2 | 91.9 | 90.0 |
Higher concentration | 91.6 | 92.3 | 90.9 | |
Average | 91.4 | 92.1 | 90.4 | |
RE (%) | Lower concentration | 92.7 | 93.1 | 91.2 |
Higher concentration | 93.0 | 93.9 | 94.2 | |
Average | 92.8 | 93.5 | 92.7 | |
SSE (%) | Lower concentration | 98.5 | 98.8 | 98.7 |
Higher concentration | 98.5 | 98.3 | 96.5 | |
Average | 98.5 | 98.5 | 97.6 | |
RSD Intraday (%) | Lower concentration | 2.89 | 2.77 | 3.17 |
Higher concentration | 2.86 | 2.91 | 3.15 | |
Average | 2.88 | 2.84 | 3.16 | |
RSD Interday (%) | Lower concentration | 3.12 | 3.01 | 3.36 |
Higher concentration | 3.06 | 3.08 | 3.43 | |
Average | 3.09 | 3.05 | 3.40 |
Sample * | Acrylamide (ng/g) | HMF (ng/g) |
---|---|---|
Corn grits | <LOD | 63.0 ± 3.00 a |
BSG | <LOD | 5634 ± 11.0 a |
SBP | <LOD | 658 ± 15.8 a |
AP | <LOD | 16,019 ± 978 b |
Sample* | Non-Extruded | Extruded | ||
---|---|---|---|---|
Acrylamide (ng/g) | HMF (ng/g) | Acrylamide (ng/g) | HMF (ng/g) | |
Corn grits | <LOD | 63.0 ± 3.00 a | 2.25 ± 0.29 a | 174 ± 2.21 a |
Corn + 5% BSG | <LOD | 68.2 ± 3.31 a | 2.74 ± 0.02 a,b | 192 ± 5.36 a |
Corn + 10% BSG | <LOD | 78.4 ± 4.89 a | 2.86 ± 0.05 a,b | 290 ± 18.9 a |
Corn + 15% BSG | <LOD | 83.8 ± 4.89 a | 3.13 ± 0.23 b | 301 ± 12.6 a |
Corn + 5% SBP | <LOD | 86.0 ± 0.47 a | 2.59 ± 0.02 a,b | 173 ± 11.2 a |
Corn + 10% SBP | <LOD | 88.1 ± 1.26 a | 2.68 ± 0.07 a,b | 224 ± 30.5 a |
Corn + 15% SBP | <LOD | 90.6 ± 0.32 a | 3.00 ± 0.21 b | 317 ± 9.47 a |
Corn + 5% AP | <LOD | 421 ± 20.5 b | 3.98 ± 0.07 c | 971 ± 85.2 b |
Corn + 10% AP | <LOD | 801 ± 37.9 c | 4.93 ± 0.71 d | 2622 ± 110 c |
Corn + 15% AP | <LOD | 1277 ± 11.0 d | 5.37 ± 0.50 d | 6069 ± 789 d |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).