Inhibitory Effects on NO Production and DPPH Radicals and NBT Superoxide Activities of Diarylheptanoid Isolated from Enzymatically Hydrolyzed Ehthanolic Extract of Alnus sibirica
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enzymatic Hydrolysis
2.2. Isolation and Structural Identification
2.3. Biological Activities
3. Materials and Methods
3.1. General Procedure
3.2. Plant Material
3.3. Enzymatic Hydrolysis
3.4. Extraction and Isolation
3.5. Measurement of DPPH Radical Scavenging Activity
3.6. Measurement of NBT Superoxide Scavenging Activity
3.7. RAW264.7 Cell Culture
3.8. Measurement of Inhibitory Activity on NO Production
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lee, S. Korean Folk Medicine; Pub. Center of Seoul National University: Seoul, Korea, 1966. [Google Scholar]
- Asakawa, Y.; Genjida, F.; Hayashi, S.; Matsuura, T. A New Ketol from Alunus firma Sieb. Et Zucc.(Betulaceae). Tetrahedron Lett. 1969, 10, 3235–3237. [Google Scholar] [CrossRef]
- Terazawa, M.; Okuyama, H.; Miyake, M. Isolation of hirsutanonol and hirsutenone, two new diarylheptanoids from the green bark of Keyamahannoki, Alnus hirsuta Turcz. Jap. Wood Res Soc. J. 1973, 19, 45–46. [Google Scholar]
- Karchesy, J.J.; Laver, M.L.; Barofsky, D.F.; Barofsky, E. Structure of oregonin, a natural diarylheptanoid xyloside. J. Chem. Soc. Chem. Commun. 1974, 16, 649. [Google Scholar] [CrossRef]
- Nomura, M.; Tokoroyama, T.; Kubota, T. Biarylheptanoids and other constituents from wood of Alnus japonica. Phytochemistry 1981, 20, 1097–1104. [Google Scholar] [CrossRef]
- Asakawa, Y. Chemical Constituents ofAlnus sieboldiana(BETULACEAE) II. The Isolation and Structure of Flavonoids and Stilbenes. Chem. Soc. 1971, 44, 2761–2766. [Google Scholar] [CrossRef] [Green Version]
- Suga, T.; Iwata, N.; Asakawa, Y. Chemical Constituents of the Male Flower ofAlnus pendula(BETULACEAE). Chem. Soc. 1972, 45, 2058–2060. [Google Scholar] [CrossRef] [Green Version]
- Sakamura, F.; Ohta, S.; Aoki, T.; Suga, T. Triterpenoids from the female and male flowers of Alnus sieboldiana. Phytochemistry 1985, 24, 2744–2745. [Google Scholar] [CrossRef]
- Suga, T.; Ohta, S.; Ohta, E.; Aoki, T. A C31-secodammarane-type triterpenic acid, 12-deoxy alnustic acid, from the female flowers of alnus pendula. Phytochemistry 1986, 25, 1243–1244. [Google Scholar] [CrossRef]
- Ishimatsu, M.; Tanaka, T.; Nonaka, G.-I.; Nishioka, I. Alnusnins A and B from the leaves of Alnus sieboldiana. Phytochemistry 1989, 28, 3179–3184. [Google Scholar] [CrossRef]
- Hult, K.; Berglund, P. Engineered enzymes for improved organic synthesis. Curr. Opin. Biotechnol. 2003, 14, 395–400. [Google Scholar] [CrossRef]
- Lee, M.-W.; Kim, N.-Y.; Park, M.-S.; Ahn, K.-H.; Toh, S.-H.; Hahn, D.-R.; Kim, Y.-C.; Chung, H.-T. Diarylheptanoids with In Vitro Inducible Nitric Oxide Synthesis Inhibitory Activity from Alnus hirsuta. Planta Medica 2000, 66, 551–553. [Google Scholar] [CrossRef]
- Choi, S.E.; Park, K.H.; Jeong, M.S.; Kim, H.H.; Lee, D.I.; Joo, S.S.; Lee, C.S.; Bang, H.; Choi, Y.W.; Lee, M.-K.; et al. Effect of Alnus japonica extract on a model of atopic dermatitis in NC/Nga mice. J. Ethnopharmacol. 2011, 136, 406–413. [Google Scholar] [CrossRef]
- Lee, M.; Song, J.Y.; Chin, Y.-W.; Sung, S.H. Anti-adipogenic diarylheptanoids from Alnus hirsuta f. sibirica on 3T3-L1 cells. Bioorganic Med. Chem. Lett. 2013, 23, 2069–2073. [Google Scholar] [CrossRef] [PubMed]
- Joo, S.S.; Kim, M.S.; Oh, W.S.; Lee, D.I. Enhancement of NK Cytotoxicity, Antimetastasis and Elongation Effect of Survival Time in B16-F10 Melanoma Cells by Oregonin. Arch. Pharm. Res. 2002, 25, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-R.; Suzuki, Y.; Choi, K.-J.; Kim, Y.-H. Enzymatic Preparation of Genuine Prosapogenin, 20(S)-Ginsenoside Rh 1, from Ginsenosides Re and Rg 1. Biosci. Biotechnol. Biochem. 2000, 64, 2739–2743. [Google Scholar] [CrossRef]
- Ko, S.-R.; Choi, K.-J.; Suzuki, K.; Suzuki, Y. Enzymatic Preparation of Ginsenosides Rg2, Rh1, and F1. Chem. Pharm. 2003, 51, 404–408. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Rho, H.S.; Kim, D.H.; Chang, I.S. Enzymatic Preparation of Kaempferol from Green Tea Seed and Its Antioxidant Activity. J. Agric. Food Chem. 2006, 54, 2951–2956. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Maldonado, H.; Paredes-López, O.; Biliaderis, C.G. Amylolytic Enzymes and Products Derived from Starch: A Review. Crit. Rev. Food Sci. Nutr. 1995, 35, 373–403. [Google Scholar] [CrossRef] [PubMed]
- D’Archivio, M.; Filesi, C.; Di Benedetto, R.; Gargiulo, R.; Giovannini, C.; Masella, R. Polyphenols, Dietary Sources and Bioavailability. Ann. Ist. Super. Sanita 2007, 43, 348. [Google Scholar]
- Williamson, G.; Day, A.J. Biomarkers for exposure to dietary flavonoids: a review of the current evidence for identification of quercetin glycosides in plasma. Br. J. Nutr. 2001, 86, S105–S110. [Google Scholar] [Green Version]
- Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991, 280, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, T.T.; Yin, J.; Lee, M. Anti-Inflammatory and Anti-Oxidative Activities of Phenolic Compounds from Alnus sibirica Stems Fermented by Lactobacillus plantarum subsp. argentoratensis. Molecules 2017, 22, 1566. [Google Scholar] [Green Version]
- Yin, J.; Yoon, S.H.; Ahn, H.S.; Lee, M.W. Inhibitory Activity of Allergic Contact Dermatitis and Atopic Dermatitis-Like Skin in BALB/c Mouse through Oral Administration of Fermented Barks of Alnus sibirica. Molecules 2018, 23, 450. [Google Scholar] [CrossRef]
- Yin, J.; Yoon, K.H.; Ahn, H.S.; Lee, M.W. Quantitative Analysis and Validation of Hirsutenone and Muricarpone B from Fermented Alnus sibirica. Prod. Sci. 2017, 23, 146. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.J.; Kim, K.H.; Yeom, S.H.; Kim, M.K.; Shim, J.G.; Lim, H.W.; Lee, M.W. New Diarylheptanoid from the Barks of Alnus japonica Steudel. Chin. Chem. Lett. 2005, 16, 1337. [Google Scholar]
- Gonzalez-Laredo, R.F.; Chen, J.; Karchesy, Y.M.; Karchesy, J.J. Four New Diarylheptanoid Glycosides From Alnus Rubra Bark. Prod. Lett. 1999, 13, 75–80. [Google Scholar] [CrossRef]
- Giang, P.M.; Son, P.T.; Matsunami, K.; Otsuka, H. New Diarylheptanoids from Amomum muricarpum E LMER. Chem. Pharm. Bull. 2006, 54, 139–140. [Google Scholar] [CrossRef]
- Kharitonov, S.; Yates, D.; Robbin, R.; Logan-Sinclair, R.; Shinebourne, E.; Barnes, P. Increased nitric oxide in exhaled air of asthmatic patients. Lancet 1994, 343, 133–135. [Google Scholar] [CrossRef]
- Epe, B. DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucleic Acids Res. 1996, 24, 4105–4110. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, A.J.; Higgs, A.; Moncada, S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Pharmacol. Toxicol. 1999, 39, 191–220. [Google Scholar] [CrossRef] [PubMed]
- Sautebin, L. Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia 2000, 71, S48–S57. [Google Scholar] [CrossRef]
- Choi, S.E.; Kim, K.H.; Kwon, J.H.; Kim, S.B.; Kim, H.W.; Lee, M.W. Cytotoxic activities of diarylheptanoids from Alnus japonica. Arch. Pharmacal 2008, 31, 1287–1289. [Google Scholar] [CrossRef]
- Wang, H.S.; Yin, J.; Hwang, I.H.; Lee, M.W. Variation of diarylheptanoid from Alnus sibirica Fitch. Ex. Turcz. Processed Enzymatic Hydrolysis. Korean J. Pharmacogn. 2018, 49, 336–340. [Google Scholar]
Sample Availability: Samples of the compounds (1–4) are available from the authors. |
Samples | IC50 (μg/mL) | Compounds | IC50 (μM) |
---|---|---|---|
AS | 21.80 ± 0.55 c | 1 | 26.02 ± 0.57 a |
EAS | 16.68 ± 0.37 b | 2 | 19.39 ± 0.32 a |
Ascorbic acid | 11.18 ± 0.60 a | 3 | 23.30 ± 1.00 a |
4 | 38.70 ± 0.71 c | ||
Ascorbic acid | 44.67 ± 1.75 b,c |
Samples | IC50 (μg/mL) | Compounds | IC50 (μM) |
---|---|---|---|
AS | 4.59 ± 0.68 c | 1 | 19.03 ± 8.79 b |
EAS | 3.12 ± 0.75 b | 2 | 16.68 ± 6.74 b |
Allopurinol | 0.10 ± 0.41 a | 3 | 11.62 ± 7.86 b |
4 | 12.65 ± 11.05 b | ||
Allopurinol | 3.92 ± 1.96 a |
Samples | IC50 (μg/mL) | Compounds | IC50 (μM) |
---|---|---|---|
AS | 6.26 ± 0.16 c | 1 | 17.81 ± 8.63 a,b,c |
EAS | 1.14 ± 0.06 a | 2 | 0.78 ± 0.38 a |
L-NMMA | 3.53 ± 0.17 b | 3 | 5.20 ± 2.61 a,b |
4 | 2.64 ± 2.29 a | ||
L-NMMA | 33.88 ± 27.87 b,c |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.S.; Hwang, Y.J.; Yin, J.; Lee, M.W. Inhibitory Effects on NO Production and DPPH Radicals and NBT Superoxide Activities of Diarylheptanoid Isolated from Enzymatically Hydrolyzed Ehthanolic Extract of Alnus sibirica. Molecules 2019, 24, 1938. https://doi.org/10.3390/molecules24101938
Wang HS, Hwang YJ, Yin J, Lee MW. Inhibitory Effects on NO Production and DPPH Radicals and NBT Superoxide Activities of Diarylheptanoid Isolated from Enzymatically Hydrolyzed Ehthanolic Extract of Alnus sibirica. Molecules. 2019; 24(10):1938. https://doi.org/10.3390/molecules24101938
Chicago/Turabian StyleWang, Hye Soo, Yoon Jeong Hwang, Jun Yin, and Min Won Lee. 2019. "Inhibitory Effects on NO Production and DPPH Radicals and NBT Superoxide Activities of Diarylheptanoid Isolated from Enzymatically Hydrolyzed Ehthanolic Extract of Alnus sibirica" Molecules 24, no. 10: 1938. https://doi.org/10.3390/molecules24101938
APA StyleWang, H. S., Hwang, Y. J., Yin, J., & Lee, M. W. (2019). Inhibitory Effects on NO Production and DPPH Radicals and NBT Superoxide Activities of Diarylheptanoid Isolated from Enzymatically Hydrolyzed Ehthanolic Extract of Alnus sibirica. Molecules, 24(10), 1938. https://doi.org/10.3390/molecules24101938